Tutorials of the XXII Brazilian Symposium on Computer Graphics and Image Processing

Introduction to GPU Programming with GLSL

Ricardo Marroquim

Istituto di Scienza e Tecnologie dell’Informazione

CNR
Pisa, Italy
ricardo.marroquim @isti.cnr.it

Figure 1.

Abstract—One of the challenging advents in Computer
Science in recent years was the fast evolution of parallel
processors, specially the GPU - graphics processing unit. GPUs
today play a major role in many computational environments,
most notably those regarding real-time graphics applications,
such as games.

The digital game industry is one of the main driving
forces behind GPUs, it persistently elevates the state-of-art
in Computer Graphics, pushing outstanding realistic scenes
to interactive levels. The evolution of photo realistic scenes
consequently demands better graphics cards from the hard-
ware industry. Over the last decade, the hardware has not only
become a hundred times more powerful, but has also become
increasingly customizable allowing programmers to alter some
of previously fixed functionalities.

This tutorial is an introduction to GPU programming using
the OpenGL Shading Language — GLSL. It comprises an
overview of graphics concepts and a walk-through the graphics
card rendering pipeline. A thorough understanding of the
graphics pipeline is extremely important when designing a
program in GPU, known as a shader. Throughout this tutorial,
the exposition of the GLSL language and GPU programming
details are followed closely by examples ranging from very
simple to more practical applications. It is aimed at an audience
with no or little knowledge on the subject.

Keywords-GPU Programming; Graphics Hardware; GLSL.

978-0-7695-3815-0/09 $25.00 © 2009 IEEE
DOI 10.1109/SIBGRAPI-Tutorials.2009.9

André Maximo
Laboratorio de Computacdo Grdfica
COPPE — UFRJ
Rio de Janeiro, Brazil
andmax @ cos.ufrj.br

Teapot textured with the SIBGRAPI 2009 logo using the fixed functionality (left), and with a combination of shaders (right).

I. INTRODUCTION

The realism of interactive graphics has been leverage by
the growth of the GPU’s computational power throughout
the years, turning a simple graphics card into a highly
parallel machine inside a regular PC. The main motivation
of this growth is given by the game community which
increasingly demands realism and consequently graphics
processing power. To add even more realism, graphics units
have also shifted from being simple rendering black boxes
to powerful programming units, allowing a variety of special
effects within the graphics pipeline, such as those shown in
Figure 1.

One of the challenges of GPU programming is to learn
how streaming architectures work. The true power of graph-
ics processing comes from the fact that its primitives, e.g.
vertices or pixels, are computationally independent, that is,
the graphics data can be processed in parallel. Hence, a large
number of primitives can be streamed through the graphics
pipeline to achieve high performance.

Streaming programming is heavily based on the single
instruction multiple data (SIMD) paradigm, where the same
instruction is used to process different data. Within the GPU
context, the data flows through the graphics pipeline while
being processed by different programmable stages, called

IEEE
computer
pSOClety

shaders. Differently from traditional sequential program-
ming, the GPU streaming model forces a fixed data flow
through pipeline stages, i.e. a shader is restricted to deal
with a specific input and output data type in a specific stage
of the pipeline. From the many different rendering stages,
only three of them is currently available in hardware to be
programmable: the vertex shader, responsible to transform
vertex primitives; the geometry shader, responsible to build
the geometry from vertices; and the fragment shader, respon-
sible to color fragments generated by geometric primitives.
The graphics pipeline will be further explained in more
details in Section II.

Despite the limitations, GPU programming is essential
to implement special graphics effects not supported by the
fixed pipeline. The power to replace a pipeline stage by a
shader represents a major shift of implementation control
and freedom to a computer graphics programmer. For real-
time applications, such as games, the topic has become so
important that it is no longer an extra feature but a necessity.
Not surprisingly, the gaming industry represents the main
driving force to constantly elevate the graphics hardware
power and flexibility.

GPU programming goes beyond graphics and it is also
exploited by completely different purposes, from genome
sequence alignment to astrophysical simulations. This us-
age of the graphics card is known as General Purpose
GPU (GPGPU) [1] and is playing such an important role
that specific computational languages are being designed,
such as nVidia’s [2] Compute Unified Device Architecture
(CUDA) [3], which allows the non-graphical community to
fully exploits the outstanding computational power of GPUs.
Although this survey will not cover this area, some aspects
of GPGPU are provided in Section VII.

The goal of this survey is to describe the creation of
computer generated images from the graphics card side, that
is, the graphics pipeline, the GPU streaming programming
model and the three different shaders. The standard graphics
library OpenGL [4] and its shading language GLSL [5] are
used in order to reach a wider audience, since they are cross-
platform and supported by different operating systems.

The remainder of this survey is organized as follows. In
Section II, the graphics pipeline is summarized and its basic
stages are explained. After that, Section III draws major
aspects of the GPU’s history, aiming at important features
about its architecture. Section IV briefly describes how the
GLSL language integrates with OpenGL and GLUT. The
main part of this tutorial is in Sections V and VI, where
GLSL is explained by analyzing six examples step-by-step.
The GPGPU argument raised in the introduction is further
analysed in Section VII. Finally, conclusions and insights
on the future of shader programming wrap up this survey in
Section VIII.

II. GRAPHICS PIPELINE

Before venturing into the topic of GPU programming
itself, it is important to be familiar with the graphics
pipeline. Its main function is rendering, that is, generating
the next frame to be displayed. To accomplish this, geo-
metric primitives are sent to the graphics pipeline, where
they are processed and filled with pixels (process called
rasterization) to compose the final image. Each stage of
the pipeline is responsible for a part of this process, and
programmable stages are nothing more than customizable
parts that can perform different methods than those offered
by the graphics API. Understanding the different parallel
paradigms of the rendering pipeline is also crucial for the
development of efficient GPU applications.

The rendering pipeline is responsible for transforming
geometric primitives into a raster image. The primitives are
usually polygons describing a model, such as a triangle
mesh, while the raster image is a matrix of pixels. Figure 2
illustrates the rendering pipeline. First, the model’s primi-
tives, usually described as a set of triangles with connected
points, are sent to be rendered. The vertices enter the pipeline
and undergo a transformation which maps their coordinates
from the world’s reference to the camera’s. When there
are light sources in the scene, the color of each vertex is
affected in this first stage by a simple illumination model.
To accelerate the rest of the rendering process, clipping is
performed to discard primitives that are outside the viewing
frustum, i.e. primitives not visible from the current view
point. The vertex processing stage is responsible for these
transformation, clipping and lighting operations.

The transformed vertices are then assembled according to
their connectivity. This basically means putting the prim-
itives back together. Each primitive is then rasterized in
order to compute which pixels of the screen it covers, where
for each one a fragment is generated. Each fragment has
interpolated attributes from its primitive’s vertices, such as
color and texture coordinates. A fragment does not yet define
the final image pixel color, only in a last stage of the pipeline
it is computed by composing the fragments which fall in
its location. This composition may consist of picking the
frontmost fragment and discarding others by means of a
depth buffer, or blending the fragments using some criteria.

Note that the graphics pipeline, as any pipeline, is in-
dependent across stages, that is, vertices can be processed
at the same time pixels are being processed. In this way,
rendering performance (measured in frames per second)
can be significantly improved, since while final pixels of
the current frame are being handled, the vertex processors
can already start processing the input vertices for the next
frame. Besides being independent across stages, the graphics
pipeline is also independent inside stages, different vertices
can be transformed at the same time by different processors
as they are computationally independent among themselves.

€ Vertex ->
—> . —->
—» Transformations —»

Figure 2.

Input Assembler —

v

Vertex Processor +—

v

Primitive Assembly

v

Geometry Processor «—

v

Rasterization

v

Fragment Processor «—

v

Framebuffer —

Figure 3. The data flow inside the graphics pipeline.

Figure 3 illustrates the three shader stages of the graphics
pipeline, where they are represented by the programmable
stream (arrows in green), in contrast to the fixed built-in
stream (arrows in gray). The three programmable stages
(green boxes) have read access to the video memory, while
the fixed stages (gray boxes) access it for input and output.

The vertex shader is further detailed in Figure 4. This
first stage treats only vertex primitives in a very strict
input/output scheme: exactly one vertex enters and exactly
one vertex exits. The processing is done in a completely
independent way, no vertex has information about the others
flowing through the pipeline, which allows for many of them
to be processed in parallel.

In the next stage, depicted in Figure 5, the geometry
shader processes primitives formed by the connected ver-
tices, such as lines or triangles. At this stage all the vertices
information belonging to the primitive may be made avail-
able. The geometry shader may receive as input different
primitives than those it outputs, however, information such
as the type of input and output primitives and maximum

Geometry —->
Assembly 1

—> Fragment
-5 .
— Operations

>
>
>

The basic stages of the rendering pipeline.

Input Assembler «~—

Primitive Assembly

Figure 4. Pipeline Vertex Shader.

Primitive Assembly

Rasterization

Figure 5. Pipeline Geometry Shader.

number of exiting vertices must be pre-defined by the user.
Each input primitive may generate from zero to the defined
maximum number of output vertices.

Finally, the fragment shader pipeline, illustrated in Fig-
ure 6, runs once for each fragment generated by each
primitive. It has no information about which primitives
it belongs to neither about other fragments. However, it
receives all the interpolated attributes from the primitive’s
vertices. The shader’s main task is to output a color for
each fragment, or discard it.

Rasterization

Fragment Shader <+—

Framebuffer —_

Figure 6. Pipeline Fragment Shader.

III. THE EVOLUTION OF GPUS

One of the biggest evolution steps on GPU’s history
occurred in 1999, when nVidia designed a graphics hardware
capable of performing vertex transformation and lighting
operations, advertising their GeForce 256 as “the world’s
first GPU”. At first, many were sceptical about its usefulness,
but it soon became the new paradigm in graphics hardware.
Heavy graphics processing operations were previously done
in software, except for some expensive high-end graphics
cards that could perform them in a dedicated chip; by con-
trast, with the GeForce everything was integrated in a single-
chip processor which allowed for a major price reduction.
Followed by the GeForce 2 and ATI’s Radeon 7500, these
cards framed the so called second generation GPUs allowing
more powerful effects, such as multi-texturing.

Nonetheless, hardware had only been designed to improve
the graphics performance, and the rendering process was
still based on built-in fixed functionalities, i.e. hard-coded
functions on graphics chips. The major drawback was that
moving from software to hardware traded implementation
freedom for speed, restricting the possible achievable effects.
In 2001 this drawback started to be overcome with the
first programmable graphics card: the GeForce 3 introduced
a programmable processor for any per-vertex computation.
Small assembly codes could be uploaded to the graphics
card replacing the fixed functionality. These were known as
vertex shaders and framed the third GPU generation.

In the next two years, a programmable processor for any
per-fragment computation was introduced. The new shader
replaces fragment operations allowing better illumination
effects and texture techniques. Note that even though per-
fragment operations influences the pixel colors, the final
pixel composition is still up to now a fixed functionality
of GPUs. The fragment shader is also named pixel shader,
but during the survey will use the former nomenclature.

The fourth generation of GPUs had not only introduced
the fragment shader, but the maximum number of instruc-
tions per shader was also raised, and conditional branches
were now allowed. The fast pace of GPU evolution is
evidenced even more with the introduction of the GeForce 6
and Shader Model 3.0 in 2004. With this shader model also
came along different high-level shading languages, such as:
OpenGL’s GLSL [5], Cg from nVidia [6] and Microsoft’s
HLSL [7]. Shader Model 3.0 allows for longer shaders,
better flow control, and texture access in vertex shader,
among other improvements.

In 2006 the Shader Model 4.0, also called Unified Shader
Model, introduced a powerful GPU programming and ar-
chitecture concept. First, a new programmable stage in the
graphics pipeline was introduced: the geometry shader. This
is, up until now, the last available programmable shader
in hardware, which allows manipulation and creation of
new graphics primitives, such as points, lines and triangles,
directly inside the graphics card. Second, the three shader
types were bounded to a single instruction set, enabling a
new concept of a Unified Shader Architecture. The new GPU
architecture, starting with the GeForce 8 and ATI’s Radeon
R600, allows a more flexible usage of the graphics pipeline,
where more processors can be dedicated to demanding stages
of the pipeline. While the old architectures had a fixed
number of processors and resources throughout the graphics
pipeline, with the unified model the system can allocate
resources to the computationally demanding shaders.

The graphics card is now considered a massively parallel
co-processor of CPUs not only for graphics programs but for
any general purpose application. The non-graphical commu-
nity has been using GPUs since 2002 under the concept
of GPGPU [1], however the new architecture allows the
design of non-graphical languages, such as CUDA [3] and
OpenCL [8], to fully exploit the highly parallel and flexible
computation power of present GPUs. This concept will be
further discussed in Section VIL.

The history of GPUs points to a future where the graphics
cards will be fully programmable, without restriction on
shader programmability and resources usage. Last year,
two new types of shader were announced with the Shader
Model 5.0, to be implemented in graphics hardware this year
(2009): the hull and domain shaders to better control the
tessellation procedure. This survey will not stray to these
new shader, focusing only on the three currently available
shaders in hardware. Beyond the evolution of GPUs, it seems
that the future holds the end of sequential single-processor
programming computation, in favor for massively parallel
programming models. Another indication of this future path
is the Cell Broadband Engine Architecture (CBEA) released
by IBM, Sony and Toshiba, and the recent announcements of
Intel’s Larrabee architecture, where a major convergence of
CPU and GPU pipelines and design strategies is promised.

IV. OPENGL BASICS

This survey uses GLUT — OpenGL Utility Toolkit [9]
— a simple platform-independent toolkit for OpenGL [4].
GLUT is used to create the OpenGL context, that is, it
opens a graphics window for rendering, and handles the
user’s inputs. We have chosen GLUT for its popularity
and simplicity, but among other options are QT [10] and
wxWidgets [11].

Listing 1 shows a simple example of GLUT usage: after
several basic initializations, the OpenGL window is created
and the following callbacks are registered: reshape and
display functions, called when the window is resized or
its display contents needs to be updated; keyboard and
mouse functions, called when one of such user’s input
occurs. At the end, the program enters the main event loop
where it waits for events, such as window draw calls and
keyboard hits.

code inside the vsSource string is the corresponding Hello
World shader, and it will be explained in more details in
Section V.

#include <GL/glut.h>

// C Main function

int main(int argc, charxx argv) {
// GLUT Initialization
glutlnit (&argc, argv);
glutlnitDisplayMode (GLUT_DOUBLE | GLUT_RGBA);
glutInitWindowSize (512, 512);
// Create OpenGL Window
glutCreateWindow (”Simple Window”);
init (); // non—GLUT initializations
// Register callbacks
glutReshapeFunc(reshape);
glutDisplayFunc (display);
glutKeyboardFunc (keyboard);
glutMouseFunc (mouse) ;
// Event Loop
glutMainLoop () ;
return 0;

/// The result is a window with 512x512 pixels

// OpenGL initialization calls for shaders
void initShader () {
// Vertex Shader code source
const GLcharx vsSource = {
#version 120\n”
”void main(void) {\n”
” gl_FrontColor = gl_Color;\n”
gl_Position = gl_ModelViewProjectionMatrix
x gl_Vertex;\n”

»

u}u

// Create program and vertex shader objects
programObject = glCreateProgram () ;

vtxShader = glCreateShader (GL_VERTEX SHADER) ;
/l Assign the vertex shader source code
glShaderSource (vtxShader, 1, &vsSource, NULL);
// Compile the vertex shader

glCompileShader(vtxShader);

/] Attach vertex shader to the GPU program
glAttachShader (programObject, vtxShader);

// Create an executable to run on the GPU
glLinkProgram(programObject);

// Install vertex shader as part of the pipeline
glUseProgram (programObject);

/// The result is a vertex shader acting as a
/11 simplified version of the fixed functionality

Listing 1. Simple GLUT Example.

GLUT is used to create a layer between graphics functions
and the window management system, namely the OpenGL
context. Once the context is created, OpenGL functions can
be used for rendering. Moreover, OpenGL has a number of
functions to manage shader codes in its native library. In
despite of newer versions, this survey uses OpenGL version
2.1, as well as GLSL 1.2 and GLUT 3.7, which are sufficient
to implement the introductory concepts.

The OpenGL functions to manage shader codes are illus-
trated in Listing 2. The initShader function in this listing
is called among OpenGL initialization calls, e.g. inside the
init function showed in Listing 1, where the goal is to
initialize the shaders. In this example, only a vertex shader
will be set in order to illustrate the shader management.
Nevertheless, the functions shown here can be used for a
geometry or fragment shader as well. The source code of a
shader to be uploaded is simply a string and can be declared
together with the application, as done in this example, or
saved in a file to be read at run-time. The vertex shader

Listing 2. OpenGL setup example for GLSL.

The glCreateProgram function creates a
GPU program object to hold the shader objects.
The glCreateShader function creates a shader
object to maintain the source code string, while
the glShaderSource function is responsible to
assign a given source code to the created shader. The
glCompileShader function compiles the shader object,
while the glAttachShader function attaches it to a
target program object. Note that, in the example shown in
Listing 2, only a vertex shader is attached to the program
object and, consequently, the rest of the pipeline remains
running the fixed functionality.

Finally, the glLinkProgram function links the program
creating the final executable to be processed on the GPU. To
switch among program objects and the fixed functionality,
the glUseProgram function is used. This function must
be called before rendering, in order to change the pipeline
execution accordingly.

The action of compiling and linking shaders do not raise
errors as normally happens in applications. The error/success
states must be queried using OpenGL functions such as
glGetProgramInfolog.

V. GPU PROGRAMMING WITH GLSL

In this section, GPU programming and the OpenGL Shad-
ing Language — GLSL — are introduced. GLSL is a high-level
language based on C/C++, and can be used to write shader
codes. The three types of shaders discussed in this survey

are the vertex, geometry and fragment shaders. However,
it will cover only the overall aspect of the language, for
more detailed information refer to Bailey and Cunningham’s
newly released book on Graphics Shaders [12], as well as
the OpenGL Orange Book [13] for GLSL references.

The strategy chosen here is to explain the language
by showing GLSL code examples and, for each piece of
code, detail types and functions among other aspects. The
examples grow in difficulty ranging from very simple "hello
world” examples to more sophisticated ones, such as phong
shading and environment mapping.

A. Hello World

The first example is a GPU Hello World that illustrate
the three available shaders, showing a simple loop and
presenting different GLSL types. Listing 3 shows the vertex
shader. The full set of operations performed by the fixed
functionality includes a set of transformations, clipping and
lighting; however, the goal here is to accomplish a simplified
result where only the position transformation is realized.
More specifically, each vertex position is transformed from
the world’s coordinate system to the camera’s system. This
transformation uses the model-view and projection matrices
(refer to the OpenGL Red Book [14] for more information
about transformation matrices).

have to be defined by the OpenGL application before linking
the shader program and after compiling it.

Listing 4 shows the geometry shader for our Hello World
example. The goal here is to simply pass the relevant
information forward, that is, read the input values from the
vertices and write them to the output primitives.

#extension GL_EXT_geometry_shader4: enable
/! Geometry Shader Main
void main(void) {
// Tterates over all
primitive
for (int i = 0; i < gl_VerticesIn; ++i) {
// Pass color and position to next stage
gl_FrontColor = gl_FrontColorIn[i];
gl_Position = gl_PositionIn[i];
// Done with this vertex
EmitVertex () ;

vertices in the input

// Done with the input primitive
EndPrimitive () ;

}

#version 120
// Vertex Shader Main
void main(void) {
// Pass vertex color to next stage
gl_FrontColor = gl_Color;
// Transform vertex position before passing it
gl_Position = gl_ModelViewProjectionMatrix
* gl_Vertex;

Listing 3. Hello World Vertex Shader.

The first line indicates the minimum GLSL version re-
quired for this shader, in this case version 1.2. From now
on, this version is always used and the directive is omitted.
Ignoring comments, the next line is a function declaration.
In any shader, the main function is obligatory and serves
as entry point. In the next two lines the vertex’s color is
passed to the next step and the position transformed to screen
space. Note that the right side of the last line produces
exactly the same result as calling the build-in function
ftransform(), which shall be used during the rest of
the text. Names starting with g1 represent GLSL standard
names and have different meanings, explained later.

Next in the pipeline is the geometry shader, where each
geometric primitive is processed and one or more primitives
is outputted, which may be of a different type than the
one entered. For example, a geometry shader to decompress
primitives could be defined over points and produce trian-
gles, where for each point several triangles can be generated.
As stated previously, the geometry type of input and output,
as well as the maximum number of vertices on the output,

Listing 4. Hello World Geometry Shader.

The first line enables the geometry shader extension as
defined by the Shader Model 4.0. This directive is always
required when using a geometry shader and it is omitted
for the next examples. The main function body contains
a loop iterating over the number of vertices in the input
geometry. This is a pre-defined constant by GLSL and it has
the same value for all the geometric primitives, depending
on the input geometry type. Each loop iteration receives the
color and position of the corresponding input vertex and
assigns them to the color and position of the output vertex.
The EmitVertex function finishes the output vertex, while
the EmitPrimitive function finishes the primitive. In the
geometry shader, only one primitive type can be received as
input with a constant number of vertices.

Listing 5 shows the fragment shader, the last pro-
grammable step. The only action here is the assignment of
a color to the fragment. The input color of each fragment
is computed by the rasterization stage, where the primitives
produced by the geometry shader are filled with fragments.
For each fragment all vertices’ attributes are interpolated,
such as the color.

// Fragment Shader Main
void main(voeid) {
// Pass fragment color
gl_FragColor = gl_Color;

Listing 5. Hello World Fragment Shader.

In this last shader, the g1 _Color name relate to a differ-
ent built-in type than the one showed on the vertex shader
(see Listing 3). A built-in type is a graphics functionality,
made available by OpenGL or by the graphics hardware, to
provide access to pre-defined values inside or outside the
rendering pipeline. In the vertex shader case, gl Color
was assigned outside the pipeline as a vertex attribute,

while in the fragment shader case it was defined inside the
pipeline as an interpolated value. The GLSL language has
five different built-in types:

o built-in constants — variables storing hardware-specific
constant values, such as maximum number of lights.
These values can be accessed by any shader and may
change depending on the graphics card.

o built-in uniforms — values passed from the OpenGL
application to one or more shaders. These values are
OpenGL states, such as the projection matrix, and must
be set before rendering. Inside a draw call the uniforms
remain fixed.

o built-in attributes — values representing an attribute of
a vertex, such as color. Like uniforms, the attributes
are passed from the OpenGL application to (and only
to) the vertex shader. However, unlike uniforms, the
attributes may change for each vertex.

o built-in varying variables — variables used to convey
information throughout the rendering pipeline. For in-
stance, the vertex color can be passed from the vertex
shader to the geometry shader and then to the fragment
shader. Note that, even though the vertex color enters
the pipeline as a vertex attribute, it flows through the
pipeline as output and input varying variables.

e built-in functions — basic and advanced functions for
different types of operations. The basic functions, such
as sin and cos, can be used in any shader, while the
advanced functions, such as the geometry shaders’s
function to emit a primitive, may be only used in a
specific shader.

Listing 6 illustrates one example of each built-in type

described. The data types are similar to the C language,
e.g. int and float, with some additions explained later.

Figure 7 shows the difference between the fixed func-
tionality and the Hello World shader program. The normal
pipeline does lighting computation, which enhances the
details of the teapot model and yields a 3D appearance.
On the other hand, the three presented shaders of this first
example aim to simplify the fixed functionality and simply
carries on the blue color of the vertices, losing, for instance,
the lighting effect and the sensation of depth.

Figure 7. Difference between the fixed functionality and the Hello World
shaders. The 3D appearance is lost due to lack of lighting computation in
the vertex shader.

B. Cartoon Effect

The second example is a GPU Cartoon Effect that illus-
trate the use of normals and lighting, and mimics a cartoonist
drawing effect. This effect is achieved by rendering the
model with an extremely reduced color palette (4 shades
of blue in this example). The color is chosen depending
on the intensity of direct lighting arriving at the surface
position. Listing 7 shows the vertex shader, the first step
towards achieving this Cartoon Effect.

const int
uniform mat4
attribute vecd
varying vec4
genType

gl_MaxLights ;
gl_ProjectionMatrix ;
gl_Color;
gl_FrontColor;

sin(genType);

// Output vertex normal to fragment shader
varying out vec3 normal;
void main(void) {
// Compute normal per—vertex
normal = normalize (gl_NormalMatrix * gl_Normal);
gl_FrontColor = gl_Color;
// Transform position using built—in function
gl_Position = ftransform () ;

Listing 6. Built-in types examples.

The genType above may represent one of the following
types: float, vec2, vec3 or vec4. The vec data type is a special
GLSL feature that allows easy manipulation of vectors. It
also allows the processor to optimize vector operations by
performing them in a parallel element-wise fashion.

All the built-in types are represented on the previ-
ous three shaders of this first example. For instance,
the gl Color name from the vertex shader is a built-
in attribute, while the gl Color from the fragment
shader is a built-in input varying variable. Other exam-
ples include a built-in constant in the geometry shader,
gl VerticesIn, a built-in uniform in the vertex shader,
gl ModelViewProjectionMatrix, and two built-in
functions within the geometry shader, EmitVertex and
EmitPrimitive.

Listing 7. Cartoon Effect Vertex Shader.

In the vertex shader, two new lines are added from the
previous example. The first is an user-defined output varying
variable called normal, responsible to carry on the per-vertex
normal vector to the fragment shader. The other new line
assigns a value to this varying by multiplying the vertex nor-
mal by its corresponding matrix. The normal matrix stores
transformations to normal vectors as the model-view matrix
stores about vertex positions. The last line computes the
vertex position using the built-in function ftransform(),
which does the same computation as the last line of the Hello
World vertex shader (see Listing 3). More information about
the normal matrix and built-in functions can be found in the
RedBook[14].

The next and last step of the Cartoon Effect is the
more involving fragment shader, shown in Listing 8. It uses

the normal from the vertex shader and a built-in uniform
defining the light position.

// Input vertex normal from vertex shader
varying in vec3 normal;
void main(void) {
// Compute light direction
vecd 1d = normalize(vec3(
gl_LightSource [0]. position));
// Compute light intensity to the surface
float ity = dot(1d, normal);

// Weight the final color in four cases,
// depending on the light intensity
vecd fc;

if (ity > 0.95) fc = 1.00 = gl_Color;

else if (ity > 0.50) fc = 0.50 % gl_Color;
else if (ity > 0.25) fc = 0.25 % gl_Color;
else fc = 0.10 = gl_Color;

// Output the final color

gl_FragColor = fc;

Listing 8. Cartoon Effect Fragment Shader.

The first line indicates that the normal is received as
an user-defined input varying variable, corresponding to
the ouput varying from the vertex shader. Remember that
varying variables arriving in fragment shaders have been
previously interpolated from the vertices. In contrast, the
light source position is directly fetched from the built-in
uniform gl _LightSource [0] .position, and used to
compute the light direction. An intensity value is defined by
the dot product between the light direction and the normal
vector, i.e. by the angle between these two vectors. The
intensity value is distributed in four possible ranges, where
for each one, a different shade of the original color is used as
the fragment final color. Figure 8 illustrates the final result.

Figure 8. Teapot rendered using the Cartoon Effect.

C. Simple Texture Mapping

The three shaders provide access to texture memory, even
though earlier versions of programmable graphics card did
not allow texture fetching in the vertex shader, and did not
possess geometry shaders at all. The texture coordinates can
be passed per vertex and interpolated to be accessed per
fragment, however, any shader is free to access any position
in any of the available textures. A texture is made available

by setting it as an uniform variable and then calling one of
the straightforward sampler2D functions to access it (see the
GLSL reference [5] for further details on these functions).

Nevertheless, there are a few considerations that should be
taken into account when designing a shader. First, the GPU
is optimized for accessing texture in a more or less sequen-
tial manner, thus accessing cached memory is extremely fast
compared to random texture fetches, but usually the GPU
cache memory is substantially small. In this manner, linear
algebra operations, such as adding two large vectors, run
extremely fast.

Another important point is that, since the GPU is opti-
mized for arithmetic intense applications, many times it is
worthwhile recomputing than storing a value in a texture
for latter access. The texture fetch latency is to some extend
taken care of by the GPU: it switches between fragment
operations when a fetch command is issue, i.e. it may start
working on the next fragment while fetching the information
for the current fragment. Therefore, as long as there is
enough arithmetic operations to hide the fetch latency, the
application will not be limited by the memory latency.

When texture coordinates are passed per vertex during the
API draw call, they can be transformed within the vertex
shader and retrieved after interpolation by the fragment
shader. Texture coordinates are automatically made available
without the need to define new varying variables. The
following shaders exemplify this operation.

void main(voeid) {
// Pass texture coordinate to next stage
gl_TexCoord[0] = gl_TextureMatrix [0]
* gl_MultiTexCoordO ;
// Pass color and transformed position
gl_FrontColor = gl_Color;
gl_Position = ftransform () ;

Listing 9. Simple Texture Vertex Shader.

The only difference to the vertex shader on the previous
example is the replacement of the normal by a texture
coordinate using a built-in varying variable g1 TexCoord.
The computation is similar, the input texture coordinates
are transformed by the texture matrix and stored in a
varying variable. The limit on the number of input texture
coordinates gl _MultiTexCoordN per vertex is imposed
by the graphics hardware.

/! User—defined uniform to access texture
uniform sampler2D texture;
void main(void) {
// Read a texture element from a texture
vecd texel = texture2D (texture ,
gl_TexCoord [0]. st);
// Output the texture element as color
gl_FragColor = texel;

Listing 10. Simple Texture Fragment Shader.

Within the fragment shader the texture defined as an
uniform variable within the OpenGL API is accessed, and

Figure 9. Applying texture to a model within the fragment shader.

the fetched value used as the final color. The built-in
function texture2D is used to access the texture, while
the g1 TexCoord[0] .st is a 2D vector containing the
input texture coordinates. The .st field returns the first
two vector components of the 4D vector gl_TexCoord[0],
whereas .stuv returns the full vector. Any vector can
be accessed by using the following components: .xXywz,
.rgba or .stuv. These components depend only on the
semantic intended to the vector, for example, a 3D point in
space can use .xyz coordinates while the same vec3 can
be used as a three-channel color . rgb. Additionally, these
components can be swizzled when accessed by changing its
order, such as the blue-green-red channels of a color .bgr.

The result of applying a texture inside the fragment shader
is illustrated in Figure 9.

D. Phong Shading

One nice example that helps to put together the basics
of GPU programming is Phong Shading. OpenGL performs
built-in Gouraud shading when the GL SMOOTH flag is
set, where illumination is calculated per vertex, and the
vertex colors are interpolated to the fragments. In this model,
normal variations inside the triangle are not really well
accounted for, and sometimes the border between triangles
are very evident giving an unpleasant rendering result. A
better way to do this is to interpolate the normals inside the
triangle, and then compute the illumination per fragment.
Surely it is more computationally involving, but the trade
off from speed to quality is usually well rewarding.

From the last examples, it was shown that it is possible
to customize other attributes to be passed from the vertex to
the fragment shader as varying variables. To get our Phong
Shading working we need to pass the vertex normals as
varying variables to the fragment shader, as well as transfer
the illumination computation from vertex to fragment shader.

The vertex shader below only transforms the normal and
vertex to camera coordinates. Note that the vert varying

11

variable is only transformed by the modelview as we will
need it to compute the direction from the light source:

// Output vertex normal and position
varying out vec3 normal, vert;
void main(void) {
// Store normal per—vertex to fragment
normal = normalize(gl_NormalMatrix
* gl_Normal);
// Compute vertex position in model—view
// to be used in the fragment shader
vert = vec3(gl_ModelViewMatrix * gl_Vertex);
/!l Pass color
gl_FrontColor = gl_Color;
// Pass transformed position
gl_Position = ftransform () ;

shader

space

Listing 11. Phong Vertex Shader

Since the normals were passed as varying variables, they
are also interpolated and accessible in the fragment shader.
The code below (Listing 12) performs illumination within
the fragment shader:

// Additional input from vertex shader:
// vertex normal and position
varying in vec3 normal, vert;

void main(voeid) {

// Compute light and eye direction

vecd Ip = gl_LightSource[0]. position.xyz;
vecd 1d = normalize(Ip — vert);

vecd ed = normalize(— vert);

// Compute reflection vector based on

// light direction and normal

vecd r = normalize(—reflect(1d, normal));

// Compute light parameters per fragment

vecd la = gl_FrontLightProduct[0].ambient;

vecd 1f = gl_FrontLightProduct[0]. diffuse
* max(dot(normal, 1d), 0.0);

vecd ls = gl_FrontLightProduct[O].specular
* pow(max(dot(r, ed), 0.0),

gl_FrontMaterial . shininess);

// Use light parameters to compute final

gl_FragColor = gl_FrontLightModelProduct.
sceneColor + la + If + 1s;

color

Listing 12. Phong Fragment Shader

This follows closely how OpenGL computes illumination
per vertex (for more details refer to the Red Book [14]), but
here we are performing per pixel illumination. An example
of the quality improvement can be observed in Figure 10.
Figure 11 illustrates how the data flow for this example is
integrated within the rendering pipeline.

Figure 10. Gouraud shading rendered with GL_SMOOTH (left) and Phong
shading rendered with the vertex and fragment shaders (right).

l vertices

Vertex Shader

(transformations)

normal
position
color

interpolation

Fragment Shader
(lighting)

l pixels

@

Figure 11. The data flux of the Phong shaders. Note how the lighting
operation was postponed from the vertex shader to the fragment shader.

E. Environment Map

An useful texture application that is extremely simple to
implement with shaders is the environment mapping. The
goal is to simulate the reflection of an environment onto the
object’s surface. The idea behind this technique is to apply
a texture in a reverse manner, that is, instead of directly
placing a texture to a surface, the reflection of the light is
used to map it. One way to do this is to map a common
image into a sphere, giving the illusion it was taken with a
fish eye lens. Fortunately, most image editors have simple
filters to perform this operation.

In this example, for each vertex we will compute the
texture coordinates for the environment map, much like
OpenGL would perform using sphere textures. Even though
there are better ways to achieve this mapping, such as cube
maps, we will follow this model for the sake of simplicity.
The original and sphere mapped images used are shown in
Figure 12.

The environment map vertex and fragment shaders are
shown in Listing 13 and 14. The vertex shader is responsible
to compute the reflection vector used by the fragment shader
to access the environment texture.

// Output reflection
varying out vec3d r;
void main(veid) {
// Pass texture
gl_TexCoord [0] =

vector per—vertex

coordinate
gl_MultiTexCoordO ;

12

Figure 12. The original image (left) and the image mapped to a sphere
(right) to be used as the environment mapping texture, a point light was also
added to the final image. Note that even though the environment texture
has completely black regions they will never be accessed by the shaders.

// Compute vertex position in model—view space

vecd v = normalize(vec3(gl_ModelViewMatrix
* gl_Vertex));

// Compute vertex normal

vecd n = normalize (gl_NormalMatrix*gl_Normal);

// Compute reflection vector

r = reflect(u, n);

// Pass transformed position

gl_Position = ftransform () ;

Listing 13. Environment Map Vertex Shader

In the vertex shader a reflected vector of the view direction
over the normal is computed and passed to the fragment
shader. This vector gives the direction of the simulated
incoming light from the environment, i.e. is the point in
space we are seeing through the reflection on the specular
surface of the object.

// Input reflection vector from vertex shader
varying in vec3 r;
// Texture id to access environment map

uniform sampler2D envMapTex ;

void main(void) {
// Compute texture coordinate using
// interpolated reflection vector
float m = 2.0 * sqrt(r.x*r.Xx + r.ysr.y

+ (r.z+1.0)x(r.z+1.0));

vec2 coord = vec2(r.x/m + 0.5, r.y/m + 0.5);
// Read corresponding texture element
vec4d texel = texture2D (envMapTex, coord.st);
// Output texture element fragment color
gl_FragColor = texel;

the

as

Listing 14. Environment Map Fragment Shader

The interpolated reflected vector per fragment is used to
fetch the texture. This is done by parametrizing the vector
over a circle that will match our fish eye texture. The result
is shown in Figure 13, applying the environment map of
Figure 12 to different models. Figure 14 illustrates a different
texture for the environment map.

F. Spike Effect

The last example is a GPU Spike Effect that illustrate a
special effect using the geometry shader. Listing 15 shows

Figure 13. Torus and teapot models rendered with the environment map
shaders. Note that the blue comes from the sky in the original image, and
not from the teapot color from the other examples.

Figure 14. The teapot rendered with a constant color (left) and a different
environment map (right).

the vertex shader. It is the simplest possible vertex shader
containing only one line to receive a vertex and output
it without modification. The goal is to keep the vertex
untransformed in order to send it in the world’s coordinate
system to the geometry shader.

void main(void) {

gl_Position = gl_Vertex; // Pass—thru vertex
}

Listing 15. Spike Vertex Shader

The next step is where the special effect takes place.
The geometry shader, shown in Listing 16, receives triangle
primitives with untransformed vertices, and creates new
primitives rebuilding the surface to create a spike effect.
Each input triangle is broken into three triangles using
the centroid, where each new triangle has one-third of the
original size. The centroid is displaced by a small offset
along the normal direction to create the spike effect.

varying out vec3 normal, vert; // Output to FS
void main() {
// Store original triangle’s vertices
vecd v[3];
for (int i=0; i<3; ++i)
v[i] = gl_PositionIn[i];
// Compute triangle’s centroid

veed ¢ = (v[O] + v[1l] + v[2]).xyz / 3.0;

// Compute original triangle’s normal

vecd vOl = (v[1] — v[0]).xyz;

veed v02 = (v[2] — v[O0]).xyz;

vec3d tn = —cross(vOl, v02);

// Compute middle vertex position

veed mp = ¢ + 0.5 % tn;

// Generate 3 triangles using middle vertex

for (int i = 0; i < gl_VerticesIn; ++i) {
// Compute triangle’s normal

vOl = (v[(i+1)%3] — v[i]).xyz;
v02 = mp — v[i].xyz;
tn = —cross(vOl, v02);

13

// Compute and send first vertex
gl_Position = gl_ModelViewProjectionMatrix
* v[i];
normal = normalize(tn);
vert = vec3d(gl_ModelViewMatrix * v[i]);
EmitVertex () ;
// Compute and send second vertex
gl_Position = gl_ModelViewProjectionMatrix
* v[(i+1)%3];
normal = normalize (tn);
vert = vec3d(gl_ModelViewMatrix * v[(i+1)%3]);
EmitVertex () ;
// Compute and send third vertex
gl_Position = gl_ModelViewProjectionMatrix
* vecd(mp, 1.0);
normal = normalize (tn);
vert = vec3(gl_ModelViewMatrix*vec4 (mp,1.0));
EmitVertex () ;
// Finish this
EndPrimitive () ;

triangle

Listing 16. Spike Effect Geometry Shader

In the geometry shader code, the triangle’s centroid and
normal vector are computed using the original vertices
positions. The centroid is then displaced by moving it half
way along the normal direction. The displaced centroid is
then used to build three new triangles. The model-view
and projection matrices are applied to the original vertices
and the displaced centroid to convert them to the camera’s
coordinate system. Each of the three output triangles are
built using a combination of two original vertices plus the
centroid.

The Spike Effect example does not have a specific frag-
ment shader. In order to illustrate different shaders combi-
nations one of the two previous defined fragment shaders
are used without further modifications: Phong Shading or
Environment Mapping. This is a powerful feature of shader
programming, the developer is free to combine different
effects and shaders obtaining interesting new results.

It is also interesting to note that both shaders discard the
vertex color attribute since they are not used to evaluate the
final color of the fragments, Phong shading uses material
properties while Environment Map fetches the color from
a texture. Figure 15 shows the final result of applying the
Spike Effect with Phong Shading and Environment Mapping.

Figure 15. Spike Effect shader applied in combination with Phong Shading
(left) and Environment Map (right).

VI. SHADERS SUMMARY

During the last sections we have introduced the GLSL
language through a few examples. Since it has a very similar
structure as other programming languages, such as C, the
real challenge resides in learning how to design the shaders
within the rendering pipeline. More specifically, the data
flow is one of the most important points to have in mind,
that is, knowing what flows in and out of each stage.

gl Vertex
standard gi)(\jlofmal
atributes | &i—-0l0r

gl MultiTexCoord0

built-in constants
gl MaxLights, \

texture maps—» Vertex Shader

_user defined attributes
~
|

<4—built-in uniforms
gl_ModelViewMatrix, ...
. user-defined uniforms

v “user defined varyings
{ gl_Position (shader must write)

gl _FrontColor
gl TexCoord[]

‘ *
special variables

standard
varyings

Figure 16. Input/Ouput summary of the vertex shader.

Figures 16, 17, and 18 illustrates the input/ouput variables
of the each shader. Note how attributes coming in the
vertex shader may be passed forward as special or varying
variables.

gl_PositionIn[gl VerticesIn]
gl_FrontColorIn[gl VerticesIn]
gl TexCoordIn[gl VerticesIn]

i /user defined attributes

<4—Dbuilt-in uniforms
gl_ModelViewMatrix, ...

i \V\ user-defined uniforms

user defined varyings
gl Position (shader must write)

standard
atributes

built-in constants
gl_Verticesln, ...

texture maps—» Geometry Shader

special variables

1 FrontColor functions
standard §1_T exCoord] | void EmitVertex();
varyings o= void EndPrimitive();

Figure 17. Input/Ouput summary of the geometry shader.

As an example, lets analyze how the color value
flows through the pipeline. It first enters the vertex
shader as gl Color and leaves as gl FrontColor;
the geometry shader receives each vertex color as
gl FrontColorIn[vertexId] and outputs again
as gl FrontColor for each emitted vertex; finally
the fragment shader receives the interpolated color
as the gl Color variable and writes the result to
gl FragColor. Figure 19 illustrates this particular flow
of the color values.

14

gl _Color
standard) gl FragCoord
varyings) gl _TexCoord[]
built-in constants

_~ user defined varyings
gl MaxTextureUnits, \ i k//

<4—Dbuilt-in uniforms

texwre maps — Fragment Shader gl ModelViewMatrix, ...

i user-defined uniforms

special keyword

discard;

Input/Ouput summary of the fragment shader.

special variables {gl_FragColor (shader must write)

Figure 18.

A. Upcoming Features

Recently OpenGL 3.0 was released where many fixed
functions are marked as deprecated, and, in fact, have
already began to be removed from the API with the newer
3.1 and 3.2 versions. GLSL is also being reformulated and
versions 1.3, 1.4 and 1.5 have been released in a very narrow
time frame. The newer versions point to a future where
shader programming will not be an option, but a requirement
for working with the graphics API, since most of the pipeline
will have to be written by the programmer himself. At first,
this might difficult the learning curve for newbies in graphics
programming, but it will force them to gain a better grasp
of how graphics computation is handled, and consequently
design better and innovative graphics applications.

Another clear evidence of this tendency is the introduction
of new programmable stages: the hull and domain shaders
plus the tessellator, which is a configurable stage. However,
up until this point, they have not yet been integrated with
the hardware and are implemented only via software.

VII. GENERAL PURPOSE GPU

Since the GPU comprises such a powerful parallel ar-
chitecture, many programmers have been using it for other
purposes other than graphics, a trend known as GPGPU, or
General Purpose GPU. The essence of stream programming
is the data, which is a set of elements of the same type.
A set of kernels can process the data by operating on the
whole stream.

We recall that the graphics hardware cannot handle all
type of parallel paradigms since it is not good at solving flow
control issues; on the other hand, it performs extremely effi-
ciently within the streaming paradigm. Multicore processors
for example, many times perform different tasks in parallel,
which is different from parallelizing a single task. The lack
of complex control structures also partially explains why
GPU’s performance has increased in a rate much higher
than CPUs: it is easier to assemble more processor together
if they can act more independently and the global memory
access requires little control.

While the GPU has few levels of memory hierarchy, the
CPU has different cache levels, swap, main memory among
other resources. This requires a high control level and many

gl_Color

‘ Vertex Shader ‘

&

2 gl_FrontColor

<

gl_Color[0,1,2]

‘ Geometry Shader ‘

gl_FrontColor[0,1,2]

gl_Color

‘Fragment Shader‘

) gl_FragColor
(|

Figure 19. The flow of the color variables through the shaders inside the
rendering pipeline.

transistors must be dedicated to the task, but the advantage is
that it allows the CPU to significantly reduce latency issues,
i.e. the time to fetch information.

The GPU has an immense parallel computational power,
operates on many primitives at the same time and computes
arithmetic operations extremely fast; nevertheless, it still
needs data to compute. Modern graphics hardware have
decreased considerably the difference from CPU to GPU
memory capacity, with some achieving the mark of 1Gb of
memory. Even so, a common bottleneck is transferring the
data to the graphics card. A large memory capacity partially
solves the problem, because in most cases the data can be
uploaded once to the GPU and used thereafter, avoiding the
slow CPU-GPU transfer. In fact, many games rely heavy
on compacting data to be able to fit everything in memory
and avoid this problem. On the other hand, general purpose
applications usually have to handle this deficiency with other
strategies since even the compressed data may not fit in
memory, or the data might be dynamic and change every
frame, such as with simulation applications.

The CPU-GPU interaction works as a command buffer,
and transferring data is one of such commands. There are

15

two threads in play, one for the CPU that adds commands,
and another for the GPU that reads commands. How fast the
commands are written or read determines if our application
is CPU or GPU bound. If the GPU is consuming commands
faster than the CPU is writing, at some moment the buffer
will be empty, meaning that the GPU will be out of work
and we are CPU bound at this point. On the other hand, if
we fill up the buffer the GPU is not able to handle all the
commands fast enough, and we are GPU bound in this case.

Fortunately, the CPU-GPU interaction is handled in a
smart way by the API and we do not have to worry about
most of the problems that one might have with bottlenecks
from sequentially adding commands. The GPU can process
most commands in a non sequential manner and is able to
substantially reduce the latency; for example, it does a very
good job of continuing with other tasks when a current job
is waiting for some information to arrive.

VIII. CONCLUSION

In this survey, we have exposed an introductory walk-
through to shader programming using the GLSL language,
while at the same time pointing out some important aspects
of GPU programming. Unfortunately, it is by no means a
complete reference as this is not possible to be achieved
in a few pages. Many surveys with more specific and
detailed information are available on the internet [1], [2],
[15], [16], [17], [18], [19]. Other source of specialized
information is the GPU Gems books series, offering a variety
of advanced examples on applications and effects that can
only be achieved using the graphics card and programmable
shaders [20], [21], [22].

GPU Programming is not anymore a small specialized
niche of computer graphics, it allows the developer to
achieve a wider and more efficient variety of visual effects.
It is also embedded in a big turn that software development
is making as a whole, the “Think Parallel” slogan is ev-
eryday more imminent, be it within GPUs, clusters, Cell or
multicore processors.

It is no wonder that over the last decade the GPU’s
growing curve, on what matters GFLops/sec, is astonishingly
higher than those of the CPUs. In fact, a single CPU
processor has undergone little evolution during these last
years, what we acknowledge is the growth in number of
processors per unit.

The general purpose GPU programming languages, such
as CUDA and OpenCL, are unlikely to overtake all kind
of graphics hardware implementation. Programming shaders
will still be a major skill for those working closely with
its real objective, which is to write modifications on the
graphics pipeline to achieve different, better, and faster
visual effects. This is specially true for the game industry
where shaders are heavily employed. As an illustrative
example, a modern game may achieve the mark of a few
hundreds or more shaders.

To summarize, even though GPU Programming was only
a few years ago an exotic and highly technical part of
computer graphics, is has evolved into a valuable skill and
by now a requirement for graphics programmers. Exploiting
the graphics card capability at its best is much more than
learning a new language such as GLSL, it requires a deep
understanding on how shaders fit into the graphics pipeline
and how great efficiency can be reached by profiting from
the GPUs parallel power.

ACKNOWLEDGEMENT

This work was carried out during the tenure of an ERCIM
”Alain Bensoussan” Fellowship Programme of the first
author. We also acknowledge the grant of the second au-
thor provided by Brazilian agency CNPq (National Counsel
of Technological and Scientific Development), and thank
Robert Patro for his fruitful insights on the shader examples.

REFERENCES
(1]
(2]

“General purpose gpu.” [Online]. Available: http://gpgpu.org/

“nvidia corporation.” [Online]. Available: http://www.nvidia.
com/

(3]

“nvidia’s cuda.” [Online]. Available: http://www.nvidia.com/
object/cuda_home.html

(4]
(3]

“Opengl.” [Online]. Available: http://www.opengl.org/

“Opengl shading language.” [Online]. Available:

/Iwww.opengl.org/documentation/glsl/

http:

[6] “nvidia’s cg.” [Online]. Available: http://developer.nvidia.

com/page/cg_main.html
[7] “Microsoft’s hlsl.” [Online]. Available: http://msdn.microsoft.
com/en-us/library/bb509561\ %28V S.85\ %29.aspx
Available:

[8] “Opencl.”

opencl/

[Online]. http://www.khronos.org/

[9] “Glut.” [Online]. Available: http://www.opengl.org/resources/

libraries/glut/

[10] “Qt.” [Online]. Available: http://qt.nokia.com/

[11] “wxWidgets.” [Online]. Available: http://www.wxwidgets.
org/

[12] M. Bailey and S. Cunningham, Graphics Shaders Theory and

Practice. A K Peters, 2009.
[13] R. J. Rost, OpenGL(R) Shading Language (2nd Edition).
Addison-Wesley Professional, January 2006.
[14] Opengl, D. Shreiner, M. Woo, J. Neider, and T. Davis,
OpenGL(R) Programming Guide : The Official Guide to
Learning OpenGL(R), Version 2 (5th Edition). Addison-
Wesley Professional, August 2005.
[15] “Lighthouse glsl tutorial.” [Online]. Available: http://www.
lighthouse3d.com/opengl/glsl/

16

[16]

[17]

[18]

[19]

[20]

(21]

(22]

“Gpu shading and rendering course.” [Online]. Avail-

able: http://old.siggraph.org/publications/2006cn/course03/
index.html
“Textures in glsl.” [Online]. Available: http://www.ozone3d.

net/tutorials/glsl_texturing.php

“Glsl introduction.” [Online]. Available: http://nehe.gamedeyv.
net/data/articles/article.asp?article=21

“Clockwork coders glsl tutorials.” [Online]. Available:
http://www.clockworkcoders.com/oglsl/tutorials.html

R. Fernando, GPU Gems: Programming Techniques, Tips and
Tricks for Real-Time Graphics. Pearson Higher Education,
2004.

M. Pharr and R. Fernando, Gpu gems 2: programming tech-
niques for high-performance graphics and general-purpose
computation. Addison-Wesley Professional, 2005.

H. Nguyen, GPU Gems 3.
2007.

Addison-Wesley Professional,

