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Geometry and Attribute Compression for Voxel Scenes
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Figure 1: Compressed voxelized scene at different levels of detail, rendered in real time using raytracing only. Our hierarchy encodes
geometry and quantized colors at a resolution of 128K3. Despite containing 18.4 billion colored nodes, it is stored entirely on the GPU,
requiring 7.63 GB of memory using our compression schemes. Only at the scale shown in the right bottom image the voxels become apparent.

Abstract
Voxel-based approaches are today’s standard to encode volume data. Recently, directed acyclic graphs (DAGs) were success-
fully used for compressing sparse voxel scenes as well, but they are restricted to a single bit of (geometry) information per voxel.
We present a method to compress arbitrary data, such as colors, normals, or reflectance information. By decoupling geometry
and voxel data via a novel mapping scheme, we are able to apply the DAG principle to encode the topology, while using a
palette-based compression for the voxel attributes, leading to a drastic memory reduction. Our method outperforms existing
state-of-the-art techniques and is well-suited for GPU architectures. We achieve real-time performance on commodity hardware
for colored scenes with up to 17 hierarchical levels (a 128K3 voxel resolution), which are stored fully in core.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Display
algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Raytracing

1. Introduction

With the increase of complexity in virtual scenes, alternative rep-
resentations, which enable small-scale details and efficient ad-
vanced lighting, have received a renewed interest in computer
graphics [LK10]. Voxel-based approaches encode scenes in a high-
resolution grid. While they can represent complicated structures,
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the memory cost grows quickly. Fortunately, most scenes are sparse
– i.e., many voxels are empty. For instance, Fig. 1 shows a scene
represented by a voxel grid of 2.25 quadrillion voxels (128K3), but
99.999% are actually empty. Although hierarchical representations
like sparse voxel octrees (SVOs) [JT80, Mea82] exploit this spar-
sity, they can only be moderately successful; a large volume like
the one in Fig. 1 still contains over 18 billion filled voxels.

For large volumes, specialized out-of-core techniques and com-
pression mechanisms have been proposed, which often result in
additional performance costs [BRGIG∗14]. Only recently, directed
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acyclic graphs (DAGs) have shown that even large-scale scenes can
be kept entirely in memory while being efficiently traversable. They
achieve high compression rates of an SVO representation with a
single bit of information per leaf node [KSA13]. Their key insight
is to merge equal subtrees, which is particularly successful if scenes
exhibit geometric repetition. Unfortunately, extending the informa-
tion beyond one bit (e.g., to store material properties) is challeng-
ing, as it reduces the amount of similar subtrees drastically.

Our contribution is to associate attributes to the DAG representa-
tion, which are compressed separately while maintaining efficiency
in rendering tasks. To this extent, we introduce a decoupling of
voxel attributes from the topology and a subsequent compression
of these attributes. Hereby, we can profit from the full DAG com-
pression scheme for the geometry and handle attributes separately.
Although the compression gain is significant, the representation can
still be efficiently queried. In practice, our approach enables real-
time rendering of colored voxel scenes with a 128K3 resolution in
full HD on commodity hardware while keeping all data in core.
Additionally, attributes like normals or reflectance can be encoded,
enabling complex visual effects (e.g., specular reflections).

Our main contributions are the decoupling of geometry and
voxel data, as well as the palette compression of quantized at-
tributes, delivering drastic memory gains and ensuring efficient ren-
dering. Using our standard settings, high-resolution colored scenes
as in Fig. 1 require on average well below one byte per voxel.

2. Related work

We only focus on the most related methods and refer to a recent sur-
vey by Balsa Rodríguez et al. [BRGIG∗14] for other compression
techniques, particularly for GPU-based volume rendering.

Large datasets can be handled via streaming; recent approaches
adapt a reduced representation on the GPU by taking the ray
traversals through the voxel grid into account [GMIG08, CNLE09,
CNSE10]. Nonetheless, transfer and potential disk access make
these methods less suited for high-performance applications. Here,
it is advantageous to keep a full representation in GPU memory, for
which a compact data structure is of high importance.

Dense volume compression has received wide attention in sev-
eral areas – e.g., in medical visualization [GWGS02]. These so-
lutions mostly exploit local coherence in the data. We also rely
on this insight for attribute compression, but existing solutions
are less suitable for sparse environments. In this context, besides
SVOs [JT80, Mea82], perfect spatial hashing can render a sparse
volume compact by means of dense hash and offset tables [LH06].
While these methods support efficient random access, exploiting
only sparsity is insufficient to compress high-resolution scenes.

Efficient sparse voxel octrees (ESVOs) observe that scene ge-
ometry can generally be represented well using a contour encod-
ing [LK11]. Using contours allows early culling of the tree struc-
ture if the contour fits the original geometry well, but this can
limit the attribute resolution (e.g., color). While it is possible to re-
duce the use of contours in selected areas, this choice also impacts
the compression effectiveness drastically. Voxel attributes are com-
pressed using a block-based DXT scheme, requiring one byte for

colors and two bytes for normals per voxel on average. For high-
resolution scenes, a streaming mechanism is presented.

Recently, Kämpe et al. observed that besides sparsity, geometric
redundancy in voxel scenes is common. They proposed to merge
equal subtrees in an SVO, resulting in a directed acyclic graph
(DAG) [KSA13]. The compression rates are significant and the
method was even used for shadow mapping [SKOA14, KSA15].
Nonetheless, the employed pointers to encode the structure of
the DAG can become a critical bottleneck. Pointerless SVOs
(PSVOs) [SK06] completely remove pointer overhead and are well-
suited for offline storage. However, they do not support random ac-
cess and cannot be extended to DAGs, as PSVOs require a fixed,
sequential memory layout of nodes. While several reduction tech-
niques for pointers have been proposed [LK11,LH07], they are typ-
ically not applicable to the DAG. These methods assume that point-
ers can be replaced by small offsets, but in a DAG, a node’s children
are not in order but scattered over different subtrees. Concurrent
work presented a pointer entropy encoding and symmetry-based
compression for DAGs, but does not support attributes [JMG16].

Adding voxel data reduces the probability of equal subtrees,
making DAGs unsuitable for colored scenes. The recently proposed
Moxel DAGs [Wil15] address this problem. In every node, they
store the number of empty leaf voxels (assuming a complete grid)
in the first child’s subtree. During traversal, two running sums are
kept – the number of empty leaves and total leaves – to compute
a sequential unique index for every existing leaf voxel, with which
the corresponding attributes are retrieved from a dense but uncom-
pressed array. Our method is more efficient (with only one running
sum) and requires less memory, as the number of empty leaf voxels
grows to quadrillions for scenes like in Fig. 1, leading to large stor-
age requirements for the additional index per node. Furthermore,
Moxel DAGs do not encode a multi-resolution representation and,
hence, cannot directly be used for level-of-detail rendering.

Uncompressed voxel attributes quickly become infeasible for
higher resolutions, especially on GPU architectures where mem-
ory is limited. Here, attribute compression can be used. Specialized
algorithms exist for textures [SAM05, NLP∗12], colors (via effec-
tive quantization [Xia97]) or normals (octahedron normal vectors
(ONVs) [MSS∗10]). For the latter, careful quantization is neces-
sary [CDE∗14]. We decouple the geometry of a voxel scene from
its attributes, which enables exploring such compression schemes.

3. Background

A voxel scene is a cubical 3D grid of resolution 2N 3
with N a pos-

itive integer. Each voxel is either empty or contains some informa-
tion, such as a bit indicating presence of matter, or multiple bits
for normal or material data. SVOs encode these grids by grouping
empty regions; each node stores an 8-bit mask denoting for every
child if it exists – i.e., is not empty. A pointer connects the parent to
its children, which are ordered in memory. Thus, 8 bits are needed
for the childmask, plus a pointer of typically 32 bits. Furthermore,
for level-of-detail rendering, parent nodes usually contain a repre-
sentation of the children’s data (e.g., an average color). If only ge-
ometry is encoded, the childmask gives sufficient information and
no data entries are needed. Note that literature typically considers
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Figure 2: The input to our approach is an SVO with data (left). DAGs are only efficient when storing the topology (middle-left); when
considering attributes, merging fails to compress the SVO sufficiently (middle-right). Our approach decouples data (colors in this case) from
topology by storing offsets in the pointers, enabling us to apply the DAG principle on the geometry (right). The offsets then allow access to
an attribute array, which is compressed independently. The red descent shows how the accumulated offsets deliver the correct array element.

SVO nodes that are not leaves as voxels as well, so that reported
voxel counts equal the number of tree nodes.

The DAG algorithm [KSA13] is an elegant method to exploit re-
dundancy in a geometry SVO and forms the basis of our topology
encoding. For ease of illustration, Fig. 2 uses a binary tree, but the
extension to more children is straightforward. On the left, a sparse,
colored, binary tree is shown. Dangling pointers refer to empty
child nodes without geometry. We ignore the colors and numbers
for now and only focus on the topology. The DAG is constructed in
a greedy bottom-up fashion. Starting with the leaves at the lowest
level, subtrees are compared and, if identical, merged by changing
the parent pointers to reference a single common subtree. The DAG
contains significantly fewer nodes than the SVO (Fig. 2, middle-
left). Note that for a DAG as well as an SVO, leaf nodes do not
require pointers, and, when encoding geometry only, the leaves can
even be stored implicitly by using the parent childmask.

One disadvantage of the DAG in comparison to an SVO is that
pointers need to be stored for each child, because they can no
longer be grouped consecutively in memory (in which case, a sin-
gle pointer to the first child is sufficient). In practice, the 40 bits
per node in a geometry SVO (8-bit childmask and a 32-bit pointer),
become around 8+4×32 = 136 bits in a DAG – assuming a node
has four children on average, e.g., for a voxelized surface mesh.
The high gain of the DAG stems from the compression at low lev-
els in the tree. For example, an SVO with 17 hierarchical levels
usually has billions of nodes on the second-lowest level while a
DAG has at most 256 – the amount of possible unique combina-
tions of eight child voxels having each one bit. For higher levels,
the number of combinations increases, which reduces the amount
of possible merging operations; this also reflects the difficulty that
arises when trying to merge nodes containing attribute data. With
only three different data elements (colors of leaves), the merging
process already stops after the lowest level (Fig. 2, middle-right).

4. Our approach

The possibility of merging subtrees is reduced when voxel at-
tributes such as normals and colors are used. While the data usually
exhibits some spatial coherence, exploiting it with a DAG is diffi-

cult because the attributes are tightly linked to the SVO’s topology.
We propose a novel mapping scheme that decouples the voxel ge-
ometry from its additional data, enabling us to perform specialized
compression for geometry and attributes separately, which greatly
amortizes the theoretical overhead caused by the decoupling.

Using our decoupling mechanism, which is described in Sec. 4.1,
the geometry can be encoded using a DAG. The extracted attributes
are stored in a dense attribute array, which is subsequently com-
pressed. During DAG traversal, the node’s attributes can efficiently
be retrieved from the array. The attribute array itself is processed
via a palette-based compression scheme, which is presented in
Sec. 4.2. It is based on the key insight that the array often con-
tains large blocks of similar attributes due to the spatial coherence
of the data (e.g., a large meadow containing only a few shades of
green). In consequence, using a local palette, the indices into this
palette require much less memory than the original attributes.

While the original design for the palette compression is loss-
less, we show in Sec. 4.3 that compression performance can be sig-
nificantly improved by quantizing attributes beforehand. Hereby, a
trade-off between quality and memory reduction is possible, which
can be steered depending on the application. We demonstrate that
significant compression improvements can already be achieved by
using perceptually almost indistinguishable quantization levels.

Finally, we show in Sec. 4.4 that the DAG itself can also be fur-
ther compressed using pointer and offset compression, as well as an
entropy-based pointer encoding, which is a valuable addition to the
original DAG method as well. These techniques greatly amortize
the additional storage required for the decoupling.

4.1. Voxel attribute decoupling

To decouple data from geometry, we first virtually assign indices
to all nodes in the initial SVO in depth-first order (Fig. 2, left, the
numbers inside the nodes). Next, for every pointer, we consider an
offset (Fig. 2, left, the positive numbers next to the edges), which
equals the difference between the index of the child and parent as-
sociated with this pointer. Summing all offsets along a path from
the root to a node then reproduces its original index.
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Figure 3: Palette compression. From left to right: the initial attribute array A = {a0, ...,a14} stores 24-bit colors; we construct the material
array M = {ã0, ..., ã6} to store the 24-bit colors while Ã contains 3-bit indices into M; four blocks {B0,B1,B2,B3} are created, containing
0-bit to 2-bit palette indices into the three associated palettes {P0,P1,P2}, which in turn contain 3-bit material indices into M.

Based on this insight, we propose to store these offsets together
with each child pointer and to extract and store the node attributes
in a dense attribute array in the same depth-first order (Fig. 2, right,
the stacked colors). During traversal from the root, a node’s index
is reconstructed via these offsets. This index can then be used to
efficiently retrieve the corresponding voxel attribute from the array.

While our mapping introduces an overhead in the form of an ad-
ditional offset for every child pointer, it has the benefit that subtrees
with identical topology can be merged to a DAG again. In fact, a
depth-first indexing automatically leads to identical offsets in geo-
metrically identical subtrees. Further, we show in Sec. 5.3 that these
offsets can be compressed very efficiently. Fig. 2, right, illustrates
an exemplary index retrieval in the DAG-compressed tree for the
node with index 4, where the red arrows denote the tree descent.

4.2. Palette compression

After decoupling and storing the geometry in a DAG, we are left
with an efficient representation of the topology, but the uncom-
pressed attribute array still requires a large amount of memory. We
propose a variable-length compression scheme for the attribute ar-
ray, which is efficient and still allows for fast accessing at run-time.
To explain our method, we first describe the use of a global material
array, making it possible to store indices instead of full attributes.
Because of spatial coherence in the scene, consecutive indices will
often be similar, which leads to the idea of working on blocks of en-
tries in the attribute array. For each block, we define a palette (local
index array) and each entry in a block only stores a local index into
this palette. The palette then allows us to access the correct entry in
the global material array.

Specifically, our approach works as follows. We denote the at-
tribute array as A = {a0, ...,aΛ−1}, where Λ is the total number of
entries. Note that Λ equals the voxel count in the original SVO. We
observe that A usually contains many duplicates and the number of
unique voxel attributes λ is typically orders of magnitude smaller
than Λ. For this reason, a first improvement is to construct a mate-

rial array M = {ã0, ..., ãλ−1}, which stores all λ unique attributes
in the scene, and replace A with an indexed version pointing into M.
We denote the index array as Ã = {m0, ...,mΛ−1}, where m denotes
an index into M. Since indices require fewer bits than attributes, it
usually results in a reduced memory footprint and decouples the
content of the material array from the attribute array. An example
is provided in Fig. 3.

Since the data in A is ordered depth-first, we retain most of the
spatial coherence of the original scene. Consequently, if a large area
exhibits a limited set of attributes (e.g., a blue lake represented by
millions of blue voxels with little variation) they are likely to be
consecutive in A. Hence, it would be beneficial to partition the at-
tribute array into multiple blocks of consecutive entries, where each
only contains a small number of different indices. We describe how
to determine these blocks later.

Each block has an associated palette, which is an array of the
necessary unique indices into the material array to retrieve all at-
tributes in the block. The block itself only stores (possibly repeat-
ing) indices into its associated palette. While each index in a block
originally requires dlog2 λe bits, it is now replaced by a new index
with only ω bits, where ω depends solely on the number of unique
entries inside the block. Note that there is no one-to-one correspon-
dence between palettes and blocks; a palette can be shared by sev-
eral blocks, but each block is linked to a single palette only.

Blocks have a variable length, which makes it necessary to keep
a block directory to indicate where blocks start and what their cor-
responding palette is. The block directory has its entries ordered by
the starting node index, which makes it possible to perform a binary
search to find the corresponding block information given a node in-
dex. Generally, the memory overhead of the directory is negligible.

Our representation ultimately consists of an array of blocks
{B0, ...,Bγ−1} and an array of palettes {P0, ...,Pρ−1}, where γ and
ρ denote the total number of blocks and palettes, respectively. For
the example in Fig. 3, it can be seen that we obtain three palettes
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and four blocks (i.e., ρ = 3, γ = 4), because B1 and B3 use an iden-
tical palette that does not have to be stored twice.

Algorithm 1 Palette compression
1: function FINDLARGEBLOCKS({mi, ...,m j})
2: if j < i then return
3: ω← 0
4: while ω < 4 do
5: {mk, ...,ml}← largest block with 2ω unique m
6: B←{mk, ...,ml}
7: if MEMORY(B,ω) < (l− k+1) · (ω+1) then
8: P← CREATEPALETTE(B)
9: for all m ∈ B do m← index into P

10: FINDLARGEBLOCKS({mi, ...,mk−1})
11: FINDLARGEBLOCKS({ml+1, ...,m j})
12: return
13: else
14: ω← ω+1
15: FINDREMAININGBLOCKS({mi, ...,m j})
16: function FINDREMAININGBLOCKS({mi, ...,m j})
17: if j < i then return
18: ω←{0, ...,8}
19: for all ω do
20: {mi, ...,mkω

}← largest block with 2ω unique m from mi
21: Bω←{mi, ...,mkω

}
22: Sω← MEMORY(Bω,ω) /(kω− i+1)
23: B,k← Bω,kω with minimal Sω

24: P← CREATEPALETTE(B)
25: for all m ∈ B do m← index into P
26: FINDREMAININGBLOCKS({mk+1, ...,m j})
27: function MEMORY({mi, ...,m j},ω)
28: return ( j− i+1) ·ω+2ω · dlog2 λe+ size(directory entry)

Palette selection Finding the optimal set of blocks with respect
to their memory requirement is a hard combinatorial problem, and
the attribute array contains billions of entries for high-resolution
scenes. Hence, we propose a greedy heuristic to approximate the
optimal block partitioning.

The algorithm consists of two phases (see Alg. 1). First, we
greedily find the largest blocks that only require a few bits per entry,
as these blocks form the best opportunities for high compression
rates. This first phase takes a consecutive subset of Ã as its param-
eter, and is initially invoked for the complete array ({mi, ...,m j}
with i = 0 and j = Λ− 1). It finds the largest block that appears
in this set consisting of 2ω unique material indices in a brute-force
fashion (line 5). Since we start with ω = 0 (line 3), it first finds
the largest consecutive block with only one unique index. If the to-
tal overhead introduced by creating a palette is outweighed by the
memory reduction (line 7), we generate a palette (if we could not
find an existing matching palette) and replace the material indices
m with indices into this palette (lines 8 and 9). The remainder of
Ã is then processed recursively (lines 10 and 11). If the criterion
is not satisfied, we increment ω and repeat (line 14). When ω be-
comes too large, we stop the first phase, as finding the largest block

becomes computationally infeasible. In our case, we terminate for
ω≥ 4, corresponding to 16 unique indices or more (line 4).

The second phase is invoked for the data that could not be as-
signed to blocks in phase one (line 15) which is now partitioned
into blocks sequentially. For this, nine possible blocks (for each
ω = {0, ...,8}) are considered, all starting at mi (line 20). Of these
nine blocks, the one with the minimal memory per entry (including
the directory overhead) is used (line 23), and a palette is attributed
to this block, after which we replace the indices again (lines 24 and
25). This is repeated for the remaining data (line 26). To compute a
block’s memory overhead (line 28), we multiply the block entries
by the bits required for a palette index (( j− i+1) ·ω) and add the
palette entries multiplied by the bits required for a material index
(2ω ·dlog2 λe). Finally, we add the block’s directory entry overhead.

For the example in Fig. 3, only B3 is created in phase one, as
other possible blocks do not satisfy the memory criterion (line 7).
The remaining data is processed in phase two, which results in three
additional palettes, one of which can be shared.

4.3. Attribute quantization

The palette-based compression scheme for the attribute array is
lossless and can already provide a significant reduction in memory.
However, since human perception is not as flawless as a computer’s,
and many scenes exhibit similarity in voxel attributes, we can apply
a certain degree of quantization on many kinds of attributes without
losing much visual quality. This can greatly improve the compres-
sion capability of our proposed approach.

In principle, any standard quantization could be applied to the
attribute array, but specializing the method based on the data type
leads to improved results. In particular, we present solutions for
colors and normals, as they seem most valuable to be supported for
voxel scenes. Detailed scenes can potentially result in millions of
different colors with small variations in the attribute array. Fortu-
nately, color quantizers can reduce the amount of distinct values
significantly without resulting in perceivable differences [Xia97].
While Xiang’s original method relied on a clustering in a scaled
RGB space, we improve the result by working in the (locally) per-
ceptually uniform CIELAB color space. The amount of colors can
be freely chosen by the user; we typically use 12-bit (4096) colors
throughout the paper. Note that the method is a data-driven clus-
tering and requires preprocessing to analyze the colors, but yields
high-quality results even for a small amount of colors.

For normals, we rely on octahedron normal vectors (ONVs),
leading to an almost uniformly distributed quantization [MSS∗10,
CDE∗14]. Using ONVs is beneficial as it yields higher precision for
the same number of bits compared to storing one value per dimen-
sion. Again, the bit depth of the quantization can be freely chosen.

4.4. Geometry compression

By using an attribute array, we still have to encode additional off-
sets in the DAG structure, which increases its size. We propose to
reduce the DAG’s memory consumption by compressing the intro-
duced offsets, as well as the child pointers, which typically make
up a large part of the total memory usage.
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Figure 4: Datasets used for evaluation. From left to right: citadel, city, San Miguel and arena.

Offset compression We observe that the offset from a node to its
first child is always +1 (see Fig. 2), implying that this offset can
be stored implicitly. Further, offsets are typically small in the lower
levels of the tree due to the depth-first assignment. Hence, fewer
bits are required to represent the offset. To this extent, we analyze
each level and find the minimum number of bits required to encode
offsets in this level. We round up to bytes for performance reasons,
as a texture lookup on the GPU retrieves at least a single byte. In
practice, a two-byte offset is sufficient for the lowest five levels
in all our examples, leading to a significant improvement. Four or
even five bytes are still required for offsets on the highest levels,
but these represent much fewer nodes (≈ 0.1%), which makes the
increased memory usage non-critical.

Pointer compression We apply the same compression technique
as for the offsets to the child pointers as well. While this leads to a
slight improvement, the compression does not work as well as for
offsets, since the levels that contain most pointers generally require
the full four bytes per pointer. However, we observe that some sub-
trees are used significantly more often than others, which makes
entropy encoding [BRGIG∗14] a well-suited candidate for mem-
ory reduction. We create a table of the most common pointers per
level – much in the spirit of our material array in Sec. 4.2 – which
is sorted by occurrence in descending order. In the DAG, we then
store only an index into the pointer table, which is usually smaller
than the original pointer and can be represented with fewer bits.

In practice, we found the following setup to be most effective:
each pointer is initially assumed to be one byte. Its first two bits
store the type, which then indicates the pointer’s actual bit length.
Two bits can encode four types; the first three are used to indicate if
6, 14, or 22 bits are used to encode a pointer into the lookup table,
and the last type is reserved to indicate that the remaining 30 bits
correspond to an absolute pointer (as before, this ensure multiples
of bytes). The latter could also be increased to 46 bits, but 30-bit
pointers proved sufficient for the DAG nodes in all our examples.
While we achieve significant compression with the entropy encod-
ing, it does decrease the performance, as evaluated in Sec. 5.

5. Results

Our method aims at large sparse navigable scenes. For evaluation,
we deliberately choose a set of very distinct datasets (see Fig. 4):
architectural structures (the citadel and city scene); complex ge-
ometry (tree and plants in the San Miguel scene); and a 3D model
obtained from real-life photographs using floating-scale surface re-
construction [FG14] (arena scene), which is noisy, contains diverse

Table 1: Decoupling and palette compression. The numbers are
computed for a 64K3 resolution (16 hierarchical tree levels) using
non-quantized, 24-bit colors for the attributes.

Scenes

Geometry Citadel City San Miguel Arena

DAG voxels (M) 18.3 10.2 18.8 34.7

DAG size (MB) 382 207 395 737

With offsets (MB) 693 374 719 1342

24-bit colors

Λ (M) 4760 10487 14788 3263

λ (M) 1.66 1.42 3.15 1.57

A (MB) 13619 30004 42309 9336

Ã+M (MB) 11922 26257 38792 8174

PC (MB) 10124 24051 10877 2220

Compression rate 74% 80% 26% 24%

colors, and is a good test case for a realistic dataset. The datasets
were produced by voxelizing triangle meshes through depth peel-
ing [Eve01], using the standard extension proposed by Heidel-
berger et al. [HTG03]. While our compression schemes can handle
any spatially coherent data, in practice, we evaluate our method us-
ing colors and normals, which are crucial for realistic lighting. We
define the compression rate as the memory size of the compressed
data over that of the uncompressed data, expressed as a percentage.

In the following, we discuss the results of our compression com-
ponents separately as described in Sec. 4. Starting with the palette
approach, we then analyze the gain of lossless and lossy compres-
sion, and present the results of our offset and pointer compression.
Next, we compare our approach to existing techniques. Finally, we
present results to illustrate the performance of our method and dis-
cuss its properties before showcasing several application scenarios.

5.1. Decoupling and palette compression

We show statistics for the DAG-based geometry encoding and the
attribute array for our four test scenes in Tab. 1. We list the number
of DAG voxels in millions, as well as the memory footprints in MB
of the standard and offset-augmented version of the DAG, which is
needed to decouple geometry and attributes. The additional offset
and pointer compression is analyzed in Sec. 5.3.
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Table 2: Attribute quantization memory footprints and quality. The
numbers are computed for a 64K3 resolution using 24-, 14- and 12-
bit colors, and for a 32K3 resolution using 32- and 12-bit ONVs.

Scenes

24-bit colors Citadel City San Miguel Arena

A (MB) 13619 30004 42309 9336

14-bit colors

PC (MB) 3645 8163 4495 656

Mean RGB err. 2/1/2 2/1/2 2/2/2 2/1/2

Max. RGB err. 20/4/5 6/7/7 9/26/11 34/5/4

Mean ∆E 1.05 0.91 0.80 0.90

Max. ∆E 2.57 2.44 3.00 2.36

Comp. rate 27% 27% 11% 7.0%

12-bit colors

PC (MB) 2609 5703 3099 438

Mean RGB err. 3/2/3 3/2/3 3/2/3 3/2/3

Max. RGB err. 10/7/29 11/12/11 11/9/25 48/5/3

Mean ∆E 1.72 1.60 1.47 1.75

Max. ∆E 4.25 3.85 5.28 4.38

Comp. rate 19% 19% 7.3% 4.7%

32-bit ONVs

A (MB) 4496 9994 14081 3110

PC (MB) 912 417 2678 2151

Comp. rate 20% 4.2% 19% 69%

12-bit ONVs

PC (MB) 135 85.9 407 464

Mean/max. err. 2◦/8◦ 2◦/8◦ 2◦/8◦ 2◦/8◦

Comp. rate 3.0% 0.9% 2.9% 14%

Further, Tab. 1 shows the number of attributes Λ, which equals
the SVO node count, and the number of unique attributes λ, both
in millions. The memory size in MB of the attribute array (indi-
cated as A) exceeds that of the DAG by far. Still, λ is usually much
smaller than Λ; indeed, the memory cost of the attribute array can
already be decreased by using a material array (indicated as Ã+M).
Using our palette compression (indicated as PC) reduces the cost
again; we report the compression rate by comparing to the origi-
nal attribute array A. While overall significant, the use of a lossless
scheme seems overly conservative in most practical scenarios and
implies that even very similar attributes will have to be represented
individually. By allowing for a slightly lossy quantization, the at-
tribute costs can be reduced significantly.

5.2. Attribute quantization

Data quantization might impact precision, but leads to an often sim-
ilar appearance and a large memory benefit. In Tab. 2, we show the
size of the attribute array for 24-bit colors again, and the drastic

memory gain of our result using palette compression and quantized
colors (14 and 12 bits). To assess the fidelity of our quantization,
we report the mean absolute error for each RGB channel over all
voxels, as well as the maximum deviation. However, since these
numbers do not always give a good impression of perceptual qual-
ity, we further report mean and maximum ∆E-values as defined by
the CIE94 standard. We use kL = 1, K1 = 0.045 and K2 = 0.015
and the D65 illuminant as the reference white, as per graphics in-
dustry standards [Kle10]. Finally, we show the compression rates
obtained with our palette approach for quantized colors.

To illustrate the impact during rendering, Fig. 5 shows images
from two viewpoints in the citadel scene. These exhibit many
unique values, as well as color and normal gradients, which rep-
resent a difficult case for quantization. We provide SSIM values (a
perceptual similarity metric, where SSIM = 1 means identical) for
every image [WBSS04], comparing the result to its non-quantized
counterpart. We note that 14-bit colors produce very good results,
and even for 12-bit colors the only indication of quantization is the
presence of minor banding artifacts at some locations. For 10-bit
colors the quality is reduced, as evidenced by the color difference
image, but the result is still relatively close to the reference.

Similarly, we report memory footprints for normals in Tab. 2.
We consider a 32K3 resolution with 32-bit ONVs as a reference,
since 96-bit normals at 15 levels could not be handled by our hard-
ware, and the mean error for 32-bit ONVs compared to regular
96-bit normals is only 0.001◦, with a theoretically proven max-
imum error below 0.004◦. For quantization, we use 12-bit ONVs,
for which we report mean and maximum errors in degrees and show
the attained compression rates. As expected, normals compress bet-
ter than colors for scenes that contain many aligned surfaces, like
the city scene. Visually, 16-bit normals produce results indistin-
guishable from the 32-bit reference while 12-bit and 10-bit normals
produce minor and more visible banding on smoothly varying sur-
faces, respectively (see Fig. 5). Nonetheless, for diffuse shading,
such artifacts are barely perceivable and even 10 bits may suffice.
For effects like specular reflections, 16-bit normals are preferred.

Tab. 1 and 2 show that the memory footprint of the attributes is
now potentially compressed to a similar order of magnitude as the
geometry. We can see that the combined use of quantization and
our palette compression is very fruitful in practice.

Furthermore, combining colors, normals or even reflectance in-
formation rarely leads to a linear increase of memory. For example,
the night-time version of the city scene at a 32K3 resolution (Fig. 8,
left) uses 12-bit colors, 10-bit normals, and 8-bit reflectance in-
formation. The total memory footprint is 1492 MB, compared to
1186 MB for just encoding colors. This means that the normals
and reflectance information yield a 25.8% overhead, even though
the voxel data grew by 150%. This outcome is a consequence of
materials with similar colors often having similar normals and re-
flectance values as well (e.g., a roughly uniformly colored wall).

5.3. Offset and pointer compression

To evaluate our geometry compression, we compare the effect of all
our offset and pointer optimizations separately. In Tab. 3, we reiter-
ate the memory footprint of the standard offset-augmented DAG (as
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Figure 5: Perceptual quality of our color and normal quantization. We show the quantized result for 14-bit, 12-bit and 10-bit colors, with
their corresponding magnitude of the color difference (i.e.,

√
dR2 +dG2 +dB2) per pixel. We do the same for quantized normals, showing

the results for 16-bit, 12-bit and 10-bit normals. The difference values are mapped using the color map on the right, where a difference of 10
corresponds to a bright yellow color. We further report SSIM values for each image to assess the perceptual similarity [WBSS04].

Table 3: Offset and pointer compression for a 64K3 resolution.

Scenes

DAG size (MB) Citadel City San Miguel Arena

Uncompressed 693 374 719 1342

Implicit offset 623 335 647 1210

Offset compression 499 271 505 907

Pointer compression 629 330 623 1228

8-bit childmask 641 345 665 1243

Pointer entropy 543 290 531 1027

Combined 348 186 316 591

Compression rate 50% 50% 44% 44%

in Tab. 1). We then report results for implicitly storing the first child
offset; the per-level byte-precise offset compression; the per-level
byte-precise compression for pointers; 8-bit childmasks (the origi-
nal DAG uses 24 bits of padding); pointer entropy encoding; and,
finally, a combination of all these techniques, for which the shown
compression rate compares to the standard offset-augmented DAG.

We can see that our approach is quite effective, as we observe
that the final memory footprint is on par or even less than the mem-
ory cost of the original DAG without the offsets (see Tab. 1).

5.4. Comparison

Now that we have discussed all components, we can compare our
compression scheme to existing techniques. As we use 12-bit col-
ors for the comparison, the memory footprint of our complete data
structure now equals the geometry size for the combined meth-
ods in Tab. 3 plus the attribute size for 12-bit colors in Tab. 2.
We compare the cost per voxel of our approach to four other
techniques; SVOs, PSVOs [SK06], ESVOs [LK10], and CDAGs
(naively adding colors to the original DAG [KSA13]).

For the standard SVO implementation, the memory footprint is
computed as follows: we have an 8-bit childmask, a 32-bit pointer,
and a 12-bit color value for every node – note that the leaf nodes
have no childmask or pointer. The PSVO contains exactly the same
data in every node, except for the child pointer.

Besides voxel attributes, ESVOs store additional contour data,
but also make use of compression. For color, a DXT1 compression
is used while normals are compressed using a novel scheme, which
is also lossy, but provides up to 14 bits of precision per axis. In this
section, we report ESVO memory footprints as obtained by using
the implementation supplied by the authors, which makes use of
the aforementioned attribute and contour-based compression.

Finally, we have the original DAG [KSA13], augmented with
color data, so that every node contains a 32-bit childmask, one to
eight 32-bit pointers, and a 12-bit color value (CDAGs).

For a direct comparison of our attribute compression to that used

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



B. Dado, T. R. Kol, P. Bauszat, J.-M. Thiery & E. Eisemann / Geometry and Attribute Compression for Voxel Scenes

SVO levels SVO levels SVO levels SVO levels

By
te

s 
pe

r v
ox

el

10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16
0

1

2

3

4

5

6
SVO
PSVO
ESVO
CDAG
Ours

Citadel City San Miguel Arena

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Figure 6: Memory usage per voxel for our test scenes at different SVO levels. We compare our approach to a colored SVO, PSVOs [SK06],
ESVOs [LK11] and a naive colored DAG implementation (CDAGs). Note that the ESVO implementation was unable to load the arena scene.

Table 4: Comparison to the state of the art for a 64K3 resolution.

Scenes

Citadel City San Miguel Arena

SVO voxels (M) 4760 10487 14788 3263

Size (MB) 13285 27966 39122 9520

Bytes/voxel 2.93 2.80 2.77 3.06
PSVO size (MB) 8105 17595 24748 5638

Bytes/voxel 1.79 1.76 1.75 1.81
ESVO voxels (M) 1533 2782 1168

Size (MB) 10374 18506 8174

Bytes/voxel 2.29 1.85 0.58
CDAG voxels (M) 286 629 251 117

Size (MB) 5540 11922 4791 2326

Bytes/voxel 1.22 1.19 0.34 0.75
Our voxels (M) 18 10 19 34

Geometry (MB) 348 186 316 591

Attributes (MB) 2609 5703 3099 438

Total size (MB) 2957 5889 3415 1029

Bytes/voxel 0.65 0.59 0.24 0.33
Compression rate 22% 21% 8.7% 11%

by ESVOs, we built the Sibenik scene at a 8K3 resolution. Here,
ESVOs reported a memory footprint of 2120 MB without using
contours [LK10]. Not using contours is important, as, contrary to
geometry, a similar quality as regular colored SVOs can only be
achieved for attributes if they are not cut off during traversal. Fur-
ther, as the data quality for ESVOs is not evaluated, it is difficult to
provide a comparison; hence, we use 24-bit colors and 32-bit ONV
normals for the palette compression, which ensures better quality
than the lossy schemes applied by ESVOs. Our palette compression
is more flexible when compared to the constant DXT1 rate, which
results in only 1171 MB for our entire data structure.

Fig. 6 and Tab. 4 illustrate that our approach outperforms other
methods by a significant margin. We report bytes per voxel for all
techniques, always with reference to the SVO node count. We list

Table 5: Construction times in minutes at different resolutions for
our four test scenes, using the naive colored DAG implementation
and our decoupling and palette compression, with 12-bit colors.

Scenes

Resolution Citadel City San Miguel Arena

4K3 1.60/2.58 0.75/6.01 1.40/5.31 1.08/1.83

8K3 2.65/17.1 2.93/30.3 5.90/22.0 3.13/7.35

16K3 10.8/64.5 13.2/217 20.0/157 10.0/21.3

Frame number

Figure 7: Rendering times while navigating through the citadel
scene at a 32K3 resolution, obtained by raycasting in full HD.

the actual voxel count in millions for SVOs, ESVOs, CDAGs, and
our method separately. We show the geometry and attribute size
separately and combined for our method. Finally, we report com-
pression rates as compared to a standard SVO implementation.

5.5. Performance

Construction As our focus was mostly on compression quality,
not performance, we did not investigate significant acceleration
techniques for the DAG algorithm, nor for our palette compres-
sion. Still, the construction times for building our data structure are
interesting, as they illustrate the computational overhead of involv-
ing attributes. In Tab. 5, we report timings on an i5 CPU in minutes
for both standard colored DAGs (before the slash) and our method

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



B. Dado, T. R. Kol, P. Bauszat, J.-M. Thiery & E. Eisemann / Geometry and Attribute Compression for Voxel Scenes

Figure 8: Several applications of our compressed SVO. From left to right: encoding reflectance information in materials for the city scene,
rendered at a resolution of 32K3; color bleeding in the CrySponza scene, at an SVO resolution of 4K3, using 16 samples per pixel, and
secondary and tertiary ray tracing at a 5123 resolution; rendering of a dense dataset of a Christmas tree at a 512×512×999 resolution.

(after the slash); for the latter, we see an increase up to an order of
magnitude. Still, it is feasible to compute high-resolution scenes on
commodity hardware, and the slow construction does not hurt per-
formance during rendering. The construction time depends mostly
on the number of compression attempts that our algorithm explores;
if large blocks are already found in the first phase, as for the arena
scene, the cost of the palette compression is significantly reduced.

Rendering We did not particularly optimize our rendering algo-
rithm; in each frame, we cast rays from the camera and traverse the
SVO with a standard stack-based approach to find the first inter-
secting voxel that projects to an area smaller than a pixel. To still
demonstrate that our method is capable of real-time performance,
Fig. 7 shows timings for a walk-through in the citadel scene in
full HD at a 32K3 resolution, obtained using an NVIDIA Titan X.
We compare the rendering times for palette compression, per-level
byte-precise offsets, and using all our compression techniques, to
naive colored DAGs (CDAGs). We can conclude that palettes and
offset compression have some impact on the performance, but still
enable real-time rendering while yielding significant compression
rates. The entropy encoding on the other hand has a bigger influ-
ence and we only achieve interactive rates. Still, it can be useful for
memory gain, especially when the geometry is relatively large, like
for the arena scene (see Tab. 4). Further, the rendering cost is sev-
eral orders of magnitude lower than for pointerless solutions while
still avoiding high memory costs.

5.6. Applications

To demonstrate the versatility of our approach, and of SVOs in
general, we showcase several applications. Like the original DAG,
we are able to obtain high-resolution hard shadows for the whole
scene. With normals, however, we can look into more interesting
applications, such as reflections, by shooting secondary rays while
maintaining real-time performance (Fig. 8, left).

We have also implemented a simple approach to color bleed-
ing through single-bounce global illumination (Fig. 8, middle). We
shoot multiple secondary rays via stratified sampling of the hemi-
sphere – which means the samples are uniformly distributed, but
contain a random offset – and then shoot tertiary rays from the

intersecting voxels to determine if they are in shadow. We attain
interactive rates with 8 secondary rays per pixel.

Since our method, like the DAG, exploits both similarity and
sparsity, we can to some extent compress dense data as well (Fig. 8,
right). For the shown Christmas tree, we are able to obtain a loss-
less compression rate of 38.6% when comparing our complete data
structure to the original input file, which is approaching state-of-
the-art methods for dense datasets (29.4%) [GWGS02]. When ap-
plying a simple filtering to remove scanning noise in the air, we
additionally profit from the sparsity and achieve rates below 10%.

6. Conclusions

We have presented a novel SVO compression scheme, which re-
lies on the decoupling of geometry from additional voxel data. Our
mapping is efficient and introduces little overhead, enabling sepa-
rate compression methods for topology and voxel attributes. Fur-
thermore, we introduced compression schemes for child pointers,
which also reduces the cost of traditional DAGs. For attribute com-
pression, we proposed a combination of our quantization and our
lossless palette approach, which implicitly exploits spatial coher-
ence. We showed that our solution reduces memory usage from
4.49 times (for the citadel) up to 11.5 times (for San Miguel) com-
pared to standard SVO implementations. Our method outperforms
state-of-the-art SVO compression methods for all test scenes.

The high compression rates allow us to store colored SVOs
with up to 17 levels (a voxel resolution of 128K3) completely on
the GPU. We demonstrated real-time rendering performance using
commodity hardware and showcased several applications such as
color bleeding and reflections, for which additionally normal and
reflectance attributes were encoded.

For future work, investigating more advanced material properties
for the voxel data (e.g., BRDFs encoded via spherical harmonics or
transparency values) are interesting directions.
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