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Particle-Based Non-Photorealistic Volume Visualization

Abstract Non-photorealistic techniques are usually applied
to produce stylistic renderings. In visualization, these tech-
niques are often able to simplify data, producing clearer
images than traditional visualization methods. We inves-
tigate the use of particle systems for visualizing volume
datasets using non-photorealistic techniques. In our Volume-
Flies framework, user-selectable rules affect particles to pro-
duce a variety of illustrative styles in a unified way. The tech-
niques presented do not require the generation of explicit in-
termediary surfaces.

Keywords Visualization · Non-Photorealistic Rendering ·
Volume Rendering · Particle Systems

1 Introduction

The visualization of large 3D volumetric datasets is an im-
portant challenge. Commonly, these visualizations use mod-
els based on reality. However, recently it has been shown that
the use of illustrative techniques may provide more insight
(e.g., [1], [3]). Non-photorealistic rendering (NPR) focuses
on increasing the expressiveness of computer graphics by
incorporating techniques adapted from traditional art and il-
lustration. By removing unimportant details and visual clut-
ter, NPR can direct the viewer’s attention towards the most
important aspects of an image. Alternatively, NPR methods
can be used to provide context to other types of visualiza-
tion.

In figure 1 we have used different illustrative techniques
to show both focus (skull) and context (skin). The sparse-
ness of the selected pen-and-ink styles provides a good al-
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Figure 1 Illustrative volume visualization of the Visible Male CT
head dataset, combining several NPR techniques.

ternative to the translucency commonly used in methods like
direct volume rendering. The image shown was rendered at
interactive speeds, enabling easy exploration of the data.

In existing research, surface-based NPR techniques are
often adapted to work on surfaces extracted from the scien-
tific volume datasets, such as iso-surfaces. These techniques
require a geometrically defined surface. Another commonly
used approach is Direct Volume Rendering (DVR). Here,
non-photorealistic techniques such as lighting models are
used to enhance features in the image (e.g., [10], [2], [3]).
DVR is able to visualize ranges of data rather than just a
single surface, but designing good transfer functions (which
map data values to colors and opacities) is far from trivial.

Point based methods, without using explicit surface rep-
resentations, have become increasingly popular in computer
graphics (see, for example, [15]). Particles, like points, are
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entities encapsulating a 3D position and related information.
However, particles are more general, as their visual repre-
sentation can be selected freely. In this article, we therefore
explore a purely particle-system based approach to volume
visualization using NPR techniques. Particle systems offer
simplicity and flexibility, and have been used as the basis for
specific NPR techniques in the past (e.g., [7]). We investi-
gate the appropriateness of a particle system for the visual-
ization of volumetric data. The use of particles enables us to
visualize surfaces and ranges of data with relatively low pro-
cessing costs (enabling an interactive system). Particles offer
a way of visualizing volume data more directly and flexibly
than surface-based approaches.

We introduce the VolumeFlies framework, which is
based on particle systems that operate directly on the dataset.
Different illustrative visualization techniques can be imple-
mented within this framework by using different rules that
affect properties of the particles such as their position and
appearance. Our framework is inspired by the Smart Parti-
cle concept by Pang and Smith [20]. The Smart Particles are
a combination of a particle systems and behavioral anima-
tion. It allows particles to be programmed to actively seek
and visualize specific features in a dataset. This concept was
also successfully applied to shape modeling [26].

We aim to show that a particle-based approach to volume
visualization results in a flexible system and a unified way
of describing various NPR techniques. We contribute several
new approaches for particle-based illustrative visualization.

In the following, we first give an overview of research
related to our work. Next we present our framework and
shortly discuss the pre-processing steps common to all vi-
sualizations. We then present a new hidden surface re-
moval algorithm for particles, followed by the various non-
photorealistic techniques that have been implemented in our
framework. Finally, we present and discuss results obtained
with our prototype implementation of the framework, and
give possible directions for future research.

2 Non-photorealistic rendering

The body of NPR research is quite extensive. In this section
we focus on techniques that have been applied specifically to
visualizing volume datasets. Aside from DVR-based meth-
ods, a few researchers have presented alternative techniques
that work directly on the volume data. A popular choice of
NPR styles in this area is the family of pen-and-ink styles.
Common elements in these styles are stippling, hatching and
silhouettes. The sparseness of these elements is particularly
suitable for avoiding clutter in images.

Stippling is an often applied NPR technique for visual-
izing surfaces (e.g., [8], [24], [1]). However, the resulting
images often lack detail due to the simplicity and sparseness
of the stipples. On the other hand, these properties make the
technique suitable for illustrating surfaces that provide con-
text to a visualization. Another application of stippling is
to visualize ranges of data, as shown by Lu et al. [17]. In

their system, the number of stipples drawn in each voxel was
carefully adjusted to control density and shading, and to en-
hance features such as boundaries and silhouettes. Because
little user interaction is required, their method is suitable for
quickly previewing volume datasets. Unfortunately, the im-
ages often look noisy and lack detail, partly due to the lack
of hidden-surface removal.

Another commonly used pen-and-ink style for surfaces
is hatching. Hatches drawn over a surface serve not only to
provide shading, but can also directly convey shape infor-
mation, for instance by using curvature to guide hatch di-
rections [13]. Hatching is commonly implemented through
procedural textures (e.g., [27], [22]), or by tracing lines over
the surface (e.g., [12]). Methods have also been presented
to create hatching images directly from volumetric datasets
[19], [9]. The algorithms used, however, are usually compu-
tationally expensive.

Most of these techniques also include silhouette extrac-
tion in order to highlight the boundaries of objects. Silhou-
ette extraction is one of the most useful techniques in non-
photorealistic rendering. By tracing the external and possi-
bly internal silhouettes of objects, these objects are empha-
sized in the visualization without cluttering their interior. A
number of techniques exist for drawing silhouettes, e.g., us-
ing DVR transfer functions [14], image-based filtering [27],
[29], or marching lines [4].

Yuan and Chen [29] illustrated surfaces in volume
data using a combination of several techniques, including
DVR, iso-surface extraction and image-based techniques.
The NPR techniques work well for highlighting specific sur-
face features in the volumes. However, using image-based
methods (e.g., for extracting silhouettes) has the disadvan-
tage that such methods only work on the front-most parts of
visible surfaces in the data, and a change in viewing position
requires the techniques to be re-applied.

From the work described above, it seems that combi-
nations of different styles are most useful for visualizing
features in a dataset. Therefore, we investigate whether a
particle-based framework is general enough to support a
large variety of styles.

3 The VolumeFlies framework

The VolumeFlies framework, shown in figure 2, consists of a
four-stage pipeline. In the feature location stage, the features
that we want to visualize are located and particles are cre-
ated at locations on those features. Once the features (e.g.,
some type of surfaces) have been located, the particle ma-
nipulation stage prepares the particles for visualization. For
instance, the particles will often have to be redistributed in
order to cover the entire feature. Afterwards, the filtering
stage can be applied. The particles in the system can be fil-
tered based on criteria such as removing particles located
at hidden surfaces. Finally, in the rendering stage, geome-
try is created for each of the remaining particles in order to
achieve a desired visual style. Multiple sets of particles with
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Figure 2 The VolumeFlies framework

different properties can be used in a visualization, in order
to visualize multiple features. The geometry resulting from
each of these instances is then sent to the rendering pipeline
to be projected onto the final image.

Each of these stages gives rise to a class of pluggable
modules implementing a set of rules to be applied to the par-
ticles. These can be used as building blocks, to adapt the
framework to a specific visualization scenario. The first two
stages are typically performed in a pre-processing step. Dur-
ing rendering, the modules selected for the third and fourth
stages are invoked as necessary for each change in the view-
ing direction and / or other visualization parameters.

In the next sections we present several variations for the
modules of the different stages. An important property of
the modules discussed in this article is that the rules applied
to each particle use only information local to that particle’s
position. This improves scalability of the system to larger
datasets; performance is only determined by the number of
particles in the system, which is controlled by the user rather
than by the data. This is a desirable property, as the den-
sity of particles influences both the scale of details visible
in the data, as well as creating certain visual effects. The
only exception to this is that some modules require informa-
tion about neighboring particles. In this case we use a spatial
binning algorithm for fast access to these neighbors.

4 Feature location and particle redistribution

The first step is to place a set of particles at some initial po-
sition on the features we want to visualize. In medical vol-
ume data, the most commonly visualized features are iso-
surfaces. Therefore we chose iso-surfaces as the first imple-
mentation for the feature location module.

We sample the dataset at a user-defined grid, using inter-
polation between data points where necessary. In this way
we can ensure regular sampling in all directions even if the
voxels in the original dataset are not isotropic. We identify
the location of the iso-surface by comparing the value at
each grid point to its direct neighbors. If these values lie on

(a) before (b) after

Figure 3 Particles before and after redistribution

opposite sides of the iso-surface value, the surface must in-
tersect the line between the two points. Linear interpolation
is used to approximate the location of this intersection, and
a particle is created at that location.

This method usually results in an uneven distribution of
particles over the feature surfaces, causing visual artifacts
such as the rings in figure 3(a). To solve this, we use a parti-
cle distribution method originally developed by Witkin and
Heckbert [28], and later improved by Meyer et al. [18] to re-
distribute the particles over the surface. This is accomplished
by having particles locally repel each other, but constraining
them to the surface. We adapt Meyer’s improved algorithm
from the context of rendering implicit surfaces to that of vol-
ume datasets and iso-surfaces by using (linear) interpolation.

It is worth pointing out that the even distribution of par-
ticles on the surface (as shown in figure 3(b)) does not re-
sult in a regular distribution in image space, as regions more
perpendicular to the screen will appear denser. In certain sit-
uations however, creating such a distribution is not as im-
portant, and the goal is merely to remove the patterns cre-
ated by the feature location algorithm step. In some of these
situations simply moving the particles in random directions
over the surface for a number of steps will often produce
acceptable results, and the more computationally intensive
distribution method may be avoided.

These steps may be computationally expensive, and fur-
thermore, the values of the interesting iso-surfaces may not
be known in advance. Therefore we implemented a second
method for quickly previewing datasets and locating features
of interest. Here, in the first stage an initial set of particles

Figure 4 Exploring a CT head dataset using non-surface particles
(with silhouette extraction) and a user-configurable density transfer
function.



4 Stef Busking et al.

(a) Showing all particles (b) Hidden surfaces removed

Figure 5 Removing particles located on normally hidden surfaces can
help to produce a clearer image.

is created at random locations throughout the volume where
the magnitude of the gradient exceeds a certain threshold.

An additional filtering stage module is added to apply a
density transfer function. This is similar to an opacity trans-
fer function in DVR; particles are hidden or shown based
on the value of this function when applied to the data value
at the particle’s position, using the density controlling al-
gorithm described in section 6.1. This way, selected ranges
within the data can be visualized quickly. While the amount
of detail shown in the resulting images is low (see figure 4),
the interactivity provided by manipulating the density func-
tion allows a user to easily identify features of interest in a
volume.

5 Hidden-surface removal

The most obvious issue when dealing with surfaces illus-
trated by separate particles rather than a complete surface
(e.g., a polygonal representation) is that there is no occlusion
between the rendered surfaces. While in some cases this may
provide additional insight into the structure of the feature, it
could clutter the image in other cases (see figure 5). Parti-
cles on hidden surfaces should be detected and (optionally)
removed in the filtering stage of the framework.

Most surface-based methods solve this problem by first
rendering the polygonal representation of the surface to a
depth buffer, and subsequently testing each of the particles
against this buffer to determine their visibility. The polyg-
onal surface can also simply be rendered using the back-
ground color in order to erase any particles that should not
be visible.

An alternative technique, used in [21], first renders the
polygonal surface in uniquely colored patches. Particles are
only deemed to be visible if the color of their correspond-
ing patch is found in the resulting image. While this scan-
ning approach may be slower than the depth-buffer based
approach, it has the advantage that the set of visible particles
can be determined before they are rendered. This makes it
easier to combine different visualizations (sets of particles)
in the same image. Also, using this method avoids depth-
value precision issues, a common problem with the first ap-
proach.

(a) Splats on surface (side view) (b) Resulting / missing particles

Figure 6 Overlap between neighboring splats can cause visible parti-
cles to disappear (shown in red).

We show that hidden particles can also be removed with-
out an explicit construction of polygonal representations of
the surfaces. A common technique for rendering surfaces
from separate points (point-based rendering, see for exam-
ple [23], [6]) is splatting. Discs are aligned with the surface
and drawn at the positions of the points. If enough discs are
used and the discs are large enough, this results in an ap-
proximation of the surface.

If the surface is strongly convex, disks can undesirably
mask neighboring particles as shown in figure 6. This may
cause gaps to appear in the surface. Using a scanning ap-
proach, this does not matter as long as some part of the
discs for these particles is visible. However, in some cases
the complete disc is occluded erroneously. This is especially
an issue if the splatting image is generated at a lower resolu-
tion than the final image, in order to increase performance.

We use the scanning approach for detecting visible par-
ticles. Our goal is therefore to find an algorithm that mini-
mizes overlap problems between neighbors and still works
well at reduced resolutions. Our solution is to use cones
oriented towards the viewer rather than circular disks. The
cones are scaled at their base to match the projection of the
original discs (see appendix A.1 for details). The 3D nature
of their shapes leads to more evenly sized projections for
each particle (figure 7). In fact, when the surface is parallel
to the screen, the resulting image is a Voronoi diagram of the
set of particles [11]. We call this new method cone-splatting.

Figure 7 Cone splatting compared to normal splats
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(a) Scale-based shading (b) Density-based shading

Figure 8 Stippling methods

In figure 6(b), the red particles were marked visible by our
cone splatting algorithm, but not by using normal splats.

Two parameters control the size of the cones. The ra-
dius (of the discs used to scale the cones) needs to be large
enough to create a closed surface in the projection. However,
it should not be larger than the distance between neighbor-
ing particles, as this could cause cones to stick out from the
surface. Increasing the axis length of the cones increases the
robustness to high-curvature areas such as shown in figure 6.
However, if the cones are too long (compared to the distance
between subsequent faces along the viewing direction), par-
ticles behind the front-most surface may become visible un-
desirably.

6 Rendering

Traditional medical illustrations, e.g., those used in anatomy
books, commonly use pen-and-ink styles. Common ele-
ments in these styles include stippling, hatching and sil-
houettes. We adapt existing techniques and introduce new
algorithms to emulate these styles using our particle-based
framework.

6.1 Stippling

The simplest way to visualize a set of particles is by using
point primitives. The set of particles provides us with a set of
positions in 3D space, which can be projected onto the image
plane using any desired projection method in the rendering
stage of the framework. Additionally, the surface normal –
derived from the local gradient – can be used for applying
shading, to better illustrate the shape of the surface. There
are several options.

In traditional illustration, two techniques are typically
used to create shading effects in stipple drawings. One is
to vary the scale of the points, using larger points to create
darker areas (see figure 8(a)). We have implemented this as
a rendering module in our framework, by using the value

(a) Single direction (b) Principal curvature

Figure 9 Hatching methods

of the lighting equation as a scaling factor for the size of a
particle (see appendix A.2 for details).

Another method of shading in stipple drawings is to in-
crease or decrease the density of stipples in certain areas
in order to achieve darker or lighter tones respectively (fig-
ure 8(b)). We assume that the full set of particles is sufficient
to generate a black tone. As all particles are of equal size and
evenly distributed, the fraction of particles shown is linearly
related to the tone. We therefore first assign to each particle
pi a value vi from a uniformly random distribution ranging
between 0 and 1. During rendering, a particle is drawn only
if the value of its lighting equation is less than this value.

A disadvantage of this method is that it may require a
very dense set of particles in order to create a detailed image.
Very large numbers of particles affect performance as well
as accuracy. On the other hand, the method is suitable for
illustrating surfaces that provide context to a visualization
(for example, the skin in figure 13). Transparent surfaces can
also be visualized using this method. By placing the light
source at the same position as the camera, silhouettes are
enhanced while particles are removed from interior areas,
reducing clutter.

The results of both stippling methods can be improved
further by observing that in traditional illustration very
bright areas often contain no points at all. We can achieve
this effect by removing points altogether, if their brightness
is above a certain threshold.

6.2 Hatching

Hatching is a technique that uses solely lines and curves to
convey shape. Shading is often accomplished by varying line
width and/or spacing. The direction of the strokes is used
to illustrate the shape or material properties of the 3D sur-
face that is being represented. In traditional illustration, both
normal hatching (closely spaced parallel lines) and cross-
hatching (two or more sets of lines that may intersect each
other) are used.
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In our framework, creating hatched images consists of
two steps. First, hatch lines are generated from the set of
particles. This is done in the particle manipulation stage of
the framework, where the hatch line is stored in the parti-
cle. Secondly, during rendering, a shading algorithm decides
which of these lines should be drawn in order to create the
appearance of a shaded surface. For the purposes of shading,
we use the density-based method presented in section 6.1.

We use the positions of the particles as seed points for
hatch lines traced through the volume. A direction is selected
in the local surface tangent plane, after which the position
is updated by moving along that direction for some user-
selectable distance and repeating the process until a desired
number of hatch-segments has been created. This is repeated
in the opposite direction, again starting from the particle’s
position. In order to be able to perform hidden surface re-
moval on these hatches, each segment of the hatch line is
linked to the nearest particle in the volume; a segment is
drawn only if its linked particle is marked visible.

6.2.1 Direction of the hatches

A simple method for selecting directions is to define a single
3D vector for all hatches representing the preferred direc-
tion. At each step while tracing a hatch, this direction is pro-
jected onto the local surface tangent plane in order to obtain
a hatch direction. Due to the uniformity of the hatches, the
resulting images look similar to images created using wood
engraving (see figure 9(a)). A disadvantage is that in areas
where the preferred direction is perpendicular to the surface
the hatch field looks messy, as the hatch direction is not well
defined.

An alternative, as suggested by Interrante [13], is to use
the directions of principal curvatures. We use the curvature
estimation method presented by Kindlmann et al. [14] to
compute curvature, but perform eigenanalysis on the result-
ing geometry tensor to obtain the directions of principal cur-
vature as well as the values.

While the directions of principal curvature work well
for hatching on smooth surfaces, the iso-surfaces in real-
world datasets (such as medical volume data) are not always
smooth and often noisy. In order to obtain reliable deriva-
tives, and to ignore unimportant details on the surface, we
blur the dataset using a Gaussian kernel. This allows us to
calculate curvature properties at a proper scale; the choice
of the size of the Gaussian kernel depends on the scale of
the details we want to visualize. To further improve our re-
sults, a smoothing algorithm is subsequently applied to the
direction field. Figure 9(b) was generated using this method.
Hertzmann and Zorin [12] illustrated smooth surfaces using
hatching patterns. They used a complex energy minimiza-
tion algorithm to produce smoothed principal curvature di-
rections. Our smoothing algorithm, which is described in de-
tail in the next section, is less complex but produces similar
results.

(a) Initial directions (b) After smoothing

Figure 10 Computed curvature directions on the chin of the CT head
dataset

6.2.2 Smoothing the direction field

One problem with principal curvature directions is that they
are not well defined in areas where the surface is flat or
(nearly) spherical. Moreover, Hertzmann and Zorin [12]
have noted (based on hatching patterns in traditional illus-
tration) that hatching using principal curvature directions
is most effective in areas that are parabolic. That is, areas
where one of the principal curvatures (κ1 and κ2) is large
while the other is near zero. If one of the curvatures is ex-
actly zero the surface is locally cylindrical.

Based on these observations, we have designed a new
smoothing algorithm which generates direction fields suit-
able for hatching. Like Hertzmann and Zorin, we use a cross-
field consisting of unordered pairs of directions, because
there are certain cross-hatching patterns that can not be de-
composed into two separate single-direction fields. The field
is stored as a pair of direction vectors in each particle. While
tracing a hatch, the field from particles near the current posi-
tion is averaged to obtain an approximate pair of directions
for that point. We then select the direction most like the cur-
rent hatch direction as the direction in which to continue the
hatch line.

The field is initialized with principal curvature direc-
tions. As can be seen in figure 10(a), there are several ar-
eas where this field contains irregularities due to noise or
ill-defined principal curvature. We define a measure of field
reliability, ρ , which essentially states how suitable for hatch-
ing the principal directions are at a given point. We base this
measure on the shape index s, defined by Koenderink and
Van Doorn [16],

s =
2
π

arctan
κ2 +κ1

κ2−κ1
(κ1 ≥ κ2) .

The shape index is a number between −1 and 1 indicat-
ing the shape of the surface. We transform s into our reliabil-
ity measure by taking ρ = 1−|2(|s|−1/2)|. The value of ρ
ranges from 0 (spherical or saddle-shaped) to 1 (cylindrical).
This way, when ρ = 1, the principal curvature directions are
most suitable for hatching, while ρ = 0 means the directions
are unreliable. The shape index does not indicate whether
a surface is flat, that is, if both κ1 and κ2 are (nearly) 0. It
is, however, important to detect flat areas as the directions
of principal curvature are not well defined in those areas,
therefore we set ρ to 0 in these cases.
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(a) Bones of the hand (b) Blood vessel

Figure 11 Iso-depth “silhouettes”

We iteratively replace the directions in each particle with
the average taken over that particle’s neighborhood, using
the values of ρ in each particle as weights. This leads to
blurring in areas of low reliability, while reliable directions
are preserved. Differences in the orientation of the surface
at neighboring particles may cause the averaged directions
to be outside of the surface tangent plane. To prevent this,
directions are rotated according to the minimal rotation be-
tween the surface normals at the particles before they are av-
eraged. As can be seen in figure 10(b), the resulting field is
more coherent than figure 10(a) in areas where the principal
directions would not be well defined.

6.3 Silhouette extraction

In order to include silhouettes in our generic framework, we
would like to use the existing set of particles. Extracting sil-
houettes consists of two steps. First, a subset of particles near
the silhouette is selected. These can be found by placing a
threshold on the dot product of surface normal n and view-
ing direction e. Next, we trace silhouettes in a way similar to
hatching. Unlike hatching, tracing of silhouettes can not be
performed in a pre-processing step, because silhouettes are
dependent on the viewing direction.

In order to follow the silhouette, the direction of silhou-
ette lines should keep the surface normal perpendicular to
the viewing direction. One option is to draw iso-depth lines
instead of following the true silhouette. We obtain these by
following the direction of n× e. This method results in a
decent approximation to silhouettes for objects for which
these silhouettes lie in or close to planes perpendicular to
the viewing direction (figure 11(a)). In areas where this is
not the case, the result is often a sketch-like effect (see the
lower bones in figure 11(a)). The method fails, however, on
small cylindrical structures, such as the blood vessel in fig-
ure 11(b). The iso-depth lines can also work as an effective
hatching pattern.

In order to obtain more accurate silhouettes (see fig-
ure 13), we note that the local surface curvature describes
the local behaviour of the normal. It can therefore be used
to determine the silhouette direction. By considering a lo-
cal coordinate frame at point p consisting of the principal

(a) Silhouettes based on n · e (b) Constant-width silhouettes

Figure 12 Controlling the width of the silhouette lines

curvature direction vectors k1 and k2 combined with the lo-
cal surface normal n, and using Rodrigues’ formula [25], we
derive an approximation for the silhouette line in this frame
(see appendix A.3). From this we obtain the direction,

d =−κ2 (k2 · e)k1 +κ1 (k1 · e)k2.

Blurring is applied to improve the robustness to noise of
the curvature calculation.

We need to determine which particles to draw silhouettes
from. Using a threshold on n · e results in wide silhouette
lines in areas of low curvature, while silhouettes in areas of
high curvature are smaller or may be missed altogether if
no particles are in the silhouette area (figure 12(a)). Kindl-
mann et al. [14] observed a similar problem when drawing
silhouettes using transfer functions in direct volume render-
ing. They proposed using a 2D transfer function dependent
on not only the n · e value, but also on the local surface cur-
vature. Their method requires the surface curvature in the
viewing direction, which they derive from the geometry ten-
sor matrix for each point whenever the viewpoint changes.

We can avoid additional expensive computations by re-
using our earlier approximation of the silhouette line. The
distance of a particle to the silhouette can be derived from
the distance of this line to the origin in the (k1,k2)-plane,

τ =
n · e√

(κ1 (k1 · e))2 +(κ2 (k2 · e))2
.

Assuming orthogonal projection, the distance of the par-
ticle to the silhouette in the image plane is T = τ (n · e). We
can therefore place a threshold on the value of T in order to
obtain silhouettes of approximately constant width (see fig-
ure 12(b)). The only disadvantage is that principal curvature
information has to be computed for all particles. However,
as this information is independent of the viewpoint this can
be performed in a pre-processing step.

7 Results

The algorithms described in this article have been imple-
mented in C++ using the OpenGL 3D graphics API [5]. The
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(a) (b) (c) (d)

Figure 13 Illustrative volume visualizations of a CT hand dataset, combining several NPR techniques.

resulting system allows a user to easily configure a number
of sets of particles within a volume dataset, each of which
can have its own visualization technique and parameters.
Different techniques can be combined to visualize multiple
features in a volume dataset.

Figure 13 shows a CT dataset of a hand visualized us-
ing our framework. The focus of the image, the bones of the
hand, are visualized using a traditional iso-surface render-
ing. This is rendered by splatting with a dense set of real-
istically shaded particles. The surface is emphasized in the
image using silhouettes. This is combined with principal-
curvature directed hatching in figures 13(a) and 13(c) in or-
der to better illustrate the shape of this surface. Alternatively,
stippling and silhouettes can be used to show the interior
structure of the surface (figure 13(b)). Context is provided
by a visualization of the skin using its silhouette, and also
stippling in figures 13(a) and 13(c). Figures 13(a) and 13(d)
also show the arteries in the hand (using accurate silhouettes
based on curvature).

Our framework is flexible enough to produce visual-
izations in many styles and variations, similar to results
of surface-based techniques. Our current implementation is
limited to visualizing iso-surfaces. However, the methods
presented can be extended to other types of surfaces if the
required derivative properties (surface normal and in some
cases curvature) are available. The Visualization of ranges of
data (rather than iso-surfaces) leaves room for improvement.
Currently, these techniques seem most suitable for quickly
previewing datasets. However, due to the limited amount of
particles used, the resulting images offer less detail than the
volumetric visualizations as used by Lu et al. [17].

DVR images often look fuzzy; transparent structures in
these images may clutter the image, especially when one is
mainly interested in specific surfaces within the volume. In
these cases, the sparseness of our NPR techniques may offer
a better alternative. Because only simple geometric primi-
tives were used to render our results (points and lines), these
two types of visualizations may also be easily combined, for
instance in a focus / context type of visualization. For exam-

ple, figures 13(a), 13(c) and 13(d) show NPR combined with
a surface shaded using more classical techniques.

The system runs at interactive speeds (with the exception
of the pre-processing steps), allowing a user to immediately
observe the result of changing most of the visualization pa-
rameters. Table 1 gives an overview of the performance of
the (unoptimized) prototype implementation, for some of the
images presented in this article. All datasets used were in the
range of 2563 voxels. Stages 1 (feature location) and 2 (par-
ticle manipulation) are pre-processing steps (executed once
per dataset) while stages 3 (filtering) and 4 (rendering) are
executed during interactive rendering when certain parame-
ters are changed.

8 Conclusions and future work

We have discussed a framework for particle-based non-
photorealistic volume visualization. Our main contributions
are:

– The VolumeFlies framework, a flexible and scalable
framework for non-photorealistic rendering of volume
data, based on particle systems and operating directly on
the voxel data. We have demonstrated that the framework

Table 1 Performance of the framework on a modern computer
(AMD Athlon 2 GHz)

Image sets particles stage 1&2 stage 3&4

Figure 1 4 221108 120 s 2 fps
Figure 8(a) 1 26714 15 s 30 fps
Figure 8(b) 1 1294185 360 s 1 fps
Figure 9(a) 1 58367 35 s 19 fps
Figure 9(b) 1 58367 60 s 17 fps
Figure 11(a) 1 27070 15 s 19 fps
Figure 12(a) 1 29481 20 s 4 fps
Figure 12(b) 1 29481 20 s 2 fps
Figure 13(a) 6 449529 130 s 2 fps
Figure 13(b) 3 367921 90 s 5 fps
Figure 13(c) 5 404831 120 s 6 fps
Figure 13(d) 4 410487 100 s 2 fps
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supports various styles in a unified way, including stip-
pling, hatching and silhouette extraction. Other styles,
such as the painterly rendering styles in [7], could also
be easily implemented within the same concepts.

– A new hidden surface detection algorithm for surfaces
rendered using particles. This method does not require
the construction of an explicit geometric representation
of the surface and can be applied at interactive speeds.

– New techniques for NPR and visualization, including
a simple density-based shading algorithm, silhouette ap-
proximation methods and a direction field smoothing al-
gorithm for hatching based on principal curvature direc-
tions, which uses the shape index to indicate the local
suitability for hatching.

Non-photorealistic methods for data visualization, such
as the ones presented in this article, may be used to simplify
visualizations in cases where “realistic” methods would clut-
ter the image. They are by no means a replacement for meth-
ods such as DVR. Rather, they should be considered a use-
ful addition, as each has its own advantages and disadvan-
tages. We expect that non-photorealistic methods are partic-
ularly suitable to provide context for more realistic visual-
izations, as their inherent simplicity will serve not to distract
the viewer from the focus of such an image.

We also conclude that the use of particles presents a
useful alternative to traditional surface-based methods. The
flexibility presented by particles combined with the advan-
tages of working directly on the data may present new pos-
sibilities for data visualization, and allows easy implemen-
tation of many NPR techniques.

However, there are still topics for further research. For
instance, it may be useful to adapt the density of particles
to certain situations. Examples are modifying density when
zooming in order to ensure a constant tone, to adapt it ac-
cording to local surface properties such as curvature, or us-
ing user-defined focus regions to control density and / or
other visualization parameters. Also, as shown in our experi-
ments with alternative feature location rules, particles do not
necessarily have to be on the same surface. Further research
is required in order to adapt our techniques for optimally
visualizing ranges of values, as is possible with DVR. Fi-
nally, the current implementation of the framework does not
take advantage of programmable graphics hardware. We are
working on an implementation of the framework which uses
graphics hardware in order to allow for interaction during the
preprocessing stages and improve the overall performance.
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A Derivations

A.1 Splat-cone scaling

The cones used for hidden surface removal are scaled to match the
projection of the original splat discs. To simplify the calculations, we
assume a local orthogonal projection along the viewing direction ei.

In this projection, a disc with radius r, aligned perpendicular to
surface normal ni will result in an ellipsoid projection. This ellipsoid
will have axis lengths r and r′i , where

r′i = r (ni · ei) .

The orientation of the axis can be found by observing that the disc
will retain its radius in the direction perpendicular to both the viewing
direction and the surface normal:

ri = r (ni× ei) .

The axis with length r′ is obviously perpendicular to this, so

r′i = r′i
ei× ri

|ei× ri| .

A.2 Scale-based stippling

Assuming the particles are evenly distributed, they will form an ap-
proximately hexagonal pattern over the surface (recall figure 3(b)). We
further assume that particles in the immediate neighbourhood of a par-
ticle pi experience similar lighting conditions as pi, and ignore overlap
between particles.

Consider a triangle in the hexagonal grid, consisting of particles
pi, p j and pk. Our assumptions allow us to simplify the size of these
particles to a single Si. This way, the fraction of white in the triangle
(i.e., the intensity Li at those points) can be expressed as

Li = 1−
1
2 πS2

i
1
4

√
3σ2

,

where σ is the (average) distance between neighbouring particles. This
can be solved for Si, resulting in

Si = σ

√√
3

2π
(1−Li).

A.3 Curvature-based silhouette approximation

Suppose the local principal curvatures at point p are given by κ1 and
κ2, with directions k1 and k2 respectively. These vectors, combined
with the surface normal n form a local coordinate frame in p. Using
Rodrigues’ formula, we can linearly approximate the behaviour of the
normal in this frame:

n′ (u,v) = (−κ1u,−κ2v) ,

where u and v correspond to the k1 and k2 directions respectively. The
to-eye vector e can be described in this frame as

e′ = (k1 · e,k2 · e,n · e) .
This allows us to define the silhouette as the line

e′ ·n′ (u,v) =−κ1 (k1 · e)u−κ2 (k2 · e)v+n · e = 0,

from which we derive a parallel direction vector in world-space:

d =−κ2 (k2 · e)k1 +κ1 (k1 · e)k2.


