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lllustrative Volume Visualization Using
GPU-Based Particle Systems

Roy van Pelt, Anna Vilanova, Member, IEEE Computer Society, and Huub van de Wetering

Abstract—lllustrative techniques are generally applied to produce stylized renderings. Various illustrative styles have been applied to
volumetric data sets, producing clearer images and effectively conveying visual information. We adopt particle systems to produce

user-configurable stylized renderings from the volume data, imitating traditional pen-and-ink drawings. In the following, we present an
interactive GPU-based illustrative volume rendering framework, called VolFliesGPU. In this framework, isosurfaces are sampled by
evenly distributed particle sets, delineating surface shape by illustrative styles. The appearance of these styles is based on locally-

measured surface properties. For instance, hatches convey surface shape by orientation and shape characteristics are enhanced by
color, mapped using a curvature-based transfer function. Hidden-surfaces are generally removed to avoid visual clutter, after that a
combination of styles is applied per isosurface. Multiple surfaces and styles can be explored interactively, exploiting parallelism in both
graphics hardware and particle systems. We achieve real-time interaction and prompt parametrization of the illustrative styles, using
an intuitive GPGPU paradigm that delivers the computational power to drive our particle system and visualization algorithms.

Index Terms—Volume visualization, illustrative rendering, particle systems, consumer graphics hardware, parallel processing.

1 INTRODUCTION

THERE are various volume-rendering techniques that
produce images from three-dimensional volumetric data
sets. Typical examples of three-dimensional volumetric data
are medical data obtained by computed tomography (CT) or
magnetic resonance imaging (MRI). Throughout the years,
the prevailing objective within the volume visualization field
has been to generate images that closely resemble reality.
However, a new volume-rendering branch investigates ways
to create illustrative images from three-dimensional scalar
data. Techniques from traditional art and illustration are
incorporated in the volume-rendering process. The goal is to
gain clarity compared to photo-realism by emphasizing
important features, improving data exploration. Less rele-
vant details are omitted and important aspects are high-
lighted, resulting in more comprehensible images [1], [2].
[lustrative rendering applications typically include a
substantial amount of user-configurable parameters. Fast
and reliable interaction with these parameters is of great
importance in order to produce the desired illustrative styles.
Furthermore, rendering illustrative styles from large volu-
metric data sets at interactive speed requires a considerable
amount of computational power. The desired power in
modern consumer graphics hardware has been engaged to
increase overall performance and interaction speed of both
illustrative and volume-rendering applications [3], [4].
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We have adopted the illustrative concepts of the software-
rendered VolumeFlies framework presented by Busking et al.
[5]. This framework offers a general basis to produce
illustrative depictions from volumetric data sets, as exempli-
fied in Fig. 1. A variety of illustrative styles can be directly
applied based on particle systems that operate on the volume
data. VolumeFlies encompasses several styles that imitate
traditional pen-and-ink drawing techniques.

We have chosen the flexible particle-based approach of
the VolumeFlies framework, aiming to achieve interactive
parametrization and rendering. GPU-based particle systems
are able to process and visualize hundreds of thousands of
particles in real time [6], [7]. We have investigated the latest
graphics hardware to accelerate particle systems for
illustrative volume visualization. We present a real-time
framework where the algorithms from VolumeFlies [5] have
been transformed to optimally benefit GPU parallelism.
Both our particle system and our visualization algorithms
are based on a novel paradigm for general purpose
computations on the GPU (GPGPU). This paradigm is
based on the GPU pipeline, and incorporates recent
extensions of the shader model. Summarizing, the main
contributions of this paper are:

e A GPGPU paradigm, serving as a model for a wide
range of algorithms, exploiting computational par-
allelism (Section 3). Algorithms vary from data
parallel sorting and searching to image and volume
processing.

e A GPU-based generic particle system, employing
this paradigm. This system incorporates energy
minimization for particle redistribution based on
the work by Meyer et al. [8] (Section 4.1).

e An interactive illustrative volume-rendering frame-
work, initiating particle systems to create stylized
depictions (Section 4.2). Styles resembling pen-and-
ink illustration techniques, known from VolumeFlies
[5], can now be applied to multiple volume features
interactively. Additionally, curvature-based transfer
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functions are adopted to emphasize ridges and
valleys as presented by Kindlmann et al [9]. Most
algorithms were transformed to use GPU parallelism
achieving fast interaction and parametrization.

e A performance analysis, considering the perfor-
mance gain compared to VolumeFlies, together with
a scalability study of the GPU-based framework.
Performance characteristics, together with adequate
clarification, are provided for most images.

2 PRevious WORK

A particular extensive field of research investigates illus-
trative visualization [10]. We strive for an interactive
framework offering a variety of illustrative styles. We are
mainly concerned with hardware-rendered approaches
producing pen-and-ink-style renderings from volume data.
Before considering illustrative frameworks, we address
separate illustrative styles.

Pen-and-ink-style drawing techniques convey object
shape by varying tone. A customary technique that applies
such shading is called stippling. Image-based approaches,
such as presented by Secord [11], define shape by means of a
stipple point distribution. The general disadvantage of
image-based approaches is the precarious process to ensure
frame coherence. Alternatively, object-space information can
be combined with procedural textures to achieve frame
coherence. Such a hybrid approach was presented by Baer et al.
[1]. Furthermore, there are object-based approaches. Lu et al.
[12] presented an interactive approach controlling the stipple
density on a voxel basis. In contrast to previous work, we
present interactive particle-based stippling, including visua-
lization based on the stipple size.

Another traditional shading style is called hatching,
producing tone variations by means of combined stroke
patterns. The hatches convey surface shape by their direc-
tions, commonly guided by curvature information. Similar to
the stippling methods, real-time surface hatching was
implemented through procedural textures such as the hybrid
approach presented by Praun et al. [13]. Besides, there are
object-based approaches that generate the hatch stroke
geometry, e.g., Nagy et al. [14]. As opposed to previous
work, our curvature-based real-time hatching approach is
based on a generic particle-system, and independent of
viewport resolution.

Most illustrative techniques emphasize object bound-
aries by visualizing the contours or silhouettes. By defini-
tion, contour extraction is view-dependent. Apart from
image-based filtering approaches, object-based methods exist
that extract contours from volume data. A marching lines
method was presented by Burns et al. [15]. A method based
on “photic extremum lines,” detecting changes in lumi-
nance, was presented by Xie et al. [16].

The presented references until now deal with a single
illustrative style. Few papers combine several illustrative
styles into a generic framework that allows flexible para-
metrization. Yuan and Chen [17] presented a combined
illustrative framework. A more generic framework was
presented by Busking et al. [5]. Their particle-based
approach is flexible and configurable, and allows to apply
all previously mentioned pen-and-ink styles, independent of
the viewport resolution. In our work, we have renewed and
extended the last mentioned framework. The performance
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Fig. 1. VolFliesGPU: Combined illustrative styles on a voxelized torso
model. The torso model is provided courtesy of Mangon and Dretakkis
by the AIM@SHAPE Shape Repository.

was improved considerably resulting in real-time interaction
and parametrization.

The GPU is often employed for mathematical computa-
tions [18], [19], while the hardware is geared toward
graphics processing. Many algorithms that can be executed
data parallel, such as searching and sorting [20], show a
substantial performance gain. GPGPU implementations are
supported by new software platforms such as the Compute
Unified Device Architecture (CUDA). CUDA allows im-
plementation of algorithms using the GPU without knowl-
edge of the hardware. For our work, we have chosen to
directly employ the graphics hardware for general compu-
tations and rendering.

Particle systems offer a generic and flexible approach for
both simulations and visualization. Moreover, operations on
individual particles have the potential to be executed in
parallel. The behavior of the particles is affected by rules
from dynamics resulting in a particle flow [6], [7], [21], [22].
The visualization of the particles can be chosen freely; dots,
arrows, and streamlines are common representations in flow
simulations. This freedom of visual representation also
benefits primarily visualization oriented goals, as presented
by Meyer et al. [8]. They present an energy minimization that
evenly distributes particles on implicit surfaces, facilitating
point-based surface representations and mesh generation.

We present a particle-driven illustrative framework,
which allows real-time parametrization and interaction. In
this paper, we extend our earlier work [23] by curvature-
based transfer functions and multisurface renderings.
Furthermore, we elaborate on hidden-surface removal and
performance aspects. First of all, we present our GPGPU
paradigm describing a generic concept to execute data
parallel algorithms on the GPU. The required performance
was obtained by engaging our GPU paradigm. Finally, we
present the performance results, our conclusions, and views
on future work.

3 GPGPU PARADIGM

The common GPGPU approach involves rendering a
window-size quad, gathering input values from a 2D
texture, and performing computations on a fragment basis
[19]. Output values are returned through a render-to-
texture operation. Although this approach offers a solid
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TABLE 1
GPGPU Relations

Algorithm | GPU Implementation

Input Read from Buffer Object or Texture
Processing | Vertex / Geometry Shading threads
Output Transform Feedback to Buffer Object

solution for many algorithms [20], it is a rather counter-
intuitive manner to use the GPU pipeline. We propose an
intuitive and flexible approach to perform general compu-
tations on the GPU by employing new extensions in the
shader model.

Processing an algorithm generally requires an input, a
processing stage, and an output. Implementing these three
basic steps on the GPU requires a suitable mapping to the
stream processing pipeline. The general relations between
an arbitrary algorithm and our GPGPU paradigm are listed
in Table 1.

The actual paradigm, depicted in Fig. 2, is to be
implemented upon the recently introduced Unified Instruc-
tion Set Architecture. Programming the Unified Shader Model
or Shader Model 4.0 supports flexible use of graphics
hardware and relieves manual load-balancing.

Our paradigm implies an intensive use of both vertex
shaders and geometry shaders while fragment shaders are not
used. This stands in contrast to the commonly applied
render-to-texture approaches.

Input: The input side requires a buffer object with the data
to be processed, accompanied by a proxy geometry that
commences the algorithm for each buffer element.

In the context of our paradigm, a proxy geometry
comprises a set of vertices created CPU-side and stored
on GPU memory using a vertex buffer object (VBO). The
vertex positions encode indexes into the input buffer.

We generally choose a one-dimensional texture buffer
object (TBO) representing the input data in an array-like
form. Data values can now be obtained by means of a vertex
texel fetch for each of the proxy-geometry vertices. Repre-
senting data by means of textures is common within the
GPGPU community, however, VBOs suffice as well.

Processing: Active vertex or geometry shader threads,
which serve as computation kernels, are triggered by
rendering the vertices of the proxy geometry. The single
program, multiple data architecture of the GPU enforces
parallel processing of the input, applying an identical set of
operations to each input value. This approach is only
efficient when shader processing is unified.

Output: The output values are returned to a buffer object
by means of a transform feedback. This transform feedback
extension, or stream-out in DirectX terminology records
vertex attributes for each of the processed primitives.
Hence, the graphics hardware now provides support to
return, or scatter, data from a vertex- or geometry-shading
stage. All fragment processing can be discarded.

Computations often require to return multiple outputs, in
that case a geometry shader thread is employed as processing
kernel. The recently introduced geometry shading stage
operates on the level of geometry primitives allowing
creation and destruction of vertices. A point primitive from
the proxy geometry encodes a single input data value from
the input TBO. After processing the algorithm, a line strip
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Fig. 3. The VolFliesGPU framework.

serves as an array of output values where the data elements
are encoded by the line-strip vertices.

In the case where multiple output values are returned,
the transform feedback offers a more flexible approach
compared to rendering to multiple render targets (MRT).
Not only can the output values be recorded to separate
buffers, also the values can be recorded interleaved into a
single buffer. Be aware that the performance of these
methods varies for different hardware architectures.

This paradigm supports easy implementation of iterative
approaches. The output texture buffer, containing the
results of one computation stage, can be used as an input
for the subsequent stage. This is depicted in Fig. 2 by the
dashed arrow. Be aware that the correct input buffer for
each computation stage is determined CPU-side.

The next section describes how the GPGPU paradigm
was employed using particle systems, in order to create an
interactive illustrative volume-rendering framework, called
VolFliesGPU.

4 THE VOLFLIESGPU FRAMEWORK

The VolFliesGPU framework comprises an illustrative
visualization framework for real-time pen-and-ink-style
rendering of volume data. First, we present the initialization
of the particle system followed by the various illustrative
styles. The framework is based on the work by Busking et al.
[5], and is schematically depicted in Fig. 3. Each of the
framework modules are parallelized for which we have
employed our GPGPU paradigm.

4.1 Initializing the Particle System

4.1.1 Feature Location

Initially the framework simply places a set of particles near a
feature in the volume. For this paper, a feature is an isosurface
at a user-selected isovalue, and the initialization samples the
volume data at a user-defined grid. In a marching cubes like



574 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 4, JULY/AUGUST 2010

(a) (b)

Fig. 4. (a) Before redistribution. (b) After redistribution. Particles
redistribute evenly over the surface by exerting repulsive forces to
nearby particles. The bunny model is the courtesy of Stanford University.

approach (Lorensen and Cline [24]), a particle is created
between the sample positions and its neighboring grid point
if the isosurface lies in between, see Algorithm 1.

Algorithm 1. FEATURE LOCATION
Input: Volume
Processing per grid point 7:
1: for each neighboring grid point n do
2: sample Volume at grid points n and r
3:  if isosurface is crossed then
4:  output particle between grid points n and
Output: Initial Particle Set
Complexity: O(v), with v = number of voxels

The complexity of the initialization is in the order of the
number of grid points. We aim for a real-time exploration of
the volume data, and employ our GPGPU paradigm as a
basis for the brute-force initialization.

Input: The proxy geometry comprises a 3D grid of
equally spaced vertices, and the volume data consists of a
3D texture.

Processing: Each active shader thread determines the
location of the new particles near an isosurface. For each grid
point, values are compared to sampled values of the front,
right, and top neighboring grid points. This comparison
might result in zero, one, two, or three particle positions.
Since the algorithm has a varying number of output values,
the geometry shader is used to perform the comparisons.

The geometry shader thread returns an array of at most
three vertices. Each vertex encodes the object-space position
of a new particle.

Output: Finally, the vertices of the line-strip primitives
are recorded into a texture buffer object. Each vertex
represents a particle position (z, y, ).

4.1.2 Redistribution

The initial particle placement results in particles on a
rectilinear grid, as depicted in Fig. 4a. A redistribution step
moves the particles toward the actual isosurface location
evenly spreading them over the surface. This comprises an
energy minimization scheme similar to the work presented
by Meyer et al. [8]. They present a general approach where
particles exert repulsive forces to nearby particles while
restraining them to the surface. The behavior of the particles
can be adjusted by using different energy functions.

In this section, we present a GPU-driven equivalent of the
redistribution approach based on our GPGPU paradigm. We
aim at a fast and reliable redistribution, which terminates
when the system reaches an equilibrium. The main challenge
lies in the interparticle communications because neighbor
interactions counteract parallel processing of the particles.

Repulsive forces between particles only operate within a
user-defined influence radius. A rectilinear binning struc-
ture is introduced to provide locality within the volume.
The bins are uniquely numbered and their size equals the
radius of repulsion. Based on the spatial location, each
particle obtains a bin number. We propose a four-step
iterative redistribution scheme:

1. Sort the particles by bin number.

II. Create a bin lookup table.

III. Minimize energy.

IV. Verify if the system reached an equilibrium.

I) The particles will be sorted with their bin number as
sorting key. Sorting has been applied to particle systems for
depth ordering and collision detection [7]. GPU-based
sorting [20] is typically data-independent, exploiting com-
putational parallelism. We have adopted the odd-even merge
sort algorithm by Kipfer and Westermann [20].

Replacing their fragment-based approach with our
GPGPU paradigm, the particles in the input buffer are
processed in parallel, performing the comparison operations.
The intermediate results are stored into a new buffer through
a transform feedback omitting any fragment processing.
After each iteration step, the input and output buffers are
swapped creating a simple ping-pong memory scheme.

II) Addressing all particles within the repulsion radius
requires to examine the space taken by an environment of
27 bins surrounding a particle. Because a typical system
contains considerably more particles than bins, the duration
of this search process can be reduced by means of a bin
lookup table. We create such a lookup table by performing a
binary search for each bin, searching in the sorted particle
array for the lowest index of any particle in that bin.

We use our GPGPU paradigm to engage vertex shader
threads that perform a binary search through the particle
buffer in parallel for all bins, searching for the correspond-
ing particle index. The results are recorded to a newly
created texture buffer object: The actual lookup table.

III) The third step performs the actual energy minimiza-
tion scheme moving the system one step closer to an
equilibrium. Every particle p; has energy £; and is expected
to move to locally lower energy state by a steepest descent
along the energy gradient direction. We adopt the two-step
update scheme and the energy function E; from the work
presented by Meyer et al. [8]

_Gi

— v = —VE,.
|97:\

Gi =V [fp); 7=
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The gradient descent vector #; is projected on the tangent
plane by the matrix I — 7; - 77! . Here, [ is the identity matrix
and 7; is the local normalized gradient direction g; of the
surface. Algorithm 2 performs a single minimization step.

Algorithm 2. ENERGY MINIMIZATION
Input: Volume, SortedParticles, BinLookup
Processing per particle SortedParticles:
1: Calculate displacement vector v; (requires Volume),
Neighboring particles are obtained through BinLookup
2: Update particle position in tangent plane (Step 1)
3: Reproject position back to the isosurface (Step 2)
Output: Updated particles with lowered energy state

Complexity: (per iteration)

() Sorting: O(m log*(m)),

(IT) Searching: O(d loga(m)),

(II) Two-step repulsion: O(mb), with

m = the number of particles, and

d = the average number of bins, and

b = average number of particles in a bin

Input: Unlike Meyer et al., we execute this algorithm on
the GPU employing our GPGPU paradigm. The volume
data, stored in a 3D texture, the sorted particle texture
buffer (I) and the bin-lookup texture buffer (II) are input to
the computational kernels that perform the update scheme.

Processing: The actual two-step algorithm is executed in
parallel by the GPU employing vertex shader threads.

Output: The transform feedback records the updated
particle positions into the output texture buffer.

The algorithm performs faster compared to the software-
driven approach despite the required additional steps. The
scheme is iterative, which means that at this point the
process could start over, moving the particle even closer to
a steady state.

IV) In order to determine if the system has reached a
steady state, we observe the difference of the total system
energy from one iteration to the next. This global system
energy can be calculated by summing the energy values at
all particle locations. This summation is executed by means
of a reduction operation, again using the GPGPU paradigm.
Iterative pairwise addition of values in a 1D texture buffer
containing the energy values results in the global system
energy value. The texture buffer containing the global
energy level is memory mapped such that it becomes
available CPU-side. The energy level for each redistribution
iteration is stored, and compared with the value of the
previous iteration. If the difference is below user-defined
threshold, the system has reached a steady state.

4.2 Visualizing the Particle System

A wide variety of illustrative styles can be applied to a
particle set. We apply styles that resemble pen-and-ink
illustrations on the visible particles. This section will
address hidden-surface removal (Fig. 5), point-based
stippling techniques (Fig. 8a), stroke-based hatching tech-
niques (Fig. 8b), and contours (Fig. 8c).

4.2.1 Hidden-Surface Removal

The redistributed particle set conveys the shape of the
isosurface typically depicted by point primitives. Since
point primitives rarely occlude each other, particles on the

(a) (b)

Fig. 5. (a) Before hidden-surface removal. (b) After hidden-surface
removal. Hidden-surface removal through cone-splatting. The data set is
courtesy of National Library of Medicine.

whole surface area will be visible. This introduces visual
clutter which can be resolved by means of hidden-surface
removal. Without hidden-surface removal, it becomes hard
to interpret the surface structure, and to decide if an object
is facing forward or backward from the viewer.

The hidden-surfaces are the parts of the surface area that
become occluded when opaquely reconstructing a surface
mesh. Visibility of the particles can, therefore, be determined
by reconstructing a polygonal mesh of the isosurface, where
occluded particles will be expelled from visualization.

Selecting multiple isosurfaces results in multiple parti-
cles sets. In that case, merely reconstructing and rendering
of the mesh does not suffice, since it is likely for particles
from distinct sets to become occluded erroneously.

Polygonal mesh reconstruction from particle sets was
presented by Meyer et al. [25]. Unfortunately, it is a
computationally expensive task which we prefer to omit.

Katz et al. [26] presented an approach to calculate
particle visibility without explicit surface reconstruction.
They propose a Hidden Point Removal operator, computing
visibility by extracting particles that reside on a convex hull
of a transformed set of particle positions.

Alternatively, the isosurface can be estimated by means
of surface splatting. We adopt the approach presented in
the VolumeFlies framework [5], and splat the surface using
cones (Fig. 5).

The “cone-splatting” algorithm determines particle visibi-
lity in two steps. In the first step, uniquely colored cones are
splat on the isosurface and rendered to an offscreen buffer
where apices of the cones coincide with the particle positions.

In the second step, visibility of the particles is deter-
mined by testing their corresponding color against the
offscreen color buffer that was rendered in the first step. If
there is no corresponding color, the particle is occluded by
the splatted surface, and will be discarded. The approach is
summarized in Algorithm 3.

Algorithm 3. HIDDEN-SURFACE REMOVAL
Input: Particles
Processing per particle (Particles):
Render cone with a unique color,
scaled and oriented towards the view plane.
Each cone starts from the particle position.
Output: offscreen color buffer
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Fig. 6. Hatches trace a single direction over the surface (a), or smoothed
principal curvature directions (b). The bunny model is the courtesy of
Stanford University.

Input: Particles, offscreen color buffer
Processing per particle (Particles):
if Corresponding color in offscreen buffer then
Add to VisibleParticles
else Discard
Output: VisibleParticles
Complexity: O(m), with m = number of particles

The original approach of Busking et al. [5] is adapted to
exploit modern graphics hardware capabilities. As opposed
to other parts of the framework, the hidden-surface removal
is not based on the GPGPU paradigm.

Rendering the cones in the first step is executed by the
geometry shader. The geometry shader processes particle
positions as input, and generates uniquely colored cones by
means of triangle fans. The cones are oriented perpendi-
cular to the viewplane and are anisotropically scaled, as
proposed by Busking et al. [5]. Creating and rendering the
geometry now benefits from the graphics hardware
parallelism. The offscreen color buffer is captured, and
serves as input for the second step.

In the second step, the corresponding color for each
particle has to be tested against the offscreen color buffer
efficiently. The original approach was to scan through the
buffer to find the corresponding color. Instead, we project
the particle position to the view plane, directly defining the
index into the offscreen buffer.

Hidden-surface removal turns out to be of utmost
importance to deliver the desired illustrative results and
has been applied to all of the presented figures. Particle
visibility can now be determined in real time, prior to
rendering the particles. Since hidden-surface removal is
view-dependent, it is significant to be able to execute this
algorithm on a frame-to-frame basis, without loosing
interactivity. Furthermore, performance of the illustrative
styles applied to the particle set will increase since less
particles need to be processed.

4.2.2 Stippling

Stippling is a technique where points are used to convey
object shape. Our particles are rendered using point
primitives, while varying the scale of the point primitives.
Parameters can be configured interactively, adjusting
brightness and contrast of the stipple visualization.

The point primitives are scaled with the result of the
basic diffuse lighting equation [5] (Fig. 8a). The point size is

NO. 4, JULY/AUGUST 2010

Fig. 7. Hatches follow the main principal curvature directions (a), or the
smoothed directions (b). The horse model is the courtesy of Georgia
Institute of Technology.

determined during vertex shading, which allows to set the
size of the point primitive per particle.

4.2.3 Hatching

Hatching highlights curved areas while shading a surface
by gradual variation of the hatch stroke density. We present
an approach that traces hatches as a polyline over the
surface along either a fixed direction or a smoothed
principal curvature direction.

Input: The particle positions are passed on to the
geometry shader threads, as the seed point for a hatch trace.

Processing: The hatches are represented by line-strip
primitives, which can be precomputed since the approach is
not view-dependent. The geometry shader thread deter-
mines the vertices connecting the hatch segments by
projecting the direction to the tangent plane.

Output: The resulting line-strip primitives are recorded.

In a next rendering pass, the line strips can be fetched
from the texture buffer and rendered in real time. The
appearance of the hatches can be adjusted interactively.

The curvature-based approach (Fig. 6b) improves the way
hatches convey object shape by guiding the hatches into the
direction of the principal curvature on the implicit surface.

Sigg and Hadwiger [27] presented a fast cubic B-spline
filtering approach to reconstruct partial derivatives from
the volume data. These derivatives are used to compute the
principal curvature directions in real time.

Curvature information is computed on demand while
tracing the hatches. However, directly tracing along the
principal curvature directions yields to messy results
when the main direction is not robustly defined (Fig. 7a).
The field of principal curvature directions should, there-
fore, be smoothed.

Smoothing of the curvature directions comprises com-
puting a weighted average 3; based on the main principle
curvature directions lglj of the particles p; in the neighbor-
hood. This smoothing is executed on the GPU estimating
curvature information of neighboring particles on the fly.

N

=——+ (1 — wr)8r, where wp = .

Pj >l

The trace reliability weight wr is determined by averaging
the surface reliability p; of all neighboring particles. This
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(a) (b)

Fig. 8. Various illustrative visualization styles. (a) Stippling allows surface shading by changing the stipple scale. (b) Hatching also conveys shape by
tracing hatch stroke in one or two directions. (c) Contours highlight the feature boundaries. The CT head data set is the courtesy of the University of

North Carolina, Chapel Hill.

surface reliability determines whether the local main
curvature direction is suitable for hatching. If it is suitable,
the curvature directions will be weighted with reliabilities
pj; otherwise, the hatch is guided along a user-defined fixed
direction 7. The surface reliability p is determined as:

0, if |k1] < € and |ko| < €,
_ 1
p(K1, K2) 1— ‘2<|3| — 5) ‘, otherwise.

Here, x1 and k; are the principal curvature magnitudes,
while s is the shape index indicating the shape of the local
surface. The € parameter defines which nearly flat surfaces
are considered flat. The shape index s € [—1, 1] was intro-
duced by Koenderink and van Doorn [28], and is defined as:

Ko + K1

2
s = —arctan (k1 > ko and |ky| + |Kk2| > 0).
T

K2 — K1

The hatch strokes may now be traced along the smoothed
curvature field. We use a simple weighting scheme, tracing
the hatches based on the smoothed curvature directions and
the number of segments from the seed point. This approach
might lead to intersections for long hatch strokes.

Observe that in Fig. 6a, the hatches are traced nearly
vertically along the surface, while the curvature-based
hatches in Fig. 6b indeed follow the smoothed field.
Especially, consider the strokes on the surface of the ears
of the bunny.

Both hatching approaches are extended with cross-
hatching functionality. A second hatch stroke is generated
at each particle position, departing under a user-defined
angle from the original hatch stroke. The increase of hatch
density results in a darker tone. Using a two-level threshold
on the basic diffuse lighting equation, three tones can be used
to shade the surface. The brightest areas contain no hatches,
intermediately illuminated areas are hatches with single
strokes, and the darkest areas are cross-hatched (Fig. 8b).

4.2.4 Contours

Contours are known for their ability to convey object shape
by emphasizing object boundaries (Fig. 8c). The contours of
an object are defined by the set of lines, demarcating areas
where the objects surface turns away from the viewer.

The contours are generated starting from particle posi-
tions near the contours, similar to the creation of the hatch
strokes. In contrast, the contours cannot be generated prior to
rendering, since they are by definition view-dependent.

Particles within a user-defined distance from the con-
tours are selected and segments are traced along the
contours by a geometry shader. Particles near the contour
are now considered to be point primitives, transformed by
the geometry shader into line strips that resemble a part of
the contour. In contrast to the hatches, the line strips are not
recorded to buffer, but directly rendered to screen.

The VolumeFlies framework [5] presents constant-width
contours by placing a threshold on a curvature-dependent
measure 7. Both the trace direction and the measure for
constant-width contours were adopted.

4.2.5 Curvature-Based Transfer Functions

Curvature information was used to guide the direction of
the hatches. Besides that curvature information can be
employed to enhance surface detail.

To that end, Kindlmann et al. [9] proposed curvature-
based transfer functions for illustrative rendering. They
apply two-dimensional transfer functions to the space of
principal curvature magnitudes (x;, k2). For example,
valleys and ridges can be emphasized.

For our purpose, curvature-based transfer functions are
engaged to color the hatch strokes. Valleys and ridges of the
isosurface are highlighted through the colored hatches,
where valleys are darkened and ridges are lightened.

This coloring scheme requires curvature information to
be available at each position along the hatch. Since
curvature estimation is computationally expensive, there
is a trade-off between processing and memory usage.
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(a)

(©

Fig. 9. Various illustrative styles with curvature-based coloring. (a) 1D transfer function on principal curvature magnitudes (x;, x2) on a splatted surface;
in comparison to the work by Kindimann et al. [9]. (b) Cone-splatted isosurface, with direction-based hatches emphasizing on ridges and valleys using a
2D transfer function on the principal curvature magnitudes (1, k2). (c) Same as b, with detail on the ridges and valleys of the human ear.

Precomputing principal curvature on an arbitrary point
on the isosurface requires memory for at least the main
principal curvature direction with magnitude together with
the magnitude of the orthogonal direction. Memory usage
grows rapidly if more points are generated, for instance,
when hatch strokes are traced more densely. Consequently,
a real-time approach is preferred.

We previously mentioned that the real-time curvature
method by Sigg and Hadwiger [27] was adopted to estimate
principal curvature. To validate the approach, a one-
dimensional transfer function was implemented on the
curvature magnitudes x; and k». The resulting images
using an identical transfer function and synthetic volume as
presented by Kindlmann et al. [9] is depicted in Fig. 9a.
Whereas Kindlmann et al. oversample the volume to
represent the color coding, we depict the color coding on
a coarser cone-splatted isosurface.

Subsequently, a two-dimensional transfer function is
mapped to the space of curvature magnitudes (ki, K2),
emphasizing ridges and valleys. Fig. 9b depicts a hatched
isosurface together with the applied transfer function. Fig. 9¢
shows a similar approach where a detail of the ear clearly
expresses the contrast between valleys and ridges.

4.2.6 Combined Styles and Multisurface Rendering
Illustrative styles on an isosurface can easily be combined.
This is demonstrated in Fig. 1, where the splatted isosurface
is rendered without shading. Black contours are enabled
and directional hatches are applied in combination with a
faint scale-based stippling.

Different isosurfaces reveal diverse information con-
tained in the volume data. Multiple particle sets can be
employed to visualize various isosurfaces. Fig. 10 shows
three examples of multisurface illustrations. Note that
visibility of the surfaces within these renderings strongly
benefits from the sparseness of the pen-and-ink-style
visualization approaches.

In order to create a multisurface rendering, particles are
created for each selected isosurface in the volume during
the feature-location step. After redistribution, cone-splat-
ting is applied to remove particles that reside on hidden-
surfaces without occluding particles from particle sets

bound to other isosurfaces. Last, an illustrative style can
be applied to each of the particle sets.

[lustrative rendering is particularly useful for context
visualization. For instance, Fig. 10a shows a cone-splatted
surface rendering of the skull where the context is defined
by a cross-hatched rendering of the skin with added
contours. In medical applications, anomalies are typically
the focus of attention. These anomalies could be depicted
more realistically by means of direct volume rendering
while the anatomical context is presented illustratively.
Such an anatomical frame of reference will appeal to
surgeons, since they require proper understanding of the
positioning of the considered anomaly.

5 RESULTS

We have shown a particle-based illustrative volume-
rendering framework for which we employed our GPGPU
paradigm. Various illustrative renderings are presented in
Figs. 9 and 10. The framework was implemented in C++
using the OpenGL 3D graphics API in combination with the
GL shading language (GLSL). All algorithms are entirely
GPU-driven; supporting NVidia 8 series and upwards.

5.1 Performance Comparison

The following performance comparison illustrates the
significantly increased interactivity of the hardware-ren-
dered framework, as compared to the software-rendered
framework. The actual performance gain for each of the
operations is presented in Table 2.

From these results, we can conclude that all elements of
the framework show a major performance gain. In
particular, the steps without interparticle communication
show a striking increase in speed. Computation times of the
preprocessing steps are decreased significantly. For exam-
ple, the particle placement now allows interactive change of
isovalues. Also the particle redistribution step shows a large
performance gain for which we believe no GPU-based
solution was available.

The visualization of the illustrative styles requires frame-
to-frame processing. Here, we achieve interactive framerates
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(@)
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Fig. 10. Various illustrative styles with multisurface rendering. (a) Cone-splatted bone isosurface with diffuse lighting combined with direction-based
hatching and contours on skin isosurface. (Data set equal to Fig. 5.) (b) Direction-based hatching on cone-splatted bone tissue combined with a
scale-based stippled skin isosurface with contours. (c) Similar as b, with added contours on the bone surface. (Data set equal to Figs. 8 and 9c.)

as well. Volumes can be inspected in real time applying
several styles to multiple isosurfaces, while changing
associated parameters.

5.2 Performance Scalability

The VolFliesGPU framework has virtually no dependence
on the resolution of the render window. Therefore, the
window size can be scaled with minimal loss of perfor-
mance. This is attained by discarding fragment shading
while vertex or geometry shaders carry out time-consuming
algorithms massively parallel.

Conversely, the framework performance is directly
related to the amount of particles in the system. The
performance scalability can, therefore, be measured by
varying the amount of particles used for a particular
illustrative rendering. To that end, the spacing of the proxy
geometry is adapted during the feature location stage. A
larger spacing results in a larger sampling distance within
the volume texture, and therefore, generates fewer particles.

The most serious performance bottleneck in the soft-
ware-rendered framework was the particle redistribution.
In a first experiment, the duration of the redistribution is
measured for particle sets of increasing size. The results are
depicted in Fig. 11la. The amount of particles cannot be
determined a priori, since this amount directly depends on
the isosurface structure. Therefore, Fig. 1la is under-
sampled for larger particle set. For particle sets up to
100,000 particles, the redistribution time stays well under
five seconds. For the majority of the renderings with on
average 60,000 particles, this is a satisfactory result.
Although the redistribution can not yet be executed in real
time, this is a significant improvement.

In a second experiment, the framerate is measured for
particle sets of increasing size. A curvature-based cross-
hatching style is applied with a threshold on basic diffuse
lighting. For this experiment, hidden-surface removal is
disabled. This way, all particles will be taken into account
during the measurement instead of only the visible particles.

The results for the second experiment are depicted in
Fig. 11b. Rendering of the hatches remains interactive for
particle sets up to 100,000 particles. The framerate decrease

is approximately exponential. Take into account that the
hatches typically have a length of six segments, which
requires additional geometry to be rendered for each added
particle. Finally, Fig. 11b shows that the framerate becomes
unacceptably low when rendering over 200,000 particles.
This is primarily a limitation of the available memory of the
graphics card, which can be resolved by incorporating an
elaborate memory management. Currently, the dimensions
and quantification of the volume and supporting buffers are
limited to the amount of GPU memory available.

5.3 Presented Figures

Several figures, based on different data sets, were presented
throughout the paper. Various parameterizations of the
illustrative styles were applied to both synthetic volumes
and CT acquired data. The performance results for the
presented figures are given in Table 3.

The illustrated torso, depicted in Fig. 1, exemplifies that
volume dimensions and quantification hardly harm the
overall performance of the framework. The volume consists
of 5123 voxels with 16-bits precision, which is the current limit
without additional memory management. Nevertheless,

TABLE 2
Performance Comparison

General information:

Processor Intel Core 2 Duo 2.4 GHz; 3GB RAM
Graphics hardware NVidia GeForce 8800GTX

Dataset CT Head (256° voxels x 8 bits)
Number of particles 60.000

Initialization: CPU GPU speed-up
Load volume data 3.92 sec 0.14 sec 28x
Brute-force particle placement 9.83 sec 0.14 sec 70x
Redistribution (25 steps) 253.34 sec  4.00 sec 63x
Redistribution (15 steps) % 2.58 sec -
Visualization: CPU GPU speed-up
Stippling (Scale-based) 7 fps 1135 fps  162x
Hatch smooth field directions 7.73 sec 1.16 sec 6x

Hatch generation (Direction-based) 52.65 sec 0.07 sec 752x
Hatch generation (Curvature-based) | 53.05 sec 0.29 sec 183x
Hatch visualization 1 fps 18 fps 18x
Contours < 1fps 15 fps 324x

* Uses stop criterion, which is not included in software-rendered VolumeFlies
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Fig. 11. Perfomance scalability when increasing the amount of particles.

interactive framerates are achieved while several illustrative
styles are applied simultaneously.

The main pen-and-ink styles were depicted in Fig. 8.
Satisfactory results for a customary CT data set can be
achieved with less than 60,000 particles. All renderings
perform at interactive framerates. The contours are more
demanding since they are view-dependent.

Fig. 6 showed the difference between direction-based
hatches and smoothed curvature-based hatches. The per-
formance results for the rendering of both hatch approaches
are identical, while generating the smooth curvature-based
hatches requires additional preprocessing time. The time
required to generate these hatches typically takes up to two
seconds for an average sized particle set. For Fig. 7, a similar
reasoning holds where the smoothing requires additional
preprocessing time.

Figs. 9b and 9c presented colored hatches using a
curvature-based transfer function. For these figures, a dense
hatching approach is applied to emphasize the effect of the
curvature-based transfer function. Generally, a less dense
hatching suffices resulting in better framerates. Note that
curvature is estimated on a frame by frame basis for all
visible points along the hatches. For instance, the rendering

TABLE 3
Performance of the GPU-Based Framework

Figure Resolution #Particles | Framerate
Torso (fig. 1) 5123 (16 bits) 20324 15.1 FPS
Bunny (fig. 4) 1283 (16 bits) 25354 | 104.2 FPS
Male (fig. 5) 2562 (8 bits) 11594 | 242.4 FPS
Skull a (fig. 8a) | 2563 (8 bits) 57030 51.3 FPS
Skull b (fig. 8b) | 2563 (8 bits) 26808 29.6 FPS
Skull c (fig. 8c) | 2563 (8 bits) 57030 11.3 FPS
Bunny (fig. 6) 1283 (16 bits) 27420 45.1 FPS
Horse (fig. 7) 1283 (16 bits) 18492 63.6 FPS
Bunny (fig. 9b) | 1283 (16 bits) 29732 5.1 FPS
Head (fig. 9¢) 2562 (8 bits) 89439 2.9 FPS
Male (fig. 10a) 2562 (8 bits) 70154 9.9 FPS
Hand (fig. 10b) | 2563 (8 bits) 41122 12.6 FPS
Head (fig. 10c) | 256 (8 bits) 75668 3.6 FPS
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presented in Fig. 9b achieves a framerate of five frames per
second, while it performs over 15 frames per second when
contours are disabled.

Last, Fig. 10 depicted various multisurface renderings.
Since particle sets are bounds to surfaces, the amount of
particles will grow rapidly when adding isosurfaces. For
most acquired data sets, however, no more than three
meaningful isosurface can be extracted. Even when a
surface is densely sampled and splatted, as presented in
Fig. 10a, interactive framerates are achieved. When adding
more illustrative styles and denser illustrative approaches,
interactivity will be lost as presented by Fig. 10c.

At present, the results of the presented techniques have
not been subject to a thorough evaluation study. However,
medical illustrators have responded positively to the
illustrative renderings. In particular, the interactively
adjustable parameters, such as the isovalue, were received
enthusiastically. In their comparison to hand-made draw-
ings, the illustrative renderings were perceived slightly
more rectilinear and artificial. However, the general
positioning of the stipples, the directions of the hatch
strokes, as well as the lighting were said to be in accordance
to manual illustrations.

6 DISCUSSION

The GPU currently implies memory limitations. The
volume and intermediate buffers should fit in GPU
memory. Rendering of larger data could be investigated
incorporating more advanced memory management.

The amount of particles should be restricted because it
strongly influences performance of the algorithms. Large
screen resolutions do not affect interactivity. At present, the
particle density does not scale with the zoom factor.

The presented framework is flexible and extensible with
new styles and techniques. Incorporating the single operator
for particle visibility determination by Katz et al. [26], might
increase hidden-surface removal accuracy and performance.

Particles are sparsely distributed which makes them
suitable for context visualizations (Fig. 10c). It would be
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valuable to combine direct volume-rendering with the
presented indirect illustrative methods for focus-and-
context rendering. Regions of interest can be realistically
rendered, and will be the focus of attention while the
illustrative styles provide the context.

With the presented techniques at hand, it is worthwhile
to evaluate the effectiveness of illustrative rendering. Initial
informal feedback by medical illustrators on the presented
styles is positive. In the future, we intend to execute a more
elaborate evaluation of the perception and applicability of
the illustrative renderings.

7 CONCLUSIONS

We have presented an interactive particle-based illustrative
volume-rendering framework based on a GPGPU para-
digm. Below, we describe the conclusions based on the list
of contributions, given at the end of Section 1.

First, a novel GPGPU paradigm allows data parallel
execution of both the particle system and algorithms in the
framework. In this paper, we have demonstrated searching
and sorting algorithms implemented upon our GPGPU
paradigm. The flexible GPU-based particle system can be
used in different types of applications. Apart from
visualization related applications, fast and generic GPU-
based particle systems are valuable to various simulation
applications, for instance, for fluid dynamics, weather
phenomena, and earthquakes.

Using the GPGPU paradigm, we present a particle
redistribution scheme which has been adapted to benefit
from the parallel processing capacity of the GPU. To the
best of our knowledge, this redistribution scheme had not
yet been realized on a GPU basis.

Various illustrative styles that resemble pen-and-ink
drawings can be applied interactively to isosurfaces in
volumetric data. Density- and scale-based approaches were
presented to apply stippling on an isosurface. Similarly, two
hatching approaches were presented, namely a direction-
based and a curvature-based approach. The hatch strokes
are either colored uniformly or by a curvature-based
transfer function emphasizing ridges and valleys. In
addition, we presented object-space contours. Using these
illustrative styles, multiple isosurfaces can be inspected
simultaneously in real time and visualization parameters
can be adjusted easily.

Last, we present an elaborate performance analysis. The
performance comparison shows the substantial perfor-
mance improvements, in particular, in the preprocessing
steps of the framework. This comparison provides an
intuition on the difference in interactivity of the systems.
Furthermore, we describe the performance scalability of the
framework based on an increasing amount of particles.
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