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Abstract

(249/250 words)
Background and Purpose: Retrospective dose evaluation for organ-at-risk auto-contours has previously used
small cohorts due to additional manual effort required for treatment planning on auto-contours. We aimed
to do this at large scale, by a) proposing and assessing an automated plan optimization workflow that used
existing clinical plan parameters and b) using it for head-and-neck auto-contour dose evaluation.
Materials and Methods: Our automated workflow emulated our clinic’s treatment planning protocol and
reused existing clinical plan optimization parameters. This workflow recreated the original clinical plan
(POG) with manual contours (PMC) and evaluated the dose effect (POG−PMC) on 70 photon and 30 proton
plans of head-and-neck patients. As a use-case, the same workflow (and parameters) created a plan using
auto-contours (PAC) of eight head-and-neck organs-at-risk from a commercial tool and evaluated their dose
effect (PMC − PAC).
Results: For plan recreation (POG − PMC), our workflow had a median impact of 1.0% and 1.5% across
dose metrics of auto-contours, for photon and proton respectively. Computer time of automated planning
was 25% (photon) and 42% (proton) of manual planning time. For auto-contour evaluation (PMC − PAC),
we noticed an impact of 2.0% and 2.6% for photon and proton radiotherapy. All evaluations had a median
∆NTCP (Normal Tissue Complication Probability) less than 0.3%.
Conclusions: The plan replication capability of our automated program provides a blueprint for other clinics
to perform auto-contour dose evaluation with large patient cohorts. Finally, despite geometric differences,
auto-contours had a minimal median dose impact, hence inspiring confidence in their utility and facilitating
their clinical adoption.

Keywords: Automated Plan Optimization, Auto Contouring, Dose Impact, Robot Process Automation,
Automated Plans
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1. Introduction2

Manual contouring of organs-at-risk (OAR) in radiotherapy is a time and resource-demanding task [1–3],3

especially in head-and-neck cancer due to a large OAR count [4]. Moreover, it is plagued by inter- and4
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intra-annotator variability [5–8] and hence there is a need for automation. In the last few years, availability5

of deep learning-based commercial tools have reduced the barriers for clinics to implement auto-contouring6

technology in daily practice. However, these tools may produce erroneous contours due to poor contrast,7

organ deformations, surgical removal of an organ or when tested on different patient cohorts [9]. Such cases8

may potentially lead to commercial providers providing updates to the underlying deep learning models.9

Thus, as deep learning auto-contouring tools are increasingly adopted in clinics, with the potential for future10

updates to models, there is a growing need to benchmark them, preferably at large-scale and in an automated11

manner.12

As deep learning-based auto-contouring methods for head-and-neck OARs have been shown to offer13

satisfactory geometric performance [6, 10], the next step is to evaluate their dose impact [11]. However,14

we observed that dose-based studies on auto-contours tend to use either smaller (≤ 20) [12–18] or medium-15

sized (≤ 40) [19], rather than larger [20] datasets. Studies using larger datasets simply superimpose the16

automated contours on the clinical dose [20] which does not fully replicate the treatment planning process.17

Conversely, studies using smaller or medium-sized test datasets either made manual plans [14, 17–19],18

used knowledge-based planning [13], a template approach [12] or a priori multi-criteria optimization (MCO)19

[15, 16]. Since smaller datasets may be affected by sampling bias, there is a need to perform dose analysis with20

a larger patient cohort. However, a manual approach to plan optimization is simply not scalable. Moreover,21

existing automated approaches [12, 13, 15], if not already clinically implemented, require additional skills22

and resources. Therefore, there is a need for an automated approach to treatment planning that can be23

done at a large scale and also leverages existing clinical knowledge and work.24

Thus, our contribution was to propose and assess a plan optimization method for retrospective studies25

that is scalable due to its automated nature and easily implementable due to the use of existing clinical26

resources (i.e., knowledge, tools and optimization parameters). We then used this approach in a use case to27

quantify auto-contour-induced dose effects for head-and-neck photon and proton radiotherapy.28

2. Materials and methods29

2.1. Data acquisition30

Our dataset consists of 100 head-and-neck cancer patients, of which 70 had clinical plans made for31

photon therapy, while 30 had proton plans, at Leiden University Medical Center (Leiden, The Netherlands)32

from 2021 to 2023. Patients were treated for either oropharyngeal (71) or hypopharyngeal (29) cancers with33

cancer stages T1-4, N0-3 and M0. 92 patients were treated with curative intent, i.e., 7000cGy to the primary34

tumor, while others were prescribed 6600cGy due to their post-operative nature. Details about CT scans35

used in planning are written in Supplementary Material A. The study was approved by the Medical Ethics36

Committee of Leiden, The Hague, Delft (G21.142, October 15, 2021). Patient consent was waived due to37

the retrospective nature of the study.38

2.2. Automated Contours39

For automated contouring, a commercial deep learning model from RayStation-10B (RaySearch Labs,40

Sweden) - “RSL Head and Neck CT” (v1.1.3) was used. A subset of the OARs which were used clinically for41

treatment planning were auto-contoured – Spinal Cord, Brainstem, Parotid (L/R), Submandibular (L/R),42

Oral Cavity, Esophagus, Mandible and Larynx (Supraglottic). See Supplementary Material B for additional43

details.44

2.3. Treatment Planning Protocol45

We used volumetric modulated arc therapy (VMAT) to generate a photon plan using a 6MV dual arc46

beam. The elective and boost Planning Target Volumes (PTV), henceforth referred as DL1/DL2 (dose level47

1/2) were prescribed 5425cGy/7000cGy in 35 fractions. For post-operative patients, our clinic prescribed48

5280cGy/6600cGy in 33 fractions instead. Planning was done such that at least 98% of DL1 and DL249

volumes received 95% of the prescribed dose (V95%) and also by keeping D0.03cc for DL2 below 107% of the50

prescribed dose.51
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Figure 1: Workflow for automated plan optimization and use-case of evaluating the effect of automated contours on dose. By
reusing original plan (POG) parameters, we made a plan for both the manual contours (PMC) and automated contours(PAC),
shown with yellow and blue colors respectively. Dashed lines indicate the evaluation workflow where both doses were evaluated
on the manual contours. Pink, maroon and orange contours are used to represent the manual, automated and PTV (DL1)
contours respectively. Finally, we used manual contours to compute dose metrics and normal tissue complication probability
(NTCP) [21] models and compare all plans.

Proton plans consisted of six beam intensity modulated proton therapy (IMPT). Planning was done52

such that V95% ≥ 98% for DL1/DL2 and D2% ≤ 107% for DL2 of the Clinical Target Volume (CTV) in a53

21-scenario robust optimization with 3mm setup and 3% proton range uncertainty. For robust evaluation of54

CTV DL1/DL2 we instead use 28-scenarios and test the voxel-wise minimum (vw-min) plan such that its55

V94% ≥ 98% [22] and voxel-wise maximum (vw-max) of D2% ≤ 107%.56

2.4. Automated Treatment Planning57

To make our automated program, a four-step script [23–25] was created which uses manually defined58

beam settings and objective weights from the clinical plan (more details in Supplementary Material C). This59

approach is also referred as robot process automation (RPA) [26], a process wherein a program emulates a60

human.61

In summary, for step 1, we began with an objective template i.e., a class solution with a standard set62

of weights that focuses on targets and the body contour. Step 2 then added dose-fall-off (DFO) objectives63

for organs which is the distance over which a specified high dose falls to a specified low dose. In step 3,64

we introduced equivalent uniform dose (EUD) objectives [27] on the OARs. Manual planning for the EUD65

objective involves iteratively fine-tuning its parameters. Since only the parameters of the last iteration were66

available to us, we instead followed a single-step optimization for this objective. Finally, in step 4, we used67

patient-specific control structure contours to reduce OAR dose or sculpt the dose to the targets. In the68

last step, we also updated any other weights the treatment planner might have changed compared to the69

objective template. Note, these final weight updates were asynchronous to manual planning, since we did70

not know when these weights were updated in the aforementioned process. Note that each of the above71

steps underwent four optimization cycles.72
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(a) (b)

(c) (d)

Figure 2: Box plots showing geometric (a) and surface metrics (b,c,d) for all our patients. The scatter points indicate the
metric values for each patient.

Using our automated program, we made two plans – 1) a plan optimized on manual contours (PMC)73

and 2) a plan optimized on automated contours (PAC) as shown in Figure 1. For the targets, elective74

lymph nodes, and OARs not available in the auto-contouring model we used manual contours which were75

used clinically for the original plan (POG). The plans were made using the Python 3.6 scripting interface76

of the Treatment Planning System (TPS) of RayStation. The scripts for this work are available at https:77

//github.com/prerakmody/dose-eval-via-existing-plan-parameters.78

2.5. Geometric Evaluation79

We used volumetric and surface distance metrics like Dice Coefficient, Hausdorff Distance 95% (HD95)80

and Mean Surface Distance (MSD) to evaluate our contours. Moreover, we also evaluated Surface DICE81

(SDC) with a margin of 3mm to gain insight into contour editing time requirements [28].82

2.6. Dose and NTCP Evaluation83

Given that our plans – POG, PMC and PAC have differences in the way they were created, we need to84

compare them. Metrics relevant to OARs were calculated and plans were compared in the following manner:85

∆Dx = Dx,p1 −Dx,p2. (1)

Here, x refers to the OAR for which we calculated a dose metric D and then compared it between any pair86

of plans p1 and p2. Here, D can refer to D0.03cc (Spinal Cord, Brainstem), Dmean (Parotid, Submandibular,87

Oral Cavity, Larynx (Supraglottic), Esophagus) or D2% (Mandible).88

For normal tissue complication (NTCP) probability [21] evaluation, we used a similar approach:89

∆NTCPd = NTCPd,p1 −NTCPd,p2, (2)

where d refers to either Xerostomia or Dysphagia with a grade ≥ 2 or ≥ 3.90
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(a) Organs at Risk

(b) Targets (c) NTCP

Figure 3: Dose metrics for the original (i.e., clinical) photon plans (POG) as well as plans (re)made on manual (PMC) and
automated (PAC) contours using an automated program. POG −PMC shows the dose effect of the proposed planning process,
while PMC − PAC shows the effect of using auto-contours. Here * represents a p-value ≤ 0.05. In a) we see the difference in
the dose metric of each OAR when comparing across plans. The plots in b) show us the metrics for the targets, while c) shows
us the difference in NTCP values.

For the above ∆Dx (dose) and ∆NTCPd values, we performed a Wilcoxon signed-rank test (p ≤ 0.05 is91

considered a significant difference) to evaluate if the differences between plans are significant.92
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3. Results93

3.1. Geometric evaluation94

Figure 2 shows five organs (Spinal Cord, Parotids, Submandibulars, Oral Cavity, Mandible) had a median95

DICE ≥ 0.78 (with additional summary measures tabulated in Supplementary Material B). In Figure 2b we96

observed that in general the surface DICE values for the OARs are higher than their DICE values, except97

for the oral cavity. Figure 2c and Figure 2d shows that HD95 and MSD had trends similar to DICE in98

Figure 2a. OARs with a median DICE ≥ 0.8 had their median HD95 less than 7.7mm and their median99

MSD less than 2.6mm. The spinal cord had DICE values that are better than brainstem, but its HD95100

range was as long as brainstem.101

3.2. Dose evaluation102

The median absolute value of POG (original plan) - PMC (automated plan using manual contours) was103

0.27Gy (1.0%), 1.66Gy (4.6%) and 0.21Gy (0.7%) for all, central nervous system (CNS), i.e., Brainstem104

and Spinal Cord and non-CNS organs, respectively. The same for PMC - PAC (automated plan using105

auto-contours) was 0.58Gy (2.0%), 1.86Gy (5.4%) and 0.46Gy (1.6%), with metrics of individual organs in106

Figure 3a listed in Supplementary Material D. Figure 3b shows dose metrics for targets where, for PMC and107

PAC , we achieved PTV (DL1) (V95) ≥ 98.0% for 76% and 60% of plans. However, 96% and 93% of PMC108

and PAC plans achieved PTV (DL1) (V95) ≥ 97.5%. For this metric, a statistically significant difference109

was observed between POG and PMC as well as PMC and PAC . Finally, Figure 3c shows |∆NTCP| results,110

where the maximum median across all toxicities was 0.3% (individual toxicity metrics in Supplementary111

Material E).112

For proton, |POG − PMC | had a median value of 0.33Gy (1.5%), 1.13Gy (11.5%) and 0.22Gy (0.8%) for113

all, CNS and non-CNS organs, respectively. The same for PMC − PAC was 0.48Gy (2.6%), 0.75Gy (6.9%)114

and 0.38Gy (1.8%). Figure 4b shows proton targets wherein 58% and 62% of PMC and PAC plans achieved115

PTV (DL1) (vw-min) (V94) ≥ 98.0%, while 82% and 80% achieved PTV (DL1) (vw-min) (V94) ≥ 97.5%.116

Similar to photon, a statistically significant difference was observed between POG and PMC as well as PMC117

and PAC . For |∆NTCP| (Figure 4c), the maximum median across all toxicities was 0.2%.118

A weak Spearman correlation coefficient between DICE and dose differences (|PMC − PAC |) was ob-119

served for CNS organs (|ρs| ≤ 0.11), across both photon and proton (Figure 5). Conversely, the Parotids,120

Submandibulars and Oral Cavity had relatively higher values (−0.43 ≤ ρs ≤ −0.17). The remaining organs121

did not have similar correlations across both radiotherapy treatments.122

Finally, our automated plan optimization took 45 minutes and 2.5 hours of computer time, compared to123

3 and 6 hours of manual time (on average, as estimated by our clinic’s planners), for photon and proton,124

respectively.125

4. Discussion126

This work aimed at proposing and assessing an automated plan optimization workflow for retrospective127

studies that can be easily implemented by clinics due to its use of existing clinical resources. Unlike previous128

works [12–18], we performed this at large-scale and for both photon and proton radiotherapy. To replicate129

our approach, a clinic can simply use the scripting interface of their treatment planning system (TPS) and130

convert their planning process into a step-by-step approach. This requires minimal additional expertise (i.e.,131

Python coding), for which many TPS solutions provide documentation. For head-and-neck radiotherapy,132

automated plans on manual contours (PMC) showed a negligible difference (i.e., median impact of 1.0%133

and 1.5% across organs), when compared to the original clinical plan (POG) [29, 30]. Thus, the proposed134

evaluation process could serve as a springboard for clinics to validate an auto-contouring model, at large-135

scale, by simply reusing their existing plans. When using this program for the use case of head-and-neck136

auto-contour evaluation, the plan using auto-contours (PAC) had a low dose impact when compared to the137

plan using using manual organ contours, for both photon (2.0%) and proton (2.6%) planning. Additionally,138

minuscule differences in NTCP values indicated that minor plan differences did not lead to large differences139
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(a) Organs at Risk

(b) Targets (c) NTCP

Figure 4: Dose metrics for the original proton plans (POG) as well as plans (re)made on manual (PMC) and automated (PAC)
contours using an automated program. POG −PMC shows the dose effect of the proposed planning process, while PMC −PAC

shows the effect of using auto-contours. Here * represents a p-value ≤ 0.05. In a) we see the difference in the dose metric of
each OAR when comparing across plans. The plots in b) show us the metrics for the targets, while c) shows us the difference
in NTCP values.
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(a) Spinal Cord (b) Brainstem (c) Parotid (d) Submandibular

(e) Oral Cavity (f) Larynx (g) Esophagus (h) Mandible

(i) Spinal Cord (j) Brainstem (k) Parotid (l) Submandibular

(m) Oral Cavity (n) Larynx (o) Esophagus (p) Mandible

Figure 5: Scatter plots for eight organs-at-risk from the auto-contouring module. Here we plot the DICE (x-axis) against each
organs absolute dose metric differences, i.e., |PMC − PAC | (y-axis) for photon (a-h) and proton (i-p) radiotherapy.

in long-term radiation-induced toxicity. This could potentially promote confidence in the community [31]140

to adopt auto-contouring to speed up clinical workflows.141
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For five out of eight OARs (i.e., Spinal Cord, Parotid, Submandibular, Oral Cavity and Mandible), the142

average DICE scores may be considered on par with previous work (≈ 0.8) [6, 10, 12] (see Supplemen-143

tary Material B). A visual inspection of the remaining auto-contours, i.e., Larynx (SG), Brainstem (and144

by extension the Spinal Cord) (Figure 6, Supplementary Material F) indicated that they had contouring145

protocols that differed from our clinic. Moreover, the auto-contouring model was trained on a different146

patient cohort, leading to additional contour differences with our clinical dataset. Finally, we chose to not147

perform any additional refinement on manual contours, since they were also used for making clinical plans148

(POG) delivered to patients. For e.g. in the first row of Figure 6, we see that only the caudal section of149

the Brainstem was annotated. Treatment planners find optimizing this section sufficient due to its potential150

for high dose from tumor proximity. The aforementioned reasons are why we noticed reduced measures for151

Larynx (SG), Brainstem and Spinal Cord in Figure 2.152

A critique of using unmodified manual contours may be that a lack of “gold-standard” contours will153

not give accurate geometric measures. Since our primary goal however was dose evaluation using existing154

clinical resources (i.e., unmodified manual contours), we proceed without any refinement. Also, in an auto-155

contouring dose evaluation scenario, it is already sufficient to know that plans made on auto-contours are156

equivalent to plans made on manual contours as seen in Figure 3b (photon) and Figure 4b (proton). Thus,157

our approach of using existing manual contours improves the ease-of-implementation of auto-contour dose158

evaluation studies and enables evaluation at large-scale.159

To evaluate the quality of our automated plans, we first assessed target dose metrics. We use PTV (DL1)160

(V95%) for photon and CTV (DL1) (V94%) (vw-min) for proton, since planners prioritize them due to their161

difficulty. Hence it serves as a good benchmark for our automated plans. Results indicated that most of162

our plans (≥ 93% for photon and ≥ 80% for proton) were of near-clinical quality (i.e., ≥ 97.5%). Those163

plans that did not strictly achieve clinical quality (i.e., ≥ 98%) on the aforementioned metrics, had reduced164

dose coverage in either the most cranial or caudal slices. In a retrospective study for dose-evaluation of165

auto-contours, such a minor error will have a minimal effect on the dose metrics of organs we are interested166

in.167

Figure 4b shows that most proton plans, including POG, tended to have hotspots, i.e., D2%(vw−max) ≥168

107%, unlike most photon plans which did not, i.e., D0.03cc ≤ 107% (Figure 3b). In our dataset, these proton169

plans were made for performing a plan comparison between photon and proton (via NTCP), according to170

the model-based selection [32]. If during proton treatment planning, the NTCP differences already indicated171

either a) high organ sparing or b) not sufficiently better organ sparing than photons, planners did not further172

optimize this plan. However, given that dose hotspots are quite small, they did not affect dose metrics for173

the auto-contoured organs in our study. Finally, differences in plans were also caused because the same174

plan optimization process when run twice, may lead to similar, but not exactly the same solution due to175

randomness in initialization.176

Figure 3 shows that of all the organs the Spinal Cord and Brainstem had wider boxplots for both177

POG − PMC and PMC − PAC . This is because the ∆D0.03cc metric is inherently more sensitive to dose178

changes than ∆Dmean. This is seen in the first row of Figure 6 where similar DICE values for the Brainstem179

output vastly different dose differences. For proton (Figure 4), we saw a similar trend for POG − PMC , but180

not for PMC − PAC . This indicated that proton planning is more susceptible to workflow differences than181

contour differences of Brainstem and Spinal Cord, for our cohort of oro- and hypopharyngeal cancers, which182

are at a distance from these organs.183

Figure 3a, 3c (photon) and Figure 4a, 4c (proton) show statistically significant differences, but from184

a clinical standpoint, the minor differences in organ dose metrics and ∆NTCP values may be clinically185

irrelevant.186

Moving on to the effect of DICE on dose metric of organs (Figure 5), one would expect that a decrease187

in DICE would lead to higher ∆cGy values for organs. This was true for the Parotids, Submandibulars188

(Figure 6) and Oral Cavity across both photons and protons (−0.43 ≤ ρs ≤ −0.17). The Brainstem and189

Spinal Cord showed poor correlation scores for both forms of radiotherapy, primarily due to the sensitive190

nature of the D0.03cc metric. The Esophagus also showed low correlation, since, in many cases, it is caudally191

far away from the tumor regions for the patients in our cohort. The Larynx showed a high correlation192

for photon, but not for proton, which could be an effect of sample size. Finally, the Mandible, an organ193
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with high DICE, showed opposite trends in photon and proton. Overall, we noticed that there was a low194

correlation between DICE and dose metrics.195

(a) Brainstem (DICE=0.13, |∆D0.03cc| = 6.0%) (b) Brainstem (DICE=0.19, |∆D0.03cc| = 27.2%)

(c) Submand (R) (DICE=0.82, |∆Dmean| = 1.7%) (d) Submand (L) (DICE=0.42, |∆Dmean| = 84.9%)

(e) Parotid (R) (DICE=0.85, |∆Dmean| = 3.0%) (f) Parotid (R) (DICE=0.63, |∆Dmean| = 20.5%)

(g) Larynx (SG) (DICE=0.64, |∆Dmean| = 0.5%) (h) Larynx (SG) (DICE=0.55, |∆Dmean| = 2.3%)

Figure 6: CT scans of photon (a-d) and proton (e-h) patients overlayed with a dose distribution as well as PTV (DL1) (orange),
PTV (DL2) (blue), manual (pink) and automated (maroon) contours. Each example shows the POG, PMC and PAC plans
from left to right. The dose metric in the sub-captions compares the absolute percentage difference of PMC − PAC .

This work was inspired by prior research on treatment plan scripting [23, 24] to scale-up dose evaluation196

for auto-contours. However, some plans were still not of the highest possible quality since our four-step197

replication of the clinical process is a close, but imperfect emulation of a treatment planners approach.198

Non-iterative EUD optimization (step 3), lack of synchrony in weight updates between the manual and199

automated approach (step 4), and re-use of control structures from POG to PMC and PAC (step 4), led to200

small deviations from the original planning process. These limitations cause PMC and PAC dose metrics201

to be imprecise which could potentially impact our results. For future work we would like to more closely202

mimic the optimization steps as well as consider control structures specific to each plan, rather than simply203

copying them.204

To conclude, we showed an automated approach to plan creation for retrospective studies that was205
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employed for the use-case of evaluating the dose impact of auto-contouring software, at scale. We hope our206

results showcasing low dose impact of auto-contours will inspire others to investigate and eventually use207

them in clinical settings.208
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Supplementary Material A. Data Acquisition307

The CT scans of our dataset had a dimension of 512 x 512 pixels in the spatial plane with a pixel spacing308

in the range of [0.92-1.36, 0.92-1.36]mm. Each CT slice was 2mm thick and each scan had between [128,199]309

slices. The scans were acquired from a Brilliance Big Bore (Philips Healthcare, Ohio, USA) with 120kV and310

250mAs. Post acquisition, 64% of patients had Orthopedic Metal Artifact Reduction (O-MAR) processing311

done.312

Supplementary Material B. Automated Contours313

The auto-contouring model of RayStation 10B first performed registration of the chosen CT scan using314

an atlas of CTs to narrow down CT size so it fits within the graphical processing unit (GPU) used for deep315

learning. Once registered, the mid-point of each OAR is detected and a 3D bounding box is cropped around316

that. This cropped area is then passed to a neural net trained for contouring that specific OAR. Each OAR-317

specific neural net is based on the UNet segmentation architecture [33] whose output is a 3D probabilistic318

mask for that OAR. As a post-processing step, smoothing is performed on the surfaces of OARs. The model319

was trained using Tensorflow, an open-source deep neural net software package. During training, rotations,320

translations and elastic deformations were used to augment the training data. Details on patient cohort321

were not made public by the manufacturer.322

RoI DICE SDC @ 3mm HD95 (mm) MSD (mm)
Spinal Cord (D0.03cc) 0.78 [0.61,0.93] 0.92 [0.76,0.97] 10.0 [1.1,69.4] 0.9 [0.2,1.4]
Brainstem (D0.03cc) 0.70 [0.07,0.95] 0.72 [0.18,0.95] 13.1 [2.5,49.0] 3.1 [1.1,8.3]
Parotid (L) (Dmean) 0.85 [0.75,0.94] 0.91 [0.78,0.98] 5.0 [2.3,12.3] 1.5 [0.6,3.2]
Parotid (R) (Dmean) 0.86 [0.74,0.94] 0.92 [0.75,0.98] 4.6 [2.2,15.7] 1.4 [0.6,4.2]
Submand (L) (Dmean) 0.84 [0.59,0.93] 0.96 [0.74,1.00] 3.1 [1.7,16.3] 1.0 [0.5,5.3]
Submand (R) (Dmean) 0.85 [0.68,0.92] 0.96 [0.75,1.00] 3.1 [1.7,16.3] 1.1 [0.6,3.5]
Oral Cavity (Dmean) 0.84 [0.77,0.92] 0.74 [0.59,0.90] 7.7 [4.3,12.0] 2.6 [1.5,3.3]
Larynx (SG) (Dmean) 0.54 [0.36,0.65] 0.63 [0.51,0.80] 15.9 [7.8,25.0] 5.7 [2.8,10.2]
Esophagus (Dmean) 0.66 [0.28,0.90] 0.75 [0.41,0.97] 20.4 [2.5,63.9] 1.4 [0.3,18.8]
Mandible (Dmean) 0.88 [0.81,0.97] 0.94 [0.87,1.00] 4.5 [1.1,14.0] 1.5 [0.2,3.4]

Table B.1: Summary measures (median [5th percentile, 95th percentile]) for volumetric and surface metrics of auto-contours
of RayStation 10B.

RoI DICE SDC @ 3mm HD95 (mm) MSD (mm)
Spinal Cord (D0.03cc) 0.77 [0.74,0.80] 0.89 [0.87,0.91] 19.2 [13.6,24.7] 0.8 [0.7,0.9]
Brainstem (D0.03cc) 0.61 [0.61,0.67] 0.66 [0.60,0.72] 18.0 [14.4,21.5] 3.8 [3.3,4.5]
Parotid (L) (Dmean) 0.84 [0.84,0.86] 0.89 [0.87,0.91] 5.8 [4.8,6.8] 1.7 [1.5,1.8]
Parotid (R) (Dmean) 0.85 [0.85,0.86] 0.89 [0.87,0.91] 5.8 [4.9,6.9] 1.7 [1.5,2.0]
Submand (L) (Dmean) 0.80 [0.80,0.84] 0.90 [0.87,0.94] 6.2 [4.3,8.9] 2.3 [1.1,4.3]
Submand (R) (Dmean) 0.82 [0.82,0.84] 0.92 [0.89,0.94] 4.8 [3.9,5.7] 1.4 [1.1,1.7]
Oral Cavity (Dmean) 0.84 [0.82,0.86] 0.74 [0.71,0.76] 7.9 [7.2,8.6] 2.6 [2.4,2.9]
Larynx (SG) (Dmean) 0.51 [0.47,0.54] 0.63 [0.58,0.67] 15.4 [13.7,17.3] 6.1 [5.3,7.0]
Esophagus (Dmean) 0.66 [0.61,0.70] 0.75 [0.71,0.80] 23.8 [18.6,29.3] 5.8 [4.0,7.8]
Mandible (Dmean) 0.88 [0.85,0.90] 0.94 [0.92,0.95] 6.1 [4.7,7.6] 1.6 [1.3,1.9]

Table B.2: Summary measures (sample mean [bootstrapped 95% confidence interval]) for volumetric and surface metrics of
auto-contours of RayStation 10B.
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Supplementary Material C. Automated Planning323

For automated planning, we replicated the beam setup, OAR/target objectives for both photon and324

proton as per our institutions clinical head-and-neck protocol.325

For photon, our VMAT plans are made on an isotropic dose grid of 0.2cm The photon beams were326

commissioned on an Elekta Synergy system with Agility multi-leaf collimator.327

For proton, our IMPT plans are made on an isotropic dose grid of 0.3cm. This dose is delivered using328

pencil beam scanning (PBS) on a Varian ProBeam machine.329

Step RoI Function Description Weight
1 PTV (DL1) MinDose 100% of DL1 prescription 80.0 → {VDT}
1 PTV (DL1) MaxDose 102% of DL1 prescription 50.0 → {VDT}
1 ring ≤

PTV (DL1)
MaxDose 96% of DL1 prescription 0.0 → {VDT}

1 PTV (DL2) MinDose 100% of DL2 prescription 80.0 → {VDT}
1 PTV (DL2) MaxDose 102% of DL2 prescription 50.0 → {VDT}
1 PTV (DL2) UniformDose 100% of DL2 prescription 10.0
1 Body DoseFallOff From 100% to 0% of DL1 prescription

over 5.0 cm
1.0

1 Body DoseFallOff From 100% to 26% of DL1 prescription
over 2.0 cm

2.0

1 Body DoseFallOff From 100% to 64% of DL1 prescription
over 0.5 cm

10.0

1 GhostCranial DoseFallOff From 100% to 0% of DL1 prescription
over 1.0 cm

0.5

1 GhostEar(L) DoseFallOff From 100% to 46% of DL1 prescription
over 2.0 cm

1.0

1 GhostEar(R) DoseFallOff From 100% to 46% of DL1 prescription
over 2.0 cm

1.0

1 Brainstem MaxEUD eudParameterA=50 (maxEUD=4000 cGy) 3.0
1 Brainstem

(+3 cm)
MaxEUD eudParameterA=50 (maxEUD=4400 cGy) 3.0

1 Spinal Cord MaxEUD eudParameterA=50 (maxEUD=4000 cGy) 3.0
1 Spinal Cord

(+3 cm)
MaxEUD eudParameterA=50 (maxEUD=4400 cGy) 3.0

2.1 Other Organs DoseFallOff From 100% to 20% of DL1 prescription
over 2.0 cm

1.0

2.2 Other Organs DoseFallOff From 100% to 0% of DL1 prescription
over 2.0 cm

(as determined by treatment planner)

1.0

3 Other Organs MaxEUD eudParameterA=50,
maxEUD={VDT}

1.0

4 Control Structures {MinDose,
MaxDose}

Dose={VDT} {VDT}

Table C.3: Our 4-step emulation of the manual photon optimization process of our clinic. In each step, we also optimize for
the objectives of the previous steps. We use VDT as an abbreviation for the phrase “value determined by treatment planner”.
The → indicates that the weight is modified at the end of Step 4.. Here DL1/DL2 stands for electives/boost regions of the
tumor and prescription refers to a value of cGy that was assigned to a region-of-interest (RoI). Here “Other Organs” refers
to Cochlea (L/R), Parotid (L/R). Submandibular (L/R), Muscle Constrictor (S/M/I), Cricopharyngeus, Larynx (SG), Glottic
Area, Trachea, Esophagus and Oral Cavity. The rows shown here are created as objectives in our clinic’s treatment planning
solution.

14



Step RoI Function Description Weight Robust
1 CTV (DL1) MinDose 100% of DL1 prescription 800.0 → {VDT} ∗
1 CTV (DL1) -

(CTV(DL2) + 3 mm)
MaxDose 102% of DL1 prescription 20.0 → {VDT} ∗

1 CTV (DL1) -
(CTV(DL2) + 2 cm)

MaxDose 102% of DL1 prescription 80.0 → {VDT} ∗

1 CTV (DL2) MinDose 100% of DL2 prescription 800.0 → {VDT} ∗
1 CTV (DL2) MaxDose 100% of DL2 prescription 50.0 → {VDT} ∗
1 CTV (L) MinDose 0 cGy and Beam={1,2,3} 0.0
1 CTV (R) MinDose 0 cGy and Beam={4,5,6} 0.0
1 Body DoseFallOff From 101% to 0% of DL2

prescription over 2.0 cm
1.0

1 Body MaxDose 67% of DL2 prescription
for each beam

10000.0

1 Body MaxDose 107% of DL2 prescription 100.0 ∗
2 Mandible MaxDose 107% of DL2 prescription 500.0 → {VDT} ∗
2 Organ Set 1 DoseFallOff From 101% to 0% of DL2

prescription over 2.0 cm
1.0

2 Organ Set 2 DoseFallOff From 101% to 0% of DL2
prescription over 2.0 cm

1.0

3.1 Organ Set 2 MaxEUD eudParameterA=1,
maxEUD={VDT}

1.0

3.2 Organ Set 2 -
(CTV (DL1) + 3 mm)

MaxEUD eudParameterA=1,
maxEUD={VDT}

1.0

4 Control Structure {MinDose,
MaxDose}

Dose={VDT} {VDT} {∗}

Table C.4: Our 4-step emulation of the manual proton optimization process of our clinic. In each step, we also optimize for
the objectives of the previous steps. We use VDT as an abbreviation for the phrase “value determined by treatment planner”.
The → indicates that the weight is modified at the end of Step 4.. Here DL1/DL2 stands for elective/boost regions of the CTV
and prescription refers to a value in cGy that was assigned to a region-of-interest (RoI). “Organ Set 1” refers to Mandible,
Brainstem, Spinal Cord, Esophagus, Trachea, Larynx (SG), Trachea and Glottic Area, while “Organ Set 2” refers to Parotid
(L/R), Submandibular (L/R), Muscle Constrictor (S/M/I), and Oral Cavity. The ∗ mark is used to indicate those objectives
which are robustly optimized. The rows shown here are created as objectives in our clinic’s treatment planning solution.
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Supplementary Material D. Organ Dose Metrics330

In Table D.5 and Table D.7, we show dose metrics for organs available in the RayStation 10B auto-331

contouring module. For the purpose of our study, we only included organs with available auto-contours,332

although additional organs-at-risk are evaluated clinically.333

RoI |POG − PMC | |PMC − PAC |
Spinal Cord (D0.03cc) 1.45 [0.06,5.51] 1.13 [0.18,5.16]
Brainstem (D0.03cc) 1.88 [0.05,6.77] 2.17 [0.21,6.37]
Parotid (L) (Dmean) 0.12 [0.02,0.72] 0.32 [0.02,2.10]
Parotid (R) (Dmean) 0.13 [0.01,0.68] 0.42 [0.03,1.66]
Submand (L) (Dmean) 0.27 [0.02,1.20] 0.45 [0.05,2.37]
Submand (R) (Dmean) 0.21 [0.01,1.28] 0.35 [0.04,1.80]
Oral Cavity (Dmean) 3.24 [0.01,0.86] 0.35 [0.05,1.32]
Larynx (SG) (Dmean) 0.39 [0.03,1.47] 0.39 [0.21,4.24]
Esophagus (Dmean) 0.24 [0.01,1.64] 0.65 [0.04,3.43]
Mandible (D2%) 0.37 [0.03,3.43] 0.43 [0.06,2.12]

Table D.5: Median [5th percentile, 95thpercentile] of the absolute dose metric values (in Gy) for POG −PMC and PMC −PAC

in photon radiotherapy.

RoI |POG − PMC | |PMC − PAC |
Spinal Cord (D0.03cc) 2.01 [1.51,2.56] 1.90 [1.49,2.32]
Brainstem (D0.03cc) 2.43 [1.90,3.01] 2.82 [2.36,3.34]
Parotid (L) (Dmean) 0.21 [0.15,0.28] 0.66 [0.49,0.85]
Parotid (R) (Dmean) 0.21 [0.15,0.27] 0.62 [0.48,0.80]
Submand (L) (Dmean) 0.39 [0.30,0.49] 0.80 [0.52,1.22]
Submand (R) (Dmean) 0.33 [0.23,0.45] 0.59 [0.42,0.80]
Oral Cavity (Dmean) 0.32 [0.24,0.42] 0.49 [0.40,0.58]
Larynx (SG) (Dmean) 0.55 [0.39,0.74] 1.65 [1.25,2.07]
Esophagus (Dmean) 0.41 [0.29,0.54] 1.05 [0.80,1.38]
Mandible (D2%) 0.81 [0.48,1.22] 0.97 [0.54,1.60]

Table D.6: Sample mean [bootstrapped 95% confidence interval] of the absolute dose metric values (in Gy) for POG − PMC

and PMC − PAC in photon radiotherapy.
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RoI |POG − PMC | |PMC − PAC |
Spinal Cord (D0.03cc) 2.08 [0.03,8.82] 0.70 [0.12,2.40]
Spinal Cord (D0.03cc) (vw-max) 1.90 [0.05,8.07] 0.72 [0.15,2.57]
Brainstem (D0.03cc) 0.72 [0.05,3.79] 0.59 [0.03,2.77]
Brainstem (D0.03cc) (vw-max) 0.98 [0.13,4.30] 1.00 [0.19,2.81]
Parotid (L) (Dmean) 0.10 [0.02,0.39] 0.48 [0.07,1.99]
Parotid (R) (Dmean) 0.14 [0.01,0.43] 0.40 [0.03,1.80]
Submand (L) (Dmean) 0.21 [0.06,0.79] 0.28 [0.05,1.85]
Submand (R) (Dmean) 0.18 [0.03,0.70] 0.27 [0.01,1.89]
Oral Cavity (Dmean) 0.08 [0.02,0.39] 0.31 [0.03,0.73]
Larynx (SG) (Dmean) 0.37 [0.01,1.36] 0.56 [0.19,3.26]
Esophagus (Dmean) 0.31 [0.01,3.03] 0.23 [0.07,0.77]
Mandible (D2%) 0.44 [0.01,2.19] 0.79 [0.06,2.92]
Mandible (D2%) (vw-max) 0.52 [0.01,2.98] 0.46 [0.08,2.13]

Table D.7: Median [5th percentile, 95thpercentile] of the absolute dose metric values (in Gy) for POG −PMC and PMC −PAC

in proton radiotherapy.

RoI |POG − PMC | |PMC − PAC |
Spinal Cord (D0.03cc) 2.92 [1.93,4.00] 0.92 [0.65,1.20]
Spinal Cord (D0.03cc) (vw-max) 2.93 [1.92,4.06] 1.08 [0.79,1.40]
Brainstem (D0.03cc) 1.07 [0.67,1.54] 0.89 [0.60,1.20]
Brainstem (D0.03cc) (vw-max) 1.35 [0.90,1.84] 1.27 [0.92,1.70]
Parotid (L) (Dmean) 0.16 [0.11,0.21] 0.63 [0.43,0.87]
Parotid (R) (Dmean) 0.15 [0.11,0.20] 0.62 [0.41,0.86]
Submand (L) (Dmean) 0.32 [0.20,0.47] 0.51 [0.32,0.73]
Submand (R) (Dmean) 0.27 [0.18,0.37] 0.71 [0.29,1.41]
Oral Cavity (Dmean) 0.15 [0.10,0.21] 0.34 [0.26,0.42]
Larynx (SG) (Dmean) 0.59 [0.39,0.83] 0.88 [0.54,1.30]
Esophagus (Dmean) 0.75 [0.42,1.19] 0.34 [0.25,0.45]
Mandible (D2%) 0.88 [0.49,1.40] 1.00 [0.69,1.34]
Mandible (D2%) (vw-max) 0.95 [0.58,1.36] 0.79 [0.54,1.08]

Table D.8: Sample mean [bootstrapped 95% confidence interval] of the absolute dose metric values (in Gy) for POG − PMC

and PMC − PAC in proton radiotherapy.
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Supplementary Material E. NTCP334

For NTCP scores, we used the formulae and parameters from the National Indication Protocol for Proton335

therapy (Landelijk Indicatie Protocol Protonentherapie) [21]. From this document, we referred to Section336

3.3.3 and 3.3.4 for xerostomia and Section 3.4.3 and 3.4.4 for dysphagia. For all four toxicities, we used a337

baseline score of 0.338

Photon Proton
|POG − PMC | |PMC − PAC | |POG − PMC | |PMC − PAC |

Xerostomia Grade ≥ 2 0.1 [0.0,0.5] 0.3 [0.0,0.9] 0.1 [0.0,0.3] 0.2 [0.0,1.0]
Xerostomia Grade ≥ 3 0.0 [0.0,0.2] 0.1 [0.0,0.3] 0.0 [0.0,0.1] 0.1 [0.0,0.3]
Dysphagia Grade ≥ 2 0.2 [0.0,0.9] 0.2 [0.0,0.6] 0.0 [0.0,0.3] 0.1 [0.0,0.3]
Dysphagia Grade ≥ 3 0.1 [0.0,0.7] 0.1 [0.0,0.5] 0.0 [0.0,0.1] 0.0 [0.0,0.1]

Table E.9: Summary measures (median [5th percentile, 95th percentile]) for ∆NTCP (%) values in photon and proton radio-
therapy for |POG − PMC | and |PMC − PAC |.

Photon Proton
|POG − PMC | |PMC − PAC | |POG − PMC | |PMC − PAC |

Xerostomia Grade ≥ 2 0.2 [0.1,0.2] 0.4 [0.3,0.4] 0.1 [0.1,0.2] 0.3 [0.2,0.5]
Xerostomia Grade ≥ 3 0.1 [0.0,0.1] 0.1 [0.1,0.2] 0.0 [0.0,0.1] 0.1 [0.1,0.2]
Dysphagia Grade ≥ 2 0.3 [0.2,0.4] 0.2 [0.2,0.3] 0.1 [0.1,0.1] 0.1 [0.1,0.1]
Dysphagia Grade ≥ 3 0.2 [0.1,0.3] 0.2 [0.1,0.2] 0.0 [0.0,0.0] 0.0 [0.0,0.0]

Table E.10: Sample mean [bootstrapped 95% confidence interval]) for ∆NTCP (%) values in photon and proton radiotherapy
for |POG − PMC | and |PMC − PAC |.
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Supplementary Material F. Visual Results339

(a) Brainstem (DICE=0.83, |∆D0.03cc| = 5.3%) (b) Brainstem (DICE=0.81, |∆D0.03cc| = 28.1%)

(c) Submand (R) (DICE=0.90, |∆Dmean| = 1.4%) (d) Submand (L) (DICE=0.00, |∆Dmean| = 0.5%)

(e) Oral Cavity (DICE=0.42, |∆Dmean| = 4.1%) (f) Oral Cavity (DICE=0.87, |∆Dmean| = 2.4%)

(g) Spinal Cord (DICE=0.80, |∆D0.03cc| = 11.2%) (h) Spinal Cord (DICE=0.57, |∆D0.03cc| = 21.8%)

(i) Submand (R) (DICE=0.82, |∆Dmean| = 1.3%) (j) Submand (R) (DICE=0.80, |∆Dmean| = 2.6%)

Figure F.7: This figure shows CT scans of photon (a-f) and proton (g-j) patients overlayed with a dose distribution as well as
PTV (DL1) (orange), PTV (DL2) (blue), manual (pink) and automated (maroon) contours. Each example shows the POG,
PMC and PAC plans from left to right. The dose metric in the sub-captions compares the absolute percentage difference of
PMC − PAC .
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