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Abstract. In this paper, we propose a new geodesic based algorithm
for diffusion tensor fiber tracking. This technique is based on comput-
ing multi-valued solutions from the Euler-Lagrange form of the geodesic
equations. Compared to other geodesic based approaches, multi-valued
solutions at each grid point have been considered other than just com-
puting the viscosity solution. This allows us to compute fibers in a region
with sharp orientation, or when the correct physical solution is not the
fiber computed from the first arrival time. Compared to the classical
stream-line approach, our approach is less sensitive to noise, since the
complete tensor is used. We also compare our algorithm with the PDE
approach, using the Hamilton-Jacobi equation. We show that in the cases
where the U-shaped bundles appear, our algorithm can capture the un-
derlying fiber structure while other approaches may fail. The results for
a realistic synthetic data field is shown for both methods.

Keywords: Geodesic, Diffusion tensor images, Fiber tracking, Hamilton-Jacobi
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1 Introduction

Diffusion tensor imaging (DTI) is the first non-invasive technique for recon-
structing the underlying white matter bundles inside the brain [1]. Numerous
algorithms have been introduced for reconstructing fiber bundles from DTI. In
the classic fiber tracking algorithm, the fiber bundles are generated by using
the principal direction of the diffusion tensor. Here, the fiber tracking stops if
there is a sharp turn in the trajectory or when the fiber enters a region of low
anisotropy. However, due to acquisition noise these methods may fail to track
fibers; see Jun et al. [2].

Another class of algorithms is based on the front propagation algorithm using
full tensor information. In these techniques the geodesic is computed in a Rie-
mannian manifold by defining the metric as the inverse of the diffusion tensor.



The standard eikonal equation is solved by applying the connectivity measure-
ment as a cost function. In early publications, the cost function is based on
the diffusion tensor similarity measurements and the front is evolved with the
proportional speed between the front normal and the tensor dominant eigen-
vector. However, this is prone to incorrect propagation in anisotropic domains;
see Parker et al. [3]. Jackowski et al. [4] represent the anisotropic cost function
for front propagation, which is suitable for oriented domains. The propagation
speed of the front is given by the diffusivity rate in the normal direction of the
front; the fibers are extracted by backtracking the characteristics of the front
rather than the normal.

The recent trend is to use high angular resolution DTI rather than regular
DTI. Melonakos et al. [5] introduce geodesic fiber tracking by including the
diffusivity direction in the cost function definition. Since the Riemannian metric
is restricted to ellipsoidal profiles, the Finsler metric is used. The cost function to
be minimized satisfies the solution of the steady Hamilton-Jacobi (HJ) equation.
In this paper, we develop an algorithm for correcting geodesic fiber tracking for
the second order diffusion tensor, which is still most commonly used.

One characteristic of the HJ equation is that it gives only the single-valued
viscosity solution corresponding to the minimizer of the cost function. It is also
well-known that the solution of HJ equation can develop discontinuities in the
gradient field. These discontinuities happen when the correct solution becomes
multi-valued. Therefore, developing the algorithm that can tackle these issues
becomes important. Parker et al. [6] shows that some structures (e.g., Broca and
Wernicke) have multiple path connections. Moreover, Jbabdi et al. [7] show that
the U-shaped fibers correspond to the short association tracts, which can not be
captured by HJ-based algorithms.

In this paper, we present a new algorithm for geodesic based fiber tracking
that can tackle problems appearing in fiber tracking using HJ-based methods.
Our algorithm solves the Euler-Lagrange (EL) form of the geodesic equations,
using well-known Ordinary Differential Equation (ODE) solvers. This allows us
to capture multi-valued geodesics connecting two given points. The EL frame-
work gives us more insight into the local structure of the field. Therefore, in grid
points where discontinuities or multi-phase solutions appear, all solutions can be
captured. Once all geodesics are computed, one can filter out weak connections,
using existing connectivity measures; see Sepasian et al. [8] and Astola et al. [9].

2 Related Work

Let us start with the linear wave equation, i.e.,

ϕtt(x, t) = c(x)2∇2ϕ(x, t), (1)

where c(x) is the local wave speed. The solution of (1) can be approximated by
a simple wave of the form,

ϕ(x, t) ≈ A(x, t)eiωu(x,t), (2)
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Fig. 1. The example of differences in computed solutions of wave propagation using
different methods. a) Correct solution, b) Eikonal equation, c) Ray tracing

where, A is an amplitude, ω is a frequency, and u(x, t) is a phase function.
Level curves of ϕ correspond to wave fronts. Locally, the generic solution of
(1) is the sum of solutions like (2). Generally speaking, this setting only breaks
down at a few points, such as focus points, caustics and discontinuities in the
gradient field. For the level set equation, this discontinuity appears where the
correct solution becomes multi-valued, see figure 1. Therefore, in such points the
viscosity solution does not always agree with the correct physical solution and
it always picks out the solution corresponding to the first arrival time.

The phase function u(x, t) in (2) satisfies the nonlinear HJ type equation,

ut + c(x) | 5u |= 0, (3)

where | . | denotes the Euclidean norm in Rd. This equation may develop the
multi-valued solution when two fronts collide. Those regions are called shocks.
Therefore, the viscosity solution is needed to ensure the existence and uniqueness
of the solution.

In DTI fiber tracking, the propagation of the front in an anisotropic field is
considered. Different methods have been derived based on the level set equation.
One of the popular methods is using the diffusion tensor as the inverse of the
Riemannian metric. For the sake of completeness, we start with the definition of
the metric in Riemannian geometry. For a d-dimensional manifoldM, a Rieman-
nian metric is the collection of inner products < ., . >p defined for every point
p on M. These inner products denote the tangent space TpM of M at p and
provide the natural way to measure the length of tangent vectors to M at each
location p. The tangent space TpM is a d-dimensional real vector space, attached
to p, which contains all the possible directions of curves passing through p. Any
element of the tangent space is expressed as

∑
xi ∂

∂xi
i , where ∂

∂xi are the basis
vectors. Then the inner products < ∂

∂xi ,
∂

∂xj > yield a d×d symmetric, bilinear,
positive definite form G = (gij), known as the Riemannian metric. Therefore,
the inner product of two tangent vectors u and v in TpM is expressed as

< u, v >p= uT Gv.

Once the metric is defined, the notion of geodesic on a Riemannian manifold M
can be determined, as defined by Lenglet et al. [10].

A geodesic between two points is the smooth curve whose length is the min-
imum of all possible lengths. In terms of variational calculus, the geodesic x(τ)



connecting two point x0 = x(0) and xJ = x(J) is the curve minimizing the
functional,

L(x) =
∫ T

0

√
ẋGẋ dτ. (4)

The functional (4) satisfies both the HJ and the EL equation. They both give the
geodesic equation as result, although using the HJ equation gives more global
insight into the structure of the manifold. Concerning the local coordinates on
M, the EL geodesic equation is derived. For details we refer to Runborg [11].

There are several choices possible for the Hamiltonian. Jackowski et al. [4]
introduced the Hamiltonian

H(x, p) =
piGijpj√

pkpk

. (5)

Applying (5), the steady HJ equation is derived. The steady HJ equation is
solved by applying the wave front propagation algorithm using the Lax-Friedrichs
scheme. In the other well-known approach, Parker et al. [3] and Melonakos et
al. [5] derived the geodesic equation by minimizing,

H(x, p) =

√
∂ϕ

∂x

i

Gij
∂ϕ

∂x

j

, (6)

where Gij is the inverse of the Riemannian metric on the manifold. Recall that
in our case it is the inverse of the diffusion tensor.

Notice that the wave front propagation approach solves the propagation of
the fronts using (5), where the momenta are always perpendicular to them. Here,
the wave equation is obtained from a local approach. A wave propagates accord-
ing to Huygens’ principle, where every point acts as a source. Thus, the fronts of
the wave will evolve by locally propagating in every direction according to the
diffusion tensor. The influence of the data in the entire domain will be limited.
The optimal paths obtained from this approach can be interpreted as a general-
ization of the original streamline technique where the fiber evolves corresponding
to a minimum of (4).

On the other hand, Hamiltonian (6) is obtained by means of a variational
formulation that considers the entire domain and complete data to calculate the
optimal curves. The resulting optimal paths will be those that globally minimize
the cost, thus obtaining those minimizing the diffusion along the trajectory.

Both methods are robust to noise and can connect the initial point to any
point inside the domain. Unfortunately, it is not clear which of both methods
mentioned above suits better the real structures. Further research with validation
on real structures should be done to check which of the methods is the most
suitable in following fibers in the brain.

Recently, Sepasian et al. [8] introduced a new algorithm for geodesic fiber
tracking using the EL approach. To find the geodesic connecting two given points
on the boundary, the geodesic equation is derived in spherical coordinates, which
reduces the number of ODEs to five, instead of the standard six first order ODEs.



The solution of this new system of ODEs is solved by the two-point ray tracing
method. This approach is properly dealing with the position when multi-valued
arrival times occur. However, the work is represented only for unrealistic two-
dimensional synthetic data fields and one can show that the high-index derivation
for three dimensional applications can lead to a Differential Algebraic Equations
(DAE), which are computationally expensive to solve; see for example Brenan
et al. [12].

3 Governing Equations

A geodesic connecting a pair of points on a Riemannian manifold is minimizing
the length functional (4). Let x(τ) = (x1(τ), x2(τ), x3(τ))> be a point on a
geodesic, where τ is a parameter along the geodesic. The solution to (4) satisfies
the following system of three second order ODEs:

Ẍγ + Γ γ
αβẊαẊβ = 0, for γ = 1, 2, 3, (7)

where Γ γ
αβ are the Christoffel symbols given by

Γ γ
αβ =

1
2
[gγσ

( ∂

∂Xα
gβσ +

∂

∂Xβ
gασ − ∂

Xσ
gαβ)]. (8)

Here gγσ represent the matrix component of G−1 and gαβ the ones of G. In
our application the metric G is the inverse of diffusion tensor D. Let us define
uγ(τ) := Ẋγ(τ) for γ = 1, 2, 3, then we can rewrite equation (7) as follows,

Ẋγ = uγ ,

u̇γ = −Γ γ
αβuαuβ . (9)

Consider the point (x1
0(τ), x2

0(τ), x3
0(τ)) as the given initial point in the do-

main and (u1
0(τ), u2

0(τ), u3
0(τ)) as an initial direction. We compute the solution

to (9) for the given initial position and multiple initial directions using sophisti-
cated ODE solvers, such as fourth order explicit Runge-Kutta. This gives us the
set of geodesics connecting the given initial point to some points on the bound-
ary. Depending on the application, two different post-processing approaches are
possible. The first post-processing approach refers to applying the two-point ray
tracing algorithm proposed in [8] in order to find the geodesic connecting two
given points inside the domain. The second approach is to filter out the captured
geodesics by applying connectivity measures. Here, we focus on the latter case.

The connectivity measure is used for finding a suitable trajectory correspond-
ing best to real fiber bundles. We apply these measures in order to filter the
geodesics, which are not holding strong connections between points on the do-
main. Since the fibers correspond to the geodesics connecting a pair of points in
the Riemannian manifold, the most reasonable connectivity measure is the one
that minimizes trajectories in a Riemannian manifold.

In recent papers, Astola et al. [9] and Parker et al. [13] represent the connec-
tivity measures as ratio of lengths given by the Euclidean and Riemannian metric



tensors. This measurement can be considered as a measure for the connection
strength of a geodesic. The proposed measure reads,

mL(x) =

∫ T
0

(Ẋ> Ẋ)1/2 dτ
∫ T
0

(Ẋ>GẊ)1/2 dτ
. (10)

Note that locally, in anisotropic voxels this measure gives the maximum in the
direction of the eigenvector corresponding to the largest eigenvalue; see Astola
et al. [9].

4 Numerical Model

4.1 Discretization

The computational domain is discretized uniformly with grid size h = 1 mm
and grid points Xi = ih for i = 1, 2, 3, . . . , N where N is number of grid points
in each direction. We label each grid point with a 3× 3 tensor Gijk = D−1

ijk.
We approximate the metric derivatives at each grid point by using finite

difference scheme such as the second order central scheme, i.e.,

∂gβσ

∂x1
(x1

i , x
2
j , x

3
k) ≈ 1

2h

(
gβσ(x1

i + h, x2
j , x

3
k)− gβσ(x1

i − h, x2
j , x

3
k)

)
. (11)

Second order one-sided differences are applied when the grid points are situated
on the boundary, i.e,

∂gβσ

∂x1
(x1

0, x
2
j , x

3
k) ≈ (12)

1
2h

(− 3gβσ(x1
0, x

2
j , x

3
k) + 4gβσ(x1

1, x
2
j , x

3
k)

)− gβσ(x1
2, x

2
j , x

3
k),

∂gβσ

∂x1
(x1

0, x
2
j , x

3
k) ≈ (13)

1
2h

(
3gβσ(x1

N , x2
j , x

3
k) + 4gβσ(x1

N−1, x
2
j , x

3
k)

)
+ gβσ(x1

N−2, x
2
j , x

3
k).

Note that similar expressions hold for derivatives with respect to X2 and X3.
We apply trilinear interpolation for computing Christoffel symbols at any grid
point on the domain.

4.2 Results

In this section we compute a geodesic for a discrete three-dimensional synthetic
tensor field. Isotropic tensors are imposed as background excluding the influ-
ence of noise. In order to mimic real DTI acquisition, Rician noise is added to
the 30 × 50 × 50 synthetic image with 1 × 1 × 1 mm voxel size. For comput-
ing Rician noise, the signal attenuation is obtained for the noiseless diffusion
tensors using the inverse of the Stejskal-Tanner relation, see [14]. The noise is
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Fig. 2. Geodesic computed using HJ equation (a) and ray tracing algorithm (b).

added to each direction value with SNR = 15.3 and the tensors are recom-
puted. Let us define the curved region as R1 and the background as R2, then
tensors belonging to each region are computed with realistic eigenvalues, i.e.,
λR1 = [3, 17, 17] × 10−4 mm2/s, and λR2 = [7, 7, 7] × 10−4 mm2/s. Figure 2
shows the results corresponding to the U-shaped fiber using the HJ equation in
2a and ray tracing algorithm 2b. In order to find the best corresponding fibreous
structure, the geodesic is computed by shooting rays from an initial point to
all possible directions. Using connectivity measure (10) we select the strongest
connection with the largest connectivity value.

5 Conclusion

In this paper, we have presented the geodesic based method for fiber tracking in
diffusion tensor images. We reformulate the Euler-Lagrange form of the geodesic
equation for three-dimensional metric-warped space and apply the ray tracing
method to compute the solution. This new algorithm allows us to have more
control over local orientation inside the domain. Moreover, there is no super-
position principle for the Hamilton-Jacobi equation and the viscosity solution
does not necessarily agree with the correct physical solution when multiple wave
front arrivals occur in one position. While, in our approach by taking advan-
tage of the EL form of geodesic equation that holds the superposition principle
the multi-valued solutions can be captured. Results for realistic synthetic data
has been shown for both HJ based fiber tracking and our proposed ray trac-
ing algorithm. We show the potential of our method for capturing the correct
tract corresponding to the underlying fiber structure. Assuming the reasonable
cost for going through the correct fiber tract is a ratio between the Riemannian
and the Euclidean length of the trajectory, we show that in the HJ approach
the fiber tracking can collapse when the Euclidean and Riemannian lengths are
proportional.



We are interested in generalizing the algorithm for fiber tacking to higher
resolution DTI, such as HARDI. Furthermore, we would like to extend the nu-
merical scheme to overcome the diverging rays that may occur during the com-
putations. Finally, since fibers can be computed independently, the algorithm is
highly suitable for parallel computations.
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