
TGCV JOURNAL, VOL. X, NO. Y, AUGUST 2014 1

Temporal Video Filtering and Exposure
Control for Perceptual Motion Blur

Michael Stengel, Member, IEEE, Pablo Bauszat, Martin Eisemann,

Elmar Eisemann, and Marcus Magnor

Abstract—We propose the computation of a perceptual motion blur in videos. Our technique takes the predicted eye motion into

account when watching the video. Compared to traditional motion blur recorded by a video camera our approach results in a

perceptual blur that is closer to reality. This postprocess can also be used to simulate different shutter effects or for other artistic

purposes. It handles real and artificial video input, is easy to compute and has a low additional cost for rendered content. We

illustrate its advantages in a user study using eye tracking.
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1 INTRODUCTION

When observing a scene, we tend to track features
to resolve details. In contrast, this tracking leads to
a perceived blur of the non-tracked background. A
similar observation holds for cameras which exhibit
motion blur based on exposure time. When watching
a video, the recorded motion blur does not necessarily
reflect the expected perceived blur. Especially on a
large display, additional eye movement influences
perception and can result in visible artifacts such as
ghosting, judder, edge banding and a significant loss
of detail.

Composition, motion, aperture, focus, gain, and ex-
posure time are well-known parameters to artistically
influence video recordings [1]. Especially exposure
time is an important element as it is inherently related
to frame rate. Short exposures lead to discontinuous
motion (strobing effects), while a longer exposure
creates motion blur, resulting in detail loss [2]. Blur,
also in the context of depth of field, can be of signif-
icant importance for artistic purposes, for example,
to attract attention [1, p. 299], [3, p. 51], to increase
motion perception and liveliness [2, p. 129], or to serve
in story telling [3, p. 62].

It must be realized that perceived blur in the real
world will always differ from camera-recorded blur.
One of the major reasons is that we as humans tend
to track the interesting elements in the scene whereas
a video camera does not necessarily follow the same
object. Consequently, eye motion and camera motion
differ, and so does the corresponding motion blur.
For example, vertical eye movement induces vertical
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motion blur, but if the camera was panning left,
horizontal motion blur was recorded. Especially for
larger screens and low frame rates, this mismatch can
result in visible artifacts.

Additionally, hold-type blur might occur due to
a mismatch between the continuous eye movement
when tracking an object on the screen and discontin-
uous movement of the target due to limited frame
rate. The latter can be very confusing as the human
visual system (HVS) expects tracked objects to appear
sharper than non-tracked objects. For sharp images
recorded at the traditionally used low frame rate
(LFR) for movies being 24 Hz, this condition is not
fulfilled due to the hold-type blur.

Current high frame rate (HFR) videos, with a typ-
ical frame rate of 48 Hz to 60 Hz, reduce recorded
motion blur and hold-type blur, leading to sharper
perceived images. For this reason, they have be-
come popular in the consumer market; specialized
upsampling techniques are integrated into standard
TV equipment, and high frame rate movies are being
explored by movie directors (e.g., The Hobbit). Nev-
ertheless, the consequences are not always beneficial.
An HFR video must be recorded at lower exposure
times and, because there has to be a minimal time
to store a frame (or to open the shutter), usually
only 60% of the overall time is captured on film [3].
Temporal replicates caused by the high sampling rate
and perceivable as shifted ghost images may appear.
Some viewers even reported perceiving a distracting
speedup of the video [4]. For this reason, recent HFR
television shows such as Video Game High School added
hand-tuned blur to some scenes, thereby removing
many of the details. Such solutions are rather ad-hoc
and not always successful.

Whether considering motion or hand-created blur,
the blur does not lead to the expected perceptual
blur induced by eye movement. Even a frame rate
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of 120 Hz—far beyond the 48 Hz used in current HFR
movies—is insufficient to allow for natural perception
of blur, not to mention the high bandwidth require-
ments and lack of support by current displays [5]. To
remove the camera induced motion blur, we would
require an infinitely high frame rate. Hence, we be-
lieve the only practical solution is to include the
respective eye motion into the blur model and create
a displayable lower frame rate video from an ultra-
high frame rate video (UHFR) including the expected
eye motion. We use the term UHFR to depict videos
with a frame rate higher than 1000 Hz.

In this paper, to solve these problems, we show how
to adapt exposure and motion blur in a postprocess
taking eye motion into account. We propose a model
to explain the perception of a scene with a standard
video camera and the HVS (Section 3) and show that
the camera itself is a insufficient approximation of
human perception when content is tracked in the
image plane by the observer (Section 4). We then
derive a filtering technique that takes predicted eye
motion into account, which leads to a more faithful
image reconstruction on the retina (Section 5). Our
solution can be used to artistically manipulate frame
rate and exposure time in a postprocess, which goes
beyond the possibilities of a standard camera.

Specifically, we present the following contributions:

• a model for perceived motion blur
• an estimation of eye movement and correspond-

ing filtering process for a more faithful retinal
image

Our approach results in a variety of benefits and
applications, including downsampling for real world
and CG generated UHFR videos, virtual shutter simu-
lation, motion stills generation, subtle gaze direction.
Our technique is applicable to high-speed footage as
well as traditional LFR camera output (24–30 Hz) or
synthetic content and leads to improvements in per-
ceived video quality (Section 6). For rendered scenes,
we also show that our solution does not necessarily
require higher computation times. The benefit of our
approach for subtle gaze direction are illustrated in a
user study.

2 RELATED WORK

Shutter and exposure are usually controlled during
the capture process. In contrast, our work modifies
these parameters in a postprocess. Our contributions
can be seen as a generalization and extension of
synthetic shutter speed [6], which imitates a long
exposure shot by taking a series of short exposure
photographs and aligning them, reducing noise and
camera shake while preserving motion blur. Our fil-
tering also differs from traditional temporal down-
sampling of HFR videos [7] by taking the viewer into
account.

We also draw inspiration from rendering techniques
to simulate shutter effects [8]. Previously, the desired
shutter type had to be chosen beforehand, so that any
change implied a costly reshooting of the scene. We
offer a postprocessing solution and make it possible to
test different shutter types to define the wanted final
appearance. A rolling shutter allows the definition of
exposure time based on an opening of a rotating disc.
By default, an open arc of 180◦ has been established
for 24 Hz shots [2]. Shorter shutters create stuttered
motion, which can be used for artistic purposes (e.g.
45◦, Saving Private Ryan, Gladiator, Three Kings).
A longer exposure (210◦), especially, in combination
with low frame rates (6–12 Hz), creates dramatic blur
effects.

Blur can also help guiding the observer’s gaze. Our
foveal vision contains a high density of cones and
leads to high acuity compared to peripheral vision [9].
The latter is still sensitive to subtle temporal changes,
which can attract the viewer’s attention [10], [11],
which is another motivation to avoid temporal arti-
facts. The HVS is attracted mostly to salient regions.
Special blur and sharpening filters [12], depth-of-field
effects [13], or observer-driven simplification [14] are
good means to accentuate or subdue saliency and to
guide gaze. Our solution also allows us to add such
indications.

Temporal processing influences our blur perception;
strongly blurred (>10 arcmin) moving patterns appear
sharper than their static counterpart, yet for a small
blur (<10 arcmin) stationary edges seem sharper than
moving ones [15]. This observation relates to motion
sharpening. It is not a mechanism that removes blur,
but results from the HVS’s inability to discriminate
whether or not the moving object is indeed sharp [16].
This theory has been strengthened by the fact that
observers tend to match blurred peripheral stimuli
with sharper foveal stimuli [17]. Temporal and spatial
coherence as well as motion contrast are important
factors for the HVS as well as in video saliency [18],
[19]. We, thus, propose to blur the video according
to the predicted/intended eye motion instead of the
camera motion.

Although eye-movements are not known a priori,
[20] report that in natural movies up to 80% of the
subjects look at the same image region. Especially in
Hollywood movies, the coherence was very high due
to camera work and scene cuts. Most likely, target
regions are of high saliency [21], [22]. As our approach
reduces saliency in the areas outside the object of
interest, it can be seen as an extension to those classic
movie techniques to subtly draw attention to specific
regions.

In movie productions, the widest rolling shutter is
usually still limited to 210◦ due to a minimum sensor
read-out time. Consequently, each recording shows
gaps that can result in motion artifacts such as judder
(unsmooth motion) or edge banding being perceived
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short exposure long exposure our result
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Fig. 1: Exposure comparison. Ghosting artifacts can usually be perceived when exposure time or frame rate
are insufficient (left). Longer exposure times (middle) avoid ghosting, but details in the scene suffer due to
motion blur. Further, this blur does not match the expected motion blur of an observer watching the scene.
Our solution (right), is a temporal downsampling method taking eye motion into account and leads to sharp
tracked objects and a consistent motion blur in the rest of the scene. Our method also makes it possible to
subtly guide gaze or for artistic purposes.

as overlapping edge replicas at the border of a moving
object.

It is possible to analyze the required sampling rate
and maximal motion between two images to prevent
these replicas [23]. Alternatively, if supported by the
hardware using a multi-flash protocol that results in
showing a video frame multiple times reduces artifact
visibility at a given capture rate. [24]. Another option
is to employ an appropriate bandlimiting filter [25].
We build upon this observation when constructing an
initial ultra-high frame rate video, free from temporal
artifacts.

3 IMAGE FORMATION MODEL

Here, we describe a model to predict how a scene
and a video are perceived by the human visual
system (HVS). Even though many directors consider
the video camera as the observing eye, watching the
video afterwards does not create a perfect illusion of
viewing the recorded scene as in the real world.

For ease of explanation, let us define the irradiance
that is recorded on the sensor plane of a video camera
is a function S(x, t), where x is sensor position and t
is time. Ideally, the recorded video I would be equal
to S, but it is only a discretized version. We focus on
temporal discretization and assume resolution to be
sufficient, which in natural viewing conditions is often
the case for full-HD content. A frame Ii is described
as

Ii(x) :=

∫ ti+TV

ti

S(x, t)dt , (1)

where the camera shutter opens at time ti and closes
again at time ti+TV . A shorter open shutter would re-
duce the intensity, but we can assume that gain is used
to counterbalance the frame duration. Based on the
common usage of a 180◦ shutter in traditional film-
making the exposure time TV is chosen in accordance
with the simple equation TV = 1/(2 ∗ frame rate).

Analogously, we want to define the retinal image R

via the intensities perceived by the retina. We define
the R for a retinal location x as

Ri(x) :=

∫ ti+TR

ti

S(x+ p(t), t)dt , (2)

where p(t) describes eye’s path due to tracking and TR

is a small period of time over which the information
is integrated by the HVS. TR is refered to as the
critical duration or critical period. The critical duration
is an empirically estimated value which describes for
how long a receptor of the retina counts incoming
photons before an electrical stimulus is triggered for
higher level processing in the retinal ganglion cells.
The critical duration depends on the incoming light
intensity. This dependency is described by Bloch’s
Law of Vision [26] . Bloch’s Law can be expressed
by the simple equation R = L · TR and states that
the product of luminance L and stimulus duration
TR is a constant R as long as the maximum critical
duration of 10–15 ms for cones and 100 ms for rods
is not reached. [27]. Since for photopic vision rods
are fully saturated the perceived information only
depends on the output of cones. Considering these
aspects in Eq. (2) we assume the critical duration TR

to be 15 ms, which is the longest temporal summation
time for cones. p is closely linked to feature tracking—
saccades and tremors can be neglected because smooth
pursuit eye motion allows us to almost perfectly track
targets up to object speeds of about 10 deg/s. Higher
speeds may lead to significant interindividual differ-
ences in perception [28]. The combination of smooth
pursuit eye motion and the integration time of the
HVS also explains hold-type blur [29], which results
from a mismatch between (discontinuous) object mo-
tion on the screen and (continuous) eye tracking. It is
particularly pronounced for low frame rates. For more
details on capture and display of movies in signal
processing terms we refer the interested reader to [30]

Photoreceptors do not move independently but are
fixed on the rigid retina [31]. Hence, we can safely
assume that p is the same for all locations on the
retina. While this is not exactly true (the induced
error depends on eye shape, viewing conditions, and
camera settings), these deviations are negligible for
our purposes.
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Fig. 2: Temporal artifacts. (a) A small object moves horizontally, the eye upwards. (b) Expected perceived
image. (c) Long-exposure recordings with a static camera transform the point in a horizontal streak. (d)
However, due to eye integration, an observer perceives two rectangles, which are only loosely connected,
although they come from the same object. (e) Shorter exposure times lead to temporal artifacts; separate
components are perceived and temporal information is lost. (f) Here, two disconnected rectangles appear on
the retina. (g) High frame rate videos exhibit more frames and less motion blur, which can reduce the problem.
(h) By increasing the frame rate, one can approximate the expected retinal image, but the needed frame rates
are not possible to capture without time gaps, and displaying them is challenging. Our approach makes use
of the eye motion and results in a closer approximation to the expected retinal image (b) for (i) low as well
as (j) high frame rates.

4 BLUR MISMATCH OF CAMERA AND EYE

A typical low frame rate video camera is an imper-
fect substitute for the human eye when an object of
interest (OOI) moves in the image plane. The reason is
that the additional eye movement while watching the
video should have been taken into account during the
recording. Let the duration of the video be equal to the
integration time TR of the HVS which is reasonable
for 30–60 Hz videos [26]. Then, only in the absence of
any eye movement, Eq. (2) is equivalent to Eq. (1), i.e.,
p(t) = 0.

A simple example is shown in Fig. 1. The camera
motion is an off-axis rotation around the OOI result-
ing in both a rotation and translation of the Neptune
statue in image-space. For a short exposure, the OOI
is detailed, but the background exhibits temporal arti-
facts (left). These artifacts appear only on the retina of
the observer; they reveal themselves as an unnaturally
sharp background or even ghosting whenever the
integration time of the eye crosses frame boundaries.
For a long exposure, the OOI suffers from motion blur
(middle).

To explain the temporal artifacts, we consider a
simple scene (Fig. 2); a small object moves horizon-
tally from left to right while the eye tracks an OOI
that moves vertically in the image plane. The correct
integration on the retina should result in a diagonal
line (Fig. 2b). If the camera is static and captures at
a frame rate equal to 1/2 TR the object is smeared
along a horizontal line due to the motion blur of the
object (Fig. 2c). When watching the video, however,
the eye tracks the upward moving object. This eye
movement results in hold-type blur. At each location
of the retina pixels that are crossed are integrated,
resulting in two square-shaped features on the retina,
one for each frame (Fig. 2d).

To reduce motion blur for important objects, a
shorter exposure time can be used, but then some tem-

poral information is lost (Fig. 2e). This leads to per-
ceivable ghosting and features seem to jump (Fig. 2f).
Only when increasing the frame rate (Fig. 2h), hold-
type blur is reduced linearly and, in the limit, con-
verges to zero. Nonetheless, it is difficult to record
videos at such high frame rates without gaps. Also,
displaying the content is challenging due to the nec-
essary high bandwidth. Our temporal downsampling,
explained in the next section, simulates the perceptual
blur of the HVS and delivers a more faithful image on
the retina (Fig. 2i,Fig. 2j).

5 GAZE-GUIDED DOWNSAMPLING

Temporal edge banding or ghosting artifacts in videos
can only appear if the motion between two frames
exceeds one pixel, a result that can be derived from
similar findings for light field rendering [23]. Hence,
although our goal is consistent filtering and temporal
downsampling, if LFR or HFR video footage is given
as input we first transform a given video sequence
into an ultra-high frame rate (UHFR) video IUHFR

indicating a frame rate of 1000+ Hz. This footage is
computed by using an interpolation algorithm based
on image similarity [32]. This upsampling process is
usually robust, but can fail for blurry edges. Fortu-
nately, blurry edges are not very problematic for the
eye integration process [33] and are unlikely to exhibit
temporal edge banding. Nonetheless, to achieve sharp
images, the original exposure time should be low.

If the eye motion p is known or user-defined, the
retinal image R can be computed for any point in
time and any desired integration time TR by integrat-
ing IUHFR along p. More intuitively, this is equal to
translating each frame in the opposite direction of p.
Basically this compensates the eye motion and sets
the spatial components of p to 0. Next, integrating
along the temporal axis and translating the frames
back to their original position results in the filtered
video frames.
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For a perceptionally plausible reconstruction when
temporally downsampling IUHFR, we could proceed
as for apparent resolution enhancement [33], [34], i.e.,
compute the retinal image and optimize the output
video frames such that the integration in the eye
best matches the target image. Nevertheless, because
our output is not necessarily an UHFR sequence,
exploiting eye integration is difficult and we cannot
create frequencies that would cancel out any hold-
type blur.

Instead, we opt for a frame Ri of the output video
sequence via

Ri(x) :=

∫ ti+T

ti

IUHFR(x+ p(t), t)dt (3)

where T is the desired output frame duration (in-
versely related to the frame rate). Hereby, we produce
an image similar to the expected retinal image. As p
is defined via the OOI, this part of the output stays
sharp. Further, when assuming hold-type blur, our
result will stay consistent; non-tracked objects will
consistently be blurrier than the OOI. Our definition
also leads to robustness with respect to eye tracking
because an eye deviation from the intended path will
not introduce additional high frequencies, as could be
the case in [33]. In Section 6, we show that these prop-
erties help us avoid temporal artifacts and improve
perceived quality. Further, the effect is successful in
guiding the gaze of observers.

Saliency-based Temporal Integration Eq. (3) re-
quires the eye’s motion path p to be known, which is
the case for rendered content, or if it was intentionally
created and imposed for artistic purposes. In all other
cases, we need a robust solution to estimate p.

We first compute the saliency A for each frame of
IUHFR [35], with A being normalized to the range [0, 1],
which gives us a direct measure of how probable it
is for a viewer to track a feature in IUHFR. We then
assume p(x, t) is defined by the optical flow Fi→i+1(x)
[32], [36] for any two frames i and i+1 in IUHFR, which
proved successful in related work as well [34], [37].
Nonetheless, it is not a robust solution to simply select
the path p(x) of the most salient x to define the global
p. Instead, we first mark a set of pixels describing the
OOI. The mask is derived from the likelihood of each
pixel to belong to the OOI. Precisely, we look for high
saliency and similar pixel motion [35]. For frame i, we
define the mask Oi as:

Oi(x) := {
1, if ||Fi→i+1(x)−

∑
x
Ai(x)Fi→i+1(x)∑

x
Ai(x)

|| < τ

0, else

In practice, a value of τ = 7 worked well and
was used for all examples. We then set p(ti) to the
movement of the center of masses from Oi to Oi+1.
Additionally, we also allow for manual restriction of
the OOI to regions defined by an optional binary
mask M that is transferred from one frame to the next
via rotoscoping [38]. Hereby, we can disambiguate
multiple OOIs when needed, which is also useful for

artistic purposes and allows us to choose and guide
gaze direction (Section 6.6).

Fig. 3: Synthetic Ultra-high Frame Rate Video: (a)
short exposure, (b) long exposure, (c) our result using
a rendered video (60 Hz).

Fig. 4: Real-World Ultra-high Frame Rate Videos:
short exposure (left column), long exposure (middle
column), our result (60 Hz, right column) for a ultra-
high frame rate input (3000 Hz).

Although, we only consider translational motion for
the eye integration, this choice is not very restricting.
The translations are applied to an IUHFR sequence.
Hence, each frame exhibits minimal motion. Fur-
thermore, the sequence itself was constructed via an
upsampling technique that assumes general motion.
Although it is true that different parts of the OOI
can undergo different motion, ultimately, our eyes
can only follow one path, which for a single OOI is
usually well detected by our method [20].

6 APPLICATIONS

Here, we present results and applications of our
method. Precisely, we compare to video sequences
captured with short exposure times (pinpoint-sharp
images with the typical 180◦ shutter, resulting in an
exposure time of half the frame duration) and to long
exposure shots where the shutter was kept open for
as long as possible. We show synthetic as well as
real-world sequences captured with traditional low
frame rate or high-speed cameras. We refer to the
supplemental material for the videos.

6.1 Ultra-high Frame Rate Videos

First, we illustrate our downsampling for two syn-
thetic “hero” shots (Fig. 1&3): the camera moves
around the object of interest in an ellipse creating
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opposing foreground and background motion. Short
exposure leads to temporal artifacts in the back-
ground, which results in ghosting artifacts on the
retina when tracking the foreground. A long exposure
shot removes these artifacts but blurs the foreground.
Our result leads to a sharp foreground, while avoid-
ing background ghosting. We explicitly used a static
camera to show the difference between a short/long
exposure shot and our approach. The short exposure
shot keeps both fore- and background in focus which
results in unnaturally sharp images. The long expo-
sure, on the other hand, removes most details from the
foreground object. Our solution filters the background
slightly to counteract the hold-type and put emphasis
on the main elements.

6.2 Stochastic Ultra-high Frame Rate Videos

For CG-generated movies, we can modify the upsam-
pling process and derive an UHFR sequence more eas-
ily by relying on existing temporal coherence methods
[39]. In particular, given a physically-based renderer,
which have become common in production rendering
[40], [41], we can create a low quality UHFR video as
input to our algorithm (Fig. 5b). We render each frame
of the low quality video with just a fraction of the
samples required for a high quality solution, thus not
changing the overall number of samples required for
rendering the LFR. Our proposed filter kernel gathers
samples over multiple frames of the UHFR video
resulting in a high quality LFR video with the desired
motion blur (Fig. 5c). The validation of this step relates
to distributed ray tracing [42]. It also implies that for
physically impossible exposure times exceeding the
duration of a frame, compute time decreases using our
filter (Fig. 5d). This behavior is different from most
Monte Carlo-based motion-blur rendering techniques,
where stronger motion blur tends to increase render
times [43].

6.3 Low Frame Rate Real-World Videos

Low frame rate videos are first upsampled to UHFR
relying on a standard temporal upsampling technique
(Sec. 5), then the downsampling is applied (Fig. 6). If
the target frame rate is equal to the original frame rate,
our algorithm uses the original frames inside the OOI
and the interpolated frames in the background. This
strategy avoids artifacts in the OOI induced by po-
tentially imperfect upsampling, e.g., upsampling may
fail to produce faithful results in case of occlusions.

6.4 Virtual Shutter

Our approach is compatible with virtual shutter sim-
ulations. Rolling, focal plane shutters, or even artistic
shutters can be obtained. On a per-pixel basis, we
define the exposure interval of Eq. (3), resulting in
a direct integration into our solution. In Fig. 7, a focal

plane shutter was used to imply speed by producing a
tilting effect. In this case, the per-pixel definition was
given by shifting the time interval in each row (top to
bottom).

a) Short exposure 
       (8192 samples/pixel)

    

c) Our result                                                                 d) Our result 

     doubled exposure

b) Short exposure
       (20 samples/pixel)

Fig. 5: Stochastic Ultra-high Frame Rate Videos: (a)
High-quality short exposure (8192 samples per pixel).
(b) Image from low-quality, high frame rate video
(20 samples per pixel). (c) Applying our temporal
downsampling to (b) leads to approximately similar
quality as in (a). (d) Physically impossible exposure
(twice the frame time) using only 10 samples per pixel
as input (both 30Hz).

a) Short exposure b) Long exposure c) Our result

Fig. 6: Low Frame Rate Video: The 60 Hz video was
upsampled to 3000 Hz, then downsampled to 60 Hz
to simulate different exposure times. (a) Original. (b)
Long exposure; entire image is blurred. (c) Our result;
OOI is kept sharp while background is blurred.

6.5 Motion Stills

Images represent a snapshot in time, however, a single
time slice or pinpoint sharp image does not convey
any information about the motion in the scene. In
contrast to short or long exposed traditional imagery
our approach keeps the OOI in focus but still pre-
serves this important motion information (Fig. 1–7).
This is especially interesting for advertisements or
movie descriptions in magazines where one wants to
convey the dynamics in the scene.

6.6 Subtle Gaze Direction

To investigate the influence of our approach on the
gaze behavior of an observer, we performed a user
study. As stimuli, we chose identical balls moving
at equal speed in different directions, Fig. 8a&b. We
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intentionally chose a simple artificial scene to re-
duce the influence of as many higher-level percep-
tion mechanisms as possible. Each video was twelve
seconds long, created via our downsampling method
from a 3000 Hz input video to 60 Hz, but focusing
on different balls as OOI (Fig. 8b). We created two
sets of these videos one with a 1/60 s and one with
a 1/30 s exposure time. For both, an additional long
exposure shot was created as a reference (Fig. 8a) to
validate whether our filter has a measurable influence
on the eye-motion behavior. Additionally, we showed
the stochastic rendering Room scene Fig. 5, once with
a 1/30 s traditional long exposure and once with our
downsampled version using the same exposure time
but focusing on the teapot. These eight videos were
shown three times to each participant in randomized
order. Each sequence was about one second long (76
frames, 60 frames per second).

14 participants, unaware of the goal of the experi-
ment and with normal or corrected-to-normal vision
took part in the experiment. We used a Samsung
RZ2233 Full-HD screen in a darkened room to present
video footage and an EyeLink 1000 eye tracker to
record fixation times on the screen. The eye tracker
records at 1000 Hz. The participants were seated in
60 cm distance to the screen. The participants did
not receive any specific task except for watching the
videos to prevent any task-specific influence of the
results. The test took around ten minutes for each
participant.

Fig. 8 shows snapshots and results of the experi-
ment in the form of gaze heat maps. The top row
shows the long exposure shot (left) and one version
using our downsampling (right), where the focus was
on the diagonally moving ball marked on the left.
Below are heat maps describing the average gaze
distribution for all participants, again for the long
exposure shot and our approach with the 1/30 s expo-
sure settings. Our downsampling to 1/30 s increases
the fixation times for the intended objects of interest
(Fig. 8d). A statistical evaluation (Fig. 10) revealed
that the fixation time was roughly even among all
balls in the long exposure video, with a bias towards
horizontal motion or motion through the center of
the screen. Further, subjects reported that following
motion at the screen border is more demanding due to
head fixation. For a simulated standard camera with
1/30 s exposure, participants followed the object of
interest (OOI) for 14% (standard deviation SD=7.2%)
of the time, on average, in the test sequence with focus
on the diagonally-moving ball (Ball A, increase for 11
out of 14 participants) near the left border and 26%
(SD=9.0%) with focus on the horizontally-moving
ball (Ball B, increase for 11 out of 14 participants).
Using our approach the average percentage increased
to 32% for Ball A (two-tailed t-test p=0.0015) and
to 44% for Ball B (p=0.0013) which is a significant
relative increase by 124% and 68%. These results

Fig. 7: Shutter postprocessing Our method allows to
redefine shutter types after recording. Here, a focal
plane shutter with different speeds is applied to a
synthetic scene.

Fig. 8: Subtle Gaze Direction: (a) Image from the
long-exposure sequence. (b) Image from our result.
The expected eye motion induced by the OOI is
shown as an arrow. (c) Gaze heat map of tracked
gaze direction for the long-exposure sequence. (d)
Gaze difference heat map for our result related to
long-exposure sequence. The OOI (Ball A) exhibits
an increased fixation time (hot areas). Other balls are
fixated less (cool areas).

strongly indicate the ability of our approach to direct
gaze. For an exposure time of 1/60 s, the effect is
more subtle, changing from 12% (SD=5.9%) to 16%
(SD=6.2%) (Ball A, increase for 10 out of 14 partic-
ipants, two-tailed t-test p=0.12) and 21% (SD=7.6%)
to 29% (SD=10.8%) (Ball B, increase for 12 out of 14
participants, p=0.04) which is still a relative increase
by 31% and 36%, respectively, despite the subtlety of
the effect which is hardly noticeable even with a priori
knowledge.

In the more realistic Room scene (Fig. 5) the camera
rotates around a view-centerd object (fruit bowl) while
we apply our filter to focus on an off-centered object
(teapot). Since the camera rotates quickly around the
center of the scene in this video, off-center objects
appear strongly blurred in the long exposure video.
However, the object in the center only suffers from
blur caused by rotation and therefore remains sharper.
In our study we showed two versions of the scene,
one long exposure video and one video filtered by our
method. In the filtered version the teapot was selected
being the object of interest. We hypothesized that the
central object (being a fruit bowl as visible in Fig. 5a)
would mainly attract the attention of the viewer in
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the long exposure version.
A statistical evaluation of the fixation time on the

OOI is shown in Fig. 9 (significant differences marked
by ∗). In the very beginning (frames 1 to 5) of both
versions of the video the participants fixate on the
center of the screen due to the earlier calibration step.
In the following (frames 6-20) the teapot moves into
the central part of the screen caused by rotation of
the camera. Thus, it starts attracting attention. As the
teapot moves off the center again from frame 25 on,
fixation time on it decreases. In the long exposure
video most of the participants focus on the sharper
center object. The amount of time the subjects fixate
the teapot in frames 21-26 and 27-66 decreases to 28%
and 7%, respectively.

In the filtered version the fixation time in frames 21-
26 and 27-66 increases significantly to 67% and 25% in
total, which is a relative gain of 139% (Mlong=27.9%,
SDlong=12.1%, Mour=66.7%, SDour=15.6%, two-tailed
t-test p=0.0016) and 223% (Mlong=7.8%, SDlong=5.8%,
Mour=25.2%, SDour=6.1%, p=0.001). Towards the end
of the video (frames 67-76) the rotation of the camera
slows down and finally stops. Since there is no motion
blur without motion, all of the scene objects appear
sharp. Our gaze analysis reveals that the participants
change their focus to diverse objects in the environ-
ment of the scene. Accordingly, to fixation times of the
long exposure video and the filtered version converge
to the same level as there is no visual difference
without motion. In total the overall fixation time on
the OOI increased for 12 out of 14 participants.

It is likely that the temporal sensitivity of the
human peripheral vision influences the participants’
focus because high frequency video content tends to
attract gaze [44]. The results of both user studies
suggest that the effectiveness of gaze guidance using
our filter increases in congruence with the exposure
time, even beyond physically possible exposure times
emphasizing the importance of being able to adjust
exposure in a post-process.

7 DISCUSSION

As indicated by the results and user study, our work
makes artistic postprocessing possible and can suc-
cessfully influence observers’ gaze. Humans rather
focus on sharp and moving objects when watching
videos. Hence, knowledge of a reasonable scanpath is
not necessarily required, but can also be created with
our technique. This is an important tool for movie
production.

There is a trend towards large-screen home theater
systems. Since the artifacts induced by traditional
cameras are more obvious on larger screens, the dif-
ference of a long-exposure and a perceptually-filtered
video becomes more pronounced, which renders our
approach increasingly interesting.

The required UHFR videos have a non-negligible
memory cost. In most cases creating a full UHFR

Fig. 9: Quantitative evaluation of Room sequence:
In the respective frame ranges of the video the lines
represent the average amount of time the user spent
on the specified object of interest in the two version
of the video (long exposure, lower line; perceptually
filtered, upper line).

Fig. 10: Quantitative evaluation of Balls sequence:
The time the user spent on the specified ball for the
given exposure time is given in percents of the total
video length. In the perceptually filtered video (right
bars) the fixation time is increased compared to the
long exposure video (left bars).

video can be avoided by using a cache maintaining
the necessary UHFR frames whose size depends on
the desired integration time.

Our work does not yet address hold-type blur,
which reduces higher frequencies in the direction of
eye motion. For a lower frame rate, one would need
to introduce higher frequencies into the images that
would become visible as artifacts in the still images
[33]. Instead, our solution opts for a consistent image,
reducing any temporal edge banding artifacts, while
keeping the OOI sharpest.

Our method assumes frame duration times below
the integration time of the HVS, a video played at very
slow frame rates may result in a discontinuous motion
on the retina due to an insufficient eye integration in
this case. A solution for this case is a problem on its
own.

The accuracy of the automatic saliency metric works
well for our scenarios but is not perfect. If it fails, in
the worst case, attention would be drawn to different
parts of the video. In addition, standard tools for
matting and rotoscoping can always be used to correct
or manually define saliency masks. Often these have
already been created for other post-processing steps
such as color grading or 2D to stereo conversion
and should therefore be available in most production
settings.

Assuming a single OOI should not be considered a
strong limitation because this restriction holds simi-
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larly for a standard camera. Further, in our approach,
selection of multiple OOI computes an average mo-
tion for all OOIs creating a video that keeps them in
focus as good as possible, at least as good as for the
case of a traditional camera.

Another assumption inherent to the OOI is that it
will not be occluded by another fast moving object.
Potentially, these situations can lead to conflicts. In
practice, these are typically the situations when track-
ing becomes more difficult for an observer and they
tend to be more forgiving with respect to temporal
artifacts, as their tracked signal is expected to be
discontinuous.

Not following the intended scanpath has an effect,
but it does not necessarily deteriorate the viewing ex-
perience. Our perceptual blur does not produce a blur-
rier overall image; objects moving in approximately
the same direction as the OOI will appear sharper
than with a standard long exposure. However, if the
viewer deviates from the intended scanpath a tempo-
ral flickering could theoretically occur for the OOI -
although no participant reported such observations in
our user study. This subtle effect might actually help
guiding the gaze towards the OOI, similar to [10]. It
is convenient that as soon as the observer follows the
OOI, the gaze respects the intended path and potential
artifacts will disappear.

Having access to UHFR footage is a benefit be-
cause the right tradeoff between exposure time and
motion blur is often difficult to decide upon when
capturing a scene. Especially for stunt shots, there are
many fast movements and repeating the action can
be very costly. HFR equipment is currently expen-
sive, but hardware prices already dropped and movie
makers start recognizing the new possibilities and
advantages. It is difficult to answer, whether a higher
frame rate movie or a perceptually-motivated motion
blur “looks better”. We are conditioned to Hollywood
movies recorded at 24 Hz and the audience reacted
reluctantly at first to the 48 Hz version of ”The Hob-
bit” as they were not used to the viewing experience.
However, there is a clear tendency towards higher
frame rates (e.g. ”Avatar 2” by James Cameron will
be shot at 60 fps) and it is crucial to investigate this
area in depth. We think that our solution is a first
significant step in this research field.

8 CONCLUSION

The temporal integration in traditional camera record-
ings does not correspond to the integration of the
human visual system when watching the movie. Our
work proposes a gaze-guided as well as gaze-guiding,
temporal downsampling to achieve consistent results
without edge banding or judder artifacts for real
and synthetic video input of arbitrary frame rate.
We introduced a model for video perception based
on the human visual system. We then described our

approach for gaze-guided downsampling using video
saliency. We presented different applications for our
approach, including downsampling of real world and
CG generated ultra-high frame rate videos, virtual
shutter simulation, motion stills generation, and sub-
tle gaze direction. Our conducted user study con-
firms the effectiveness of our approach to influence
observers’ gaze.

In the future, we want to support multiple objects
of interest also via an interpolation of the eye mo-
tion vectors over the image plane. One option is a
Poisson reconstruction using the OOIs as boundary
conditions. Nonetheless, in practice, assuming a single
OOI currently leads to better results and our method
is robust with respect to deviating eye motion.

We showed that our approach enables novel and
interesting post-processing possibilities. We believe
there are many more possible applications related to
our perceived blur, for example in the field of high
dynamic range video reconstruction.
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