
VolumeFlies:
Illustrative Volume Visualization using Particles

Stef Busking1,2 Anna Vilanova1 Jarke J. van Wijk1

1Technische Universiteit Eindhoven
2Technische Universiteit Delft

S.Busking@tudelft.nl A.Vilanova@tue.nl J.J.v.Wijk@tue.nl

Keywords: visualization, non-photorealistic rendering, volume rendering, particle systems

Abstract

Non-photorealistic (NPR) techniques are usually
applied to produce stylistic renderings. However,
they can also be useful to visualize scientific datasets.
NPR techniques are often able to simplify data, pro-
ducing clearer images than traditional photorealistic
methods. We propose a framework for visualizing
volume datasets using non-photorealistic techniques.
Our framework is based on particle systems, with
user-selectable rules affecting properties of the parti-
cles such as position and appearance. The techniques
presented do not require the generation of explicit in-
termediary surfaces. Furthermore, the framework is
versatile enough to produce a variety of illustrative
techniques within the same framework.

1 Introduction

A common problem in visualization research is the
visualization of large 3D volumetric datasets. While
photorealistic approaches are commonly used, the use
of non-photorealistic techniques may provide more
insight by creating clearer images. Non-photorealistic
rendering (NPR) focuses on increasing the expres-
siveness of computer graphics by incorporating tech-
niques adapted from traditional art and illustration.
By removing unimportant details and visual clutter,
the viewer’s attention can be directed towards the
most important aspects of an image. Alternatively,
photorealistic techniques can be combined with NPR
methods to show both focus and context respectively
in a visualization.

Although the techniques presented in this paper are
of general use for volume data, the motivation of this
work is to be applied in medical data sets. In fig-
ure 1 we have used different non-photorealistic ren-
dering techniques to show both focus (bone) and con-
text (skin and arteries). The sparseness of the selected

Figure 1: Illustrative volume visualization of a CT
hand dataset, combining several NPR techniques.

pen-and-ink styles provides a good alternative to the
translucency commonly used in methods like direct
volume rendering. The image was generated at inter-
active speeds, enabling easy exploration of the data.

We propose a framework for visualizing volume
data, based on particle systems that operate directly
on the dataset. Different non-photorealistic visual-
ization techniques can be implemented within this
framework by using different rules that affect prop-
erties of the particles such as their position and ap-
pearance. These rules use only a small subset of data
local to a particle’s position, which results in a scal-
able system that is largely independent of the resolu-
tion of the underlying dataset. We aim to show that
a particle-based approach to volume visualization re-
sults in a flexible system and a unified way of describ-
ing various NPR techniques.

In this paper, we first give an overview of research
related to our work. Next we present our VolumeFlies

framework and shortly discuss the pre-processing
steps common to all visualizations. We then present
a new hidden surface removal algorithm for particles,
followed by the various non-photorealistic techniques
that have been implemented in our framework. Fi-
nally, we present and discuss results obtained with our
prototype implementation of the framework.

2 Related work

Most NPR research focuses on imitating artistic
styles and techniques. Lately, however, more and
more researchers are exploring possibilities for using
NPR for scientific visualization. This is because NPR
techniques are suitable for emphasizing certain fea-
tures or properties while omitting or greatly simplify-
ing other, less important details.

Most research in the area of NPR-based volume
visualization either takes an approach based on direct
volume rendering (DVR) (e.g., [1]), or applies exist-
ing surface-based NPR techniques to polygonal (or
otherwise explicitly geometrically defined) surfaces,
such as iso-surfaces, extracted from a volume dataset.
For example, Interrante [2] recommended strokes ori-
ented in the directions of principal curvature to illus-
trate the local shape of transparent surfaces. Both
approaches have problems however, as most graph-
ics hardware is more suited to dealing with geometric
primitives rather than DVR, while working only on
extracted surfaces creates a level of abstraction which
may lead to loss of information and additional pro-
cessing costs.

Several researchers have produced NPR-based vi-
sualizations directly from volume data. Lu et al. [3]
presented a method for previewing medical volume
data using a stippling method. The number of stipples
drawn in each voxel was carefully adjusted to control
density and shading, and to enhance features such as
boundaries and silhouettes. The resulting system re-
quires little user interaction and is suitable for quickly
previewing volume datasets. Unfortunately, the im-
ages often look very noisy, partly due to the lack of
hidden-surface removal. Details are hardly visible,
and often require parts of the dataset to be visualized
using different methods in order to examine them.

Both Nagy et al. [4] and Dong et al. [5] presented
methods for generating and rendering hatches in volu-
metric datasets. The method by Nagy et al. combines
hatches with direct volume rendering, in order to en-
hance these features in the volume. Due to the low
density of seed points and the use of long hatches, the
resulting images resemble quick sketches. Dong et
al., on the other hand, use only hatches and contour
lines. Both sketch-like and densely hatched images
can be created using their method. However, due to
the complexity of the algorithms involved, the pro-
cess runs at speeds far from interactive, with images

taking several minutes to generate and render.
Cornish et al. [6] proposed a novel NPR visual-

ization method for surfaces using a hierarchy of par-
ticles, derived from and optionally combined with
the polygonal surface. This hierarchy was expanded
or collapsed based on the view direction and other
parameters such as lighting conditions. By visual-
izing the particles not only as stipples but also us-
ing oriented textured splats, the surfaces could be
shown with a number of NPR techniques at interac-
tive speeds.

Our aim is to develop a framework to produce
NPR-based visualizations with the speed, versatility
and ease-of-use of the method by Cornish et al., but
directly from the voxel data. Our framework is in-
spired by the Smart Particle concept by Pang and
Smith [7]. This is a combination of particle systems
and behavioural animation, allowing particles to be
programmed to actively seek out and visualize spe-
cific features in a dataset.

3 The VolumeFlies framework

The VolumeFlies framework is based on sets of
particles existing within the space of the volume
dataset. These particles are controlled by applying
specific rules, which affect properties of the particles
such as their position or their appearance.

The framework, shown in figure 2, consists of a
four-stage pipeline. In the feature location stage, the
features that we want to visualize are located and par-
ticles are created at locations on those features. Once
the features (e.g., some type of surfaces) have been
located, the particle manipulation stage prepares the
particles for visualization. For instance, the particles
will often have to be redistributed in order to cover
the entire feature. Afterwards, the filtering stage can
be applied. The particles in the system can be filtered
based on some criteria, for example, removing parti-
cles located at hidden surfaces. Finally, in the render-
ing stage, geometry is created for each of the remain-
ing particles in order to achieve a desired visual style.
Multiple instances of the framework can be used in

Figure 2: The VolumeFlies framework

a visualization. The geometry resulting from each of
these instances is then sent to the rendering pipeline
to be projected onto the final image.

Each of these stages gives rise to a class of plug-
gable modules implementing a set of rules to be ap-
plied to the particles. These can be used as building
blocks, to adapt the framework to a specific visualiza-
tion scenario. The first two stages are typically per-
formed in a pre-processing step. During rendering,
the modules selected for the third and fourth stages
are invoked repeatedly for each change in the viewing
direction and / or other visualization parameters.

In the next sections we present several variations
for the modules of the framework. An important prop-
erty of the modules discussed in this paper is that the
rules applied to each particle use only information lo-
cal to that particle’s position. This improves scala-
bility of the system to larger datasets. In some mod-
ules information about the particle’s neighbours is re-
quired. In this case we use a spatial binning algorithm
for fast access to these neighbours.

4 Position of the particles

The first step is to place a set of particles at some
initial position on the features we want to visualize.
In medical volume data, the most commonly visu-
alized features are iso-surfaces. Therefore we chose
iso-surfaces as the first implementation for the feature
location module.

We sample the dataset at a user-defined grid, using
interpolation between data points where necessary. In
this way we can ensure regular sampling in all direc-
tions even if the voxels in the original dataset are not
isotropic. Moreover, sampling at a user-defined grid
gives the user control over the density of particles cre-
ated during the feature location stage.

We identify the location of the iso-surface by com-
paring the value at each grid point to its direct neigh-
bours. If these values lie on opposite sides of the
iso-surface value, the surface must intersect the line
between the two points. Linear interpolation is used
to approximate the location of this intersection, and a
particle is created at that location.

This method usually results in an uneven distribu-
tion of particles over the feature surfaces, causing vi-
sual artifacts such as the rings in figure 3(a). To solve
this, we use a particle distribution method originally
developed by Witkin and Heckbert [8], and later im-
proved by Meyer et al. [9] to redistribute the particles
over the surface. This is accomplished by having par-
ticles locally repel each other, but constraining them
to the surface. We adapt Meyer’s improved algorithm
from the context of rendering implicit surfaces to that
of volume datasets and iso-surfaces.

In some situations, creating an even distribution
of particles (as shown in figure 3(b)) is not as im-

(a) before (b) after

Figure 3: Particles before and after redistribution

portant, and the goal is merely to remove the pat-
terns created by the feature location algorithm step.
In these situations simply moving the particles in ran-
dom directions over the surface for a number of steps
will often produce acceptable results, and the more
computationally intensive distribution method may be
avoided.

5 Hidden-surface removal

The most obvious issue when dealing with surfaces
illustrated by separate particles rather than a complete
surface (e.g., a polygonal representation) is that there
is no occlusion between the rendered surfaces. While
in some cases this may provide additional insight into
the structure of the feature, it could clutter the image
in other cases. Particles on hidden surfaces should
be detected and (optionally) removed in the filtering
stage of the framework.

Most surface-based methods solve this problem
by first rendering the polygonal representation of the
surface to a depth buffer, and subsequently testing
each of the particles against this buffer to determine
their visibility. The polygonal surface can also sim-
ply be rendered using the background colour in order
to erase any particles that should not be visible.

An alternative technique, used in [10], first renders
the polygonal surface in uniquely coloured patches.
Particles are only deemed to be visible if the colour
of their corresponding patch is found in the resulting
image. While this scanning approach may be slower
than the depth-buffer based approach, it has the ad-
vantage that the set of visible particles can be deter-
mined before they are rendered. This makes it easier
to combine different visualizations (sets of particles)
in the same image. Also, using this method avoids
depth-value precision issues, a common problem with
the first approach.

We show that hidden particles can also be removed
without an explicit construction of polygonal repre-
sentations of the surfaces. A common technique for
rendering surfaces from separate points (point-based
rendering, see for example [11]) is splatting. In this
technique, discs aligned with the surface are drawn at
the position of each of the points. If enough discs are
used and the discs are large enough, this results in an

(a) Splats on surface (side
view)

(b) Resulting splat image

Figure 4: Overlap between neighbouring splats can
cause visible particles to disappear.

approximation of the surface.
If the surface is strongly convex, disks can unde-

sirably mask neighbouring particles as shown in fig-
ure 4. This may cause gaps to appear in the surface.
Using a scanning approach, this does not matter as
long as some part of the discs for these particles is
visible. However, in some cases the complete disc is
occluded erroneously. This is especially an issue if
the splatting image is generated at a lower resolution
than the final image, in order to increase performance.

Because of the advantages mentioned above, we
use the scanning approach for detecting visible parti-
cles. Our goal is therefore to find an algorithm that
minimizes overlap problems between neighbours and
still works well at reduced resolutions. Our solution is
to use cones oriented towards the viewer rather than
circular disks. The cones are scaled at their base to
match the projection of the original discs (see [12] for
details). The 3D nature of their shapes leads to more
evenly sized projections for each particle (figure 5).
In fact, when the surface is parallel to the screen, the
resulting image is a Voronoi diagram of the set of par-
ticles. We call this new method cone-splatting.

Two parameters control the size of the cones. The
radius needs to be large enough to create a closed
surface in the projection. However, it should not be
larger than the distance between neighbouring parti-
cles, as this could cause cones to stick out from the
surface. Increasing the length of the cones increases
the robustness to high-curvature areas such as shown
in figure 4. However, if the cones are too long, parti-

Figure 5: Cone splatting compared to normal splats

cles behind the frontmost surface may become visible
undesirably.

6 Rendering

Traditional medical illustrations commonly use
pen-and-ink styles. Common elements in these styles
include stippling, hatching and contours. We adapt
existing techniques and introduce new algorithms to
emulate these styles using our framework.

6.1 Stippling

The simplest way to visualize a set of particles is
by using point primitives. The set of particles pro-
vides us with a set of positions in 3D space, which can
be projected onto the image plane using any desired
projection method. Additionally, the surface normal
– derived from the local gradient – can be used for
applying shading, to better illustrate the shape of the
surface. There are several options.

In traditional illustration, two techniques are typ-
ically used to create shading effects in stipple draw-
ings. One is to vary the scale of the points, using
larger points to create darker areas (see figure 6(a)).
We have implemented this as a rendering module in
our framework, by using the value of the lighting
equation as a scaling factor for the size of a parti-
cle. Assuming the particles are evenly distributed,
they will form an approximately hexagonal pattern
over the surface (recall figure 3(b)). Further assum-
ing that particles in the immediate neighbourhood of
a particle pi experience similar lighting conditions as
pi and ignoring overlap between particles, we can de-
rive for the radius Si of the stipple for pi,

Si = σ

√√
3

2π
(1−Li), (1)

where σ is the (average) distance between neighbour-
ing particles and Li is the computed lighting intensity
at the position of particle pi (see [12] for details).

Another method of shading in stipple drawings is
to increase or decrease the density of stipples in cer-
tain areas in order to achieve darker or lighter tones
respectively (figure 6(b)). We assume that the full set
of particles is sufficient to generate a black tone. As
all particles are of equal size and evenly distributed,
the fraction of particles shown is linearly related to
the tone. We therefore first assign to each particle pi
a value vi from a uniformly random distribution rang-
ing between 0 and 1. During rendering, a particle is
drawn only if the value of its lighting equation is less
than this value.

A disadvantage of this method is that it may re-
quire a very dense set of particles in order to create
a detailed image. Very large numbers of particles af-
fect performance as well as accuracy. On the other

(a) Scale-based shading (b) Density-based shading

Figure 6: Stippling methods

hand, the method is suitable for illustrating surfaces
that provide context to a visualization (for example,
the skin in figure 1). Transparent surfaces can also
be visualized using this method. By placing the light
source at the same position as the camera, contours
are enhanced while particles are removed from inte-
rior areas, reducing clutter.

The results of both stippling methods can be im-
proved further by observing that in traditional illus-
tration very bright areas often contain no points at all.
We can achieve this effect by removing points alto-
gether, if their brightness is above a certain threshold.
Additionally, other parameters can be added, for in-
stance to alter the contrast in the image.

6.2 Hatching

In hatching, lines and curves are used to create an
image. Shading is often accomplished by varying line
width and/or spacing. The direction of the strokes is
used to illustrate the shape or material properties of
the 3D surface that is being represented. In traditional
illustration, both normal hatching (closely spaced par-
allel lines) and cross-hatching (two or more sets of
lines that may intersect each other) are used.

In our framework, creating hatched images con-
sists of two steps. First, hatch lines are generated from
the set of particles in the particle manipulation stage
of the framework. Secondly, during rendering, a shad-
ing algorithm decides which of these lines should be
drawn in order to create the appearance of a shaded
surface. For the purposes of shading, we use the
density-based method presented in section 6.1.

We use the positions of the particles as seed points
for hatch lines traced through the volume. A direc-
tion is selected in the local surface tangent plane, af-
ter which the position is updated by moving along
that direction for some user-selectable distance and
repeating the process until a desired number of hatch-
segments has been created. This is repeated in the
opposite direction, again starting from the particle’s
position. In order to be able to perform hidden sur-

(a) Single direction (b) Principal curvature

Figure 7: Hatching methods

face removal on these hatches, each segment of the
hatch line is linked to the nearest particle in the vol-
ume; a segment is drawn only if its linked particle is
marked visible.

6.2.1 Direction of the hatches

A simple method for selecting directions is to take
a single direction for all hatches and project this di-
rection onto the local surface tangent plane in order
to obtain a hatch direction for each individual parti-
cle. Due to the uniformity of the hatches, the result-
ing images look similar to images created using wood
engraving (see figure 7(a)). A disadvantage is that in
areas where the preferred direction is perpendicular
to the surface the hatch field looks messy, as the hatch
direction is not well defined.

An alternative, as suggested by Interrante [2], is
to use the directions of principal curvatures. We use
the curvature estimation method presented by Kindl-
mann et al. [13] to compute curvature, but perform
eigenanalysis on the resulting geometry tensor to ob-
tain the directions of principal curvature as well as the
values.

While the directions of principal curvature work
well for hatching on smooth surfaces, the iso-surfaces
in real-world datasets (such as medical volume data)
are not always smooth and often noisy. In order to
obtain reliable derivatives, and to ignore unimportant
details on the surface, we blur the dataset using a
Gaussian kernel. This allows us to calculate curva-
ture properties at a proper scale. To further improve
our results, a smoothing algorithm is subsequently ap-
plied to the direction field. Figure 7(b) was generated
using this method.

6.2.2 Smoothing the direction field

One remaining problem with principal curvature di-
rections is that they are not well defined in areas
where the surface is flat or (nearly) spherical. More-
over, Hertzmann and Zorin [14] have noted (based on

hatching patterns in traditional illustration) that hatch-
ing using principal curvature directions is most effec-
tive in areas that are parabolic. That is, areas where
one of the principal curvatures (κ1 and κ2) is large
while the other is near zero. If one of the curvatures
is exactly zero the surface is locally cylindrical.

Based on these observations, we have designed a
smoothing algorithm which generates direction fields
suitable for hatching. Like Hertzmann and Zorin, we
use a cross-field consisting of unordered pairs of di-
rections, because there are certain cross-hatching pat-
terns that can not be decomposed into two separate
single-direction fields. The field is stored as a pair
of direction vectors in each particle and is initialized
with principal curvature directions. While tracing a
hatch, the field from particles near the current posi-
tion is averaged to obtain an approximate pair of di-
rections for that point. We then select the direction
most like the current hatch direction as the direction
in which to continue the hatch line.

We define a measure of field reliability, ρ , which
essentially states how suitable for hatching the princi-
pal directions are at a given point. We base this mea-
sure on the shape index s, defined by Koenderink and
Van Doorn [15],

s =
2
π

arctan
κ2 +κ1

κ2−κ1
(κ1 ≥ κ2) . (2)

The shape index is a number between −1 and
1 indicating the shape of the surface. We trans-
form s into our reliability measure by taking ρ =
1 − |2(|s|−1/2)|. The value of ρ ranges from 0
(spherical or saddle-shaped) to 1 (cylindrical). This
way, when ρ = 1, the principal curvature directions
are most suitable for hatching, while ρ = 0 means the
directions are unreliable. The shape index does not
indicate whether a surface is flat, that is, if both κ1
and κ2 are (nearly) 0. It is, however, important to de-
tect flat areas as the directions of principal curvature
are not well defined in those areas, therefore we set ρ

to 0 in these cases.
We iteratively replace the directions in in each par-

ticle with the average taken over that particle’s neigh-
bourhood, using the values of ρ in each particle as
weights. This leads to blurring in areas of low relia-
bility, while reliable directions are preserved. Differ-
ences in the orientation of the surface at neighbour-
ing particles may cause the averaged directions to be
outside of the surface tangent plane. To prevent this,
directions are rotated according to the minimal rota-
tion between the surface normals at the particles be-
fore they are averaged.

6.3 Contouring

Contouring is one of the most useful techniques in
non-photorealisitic rendering. By tracing the silhou-
ettes of objects, these objects are emphasized in the

(a) Bones of the hand (b) Blood vessel

Figure 8: Iso-depth contours

visualization without cluttering their interior. Creat-
ing contours consists of two steps. First, a subset of
particles near the contour is selected. These can be
found by placing a threshold on the dot product of
surface normal ~n and viewing direction ~e. Next, we
trace contours in a way similar to hatching. Unlike
hatching, tracing of contours can not be performed in
a pre-processing step, because contours are dependent
on the viewing direction.

In order to follow the silhouette, the direction of
contours should keep the surface normal perpendic-
ular to the viewing direction. One option is to draw
iso-depth lines instead of true contours. We obtain
these by following the direction of~n×~e. This method
results in a decent approximation to contours for ob-
jects for which the silhouettes lie in or close to planes
perpendicular to the viewing direction (figure 8(a)).
In areas where this is not the case, the result is often a
sketch-like effect (see the lower bones in figure 8(a)).
The method fails, however, on small cylindrical struc-
tures, such as the blood vessel in figure 8(b). The
iso-depth lines can also work as an effective hatching
pattern.

In order to obtain more accurate contours (see fig-
ure 1), we note that the local surface curvature de-
scribes the local behaviour of the normal. It can there-
fore be used to determine the silhouette direction. By
considering a local coordinate frame at point p con-
sisting of the principal curvature direction vectors~k1
and~k2 combined with the local surface normal~n, and
using Rodrigues’ formula [16], we derive an approxi-
mation for the contour line in this frame (see [12] for
the complete derivation). From this we obtain the di-
rection,

~d =−κ2

(
~k2 ·~e

)
~k1 +κ1

(
~k1 ·~e

)
~k2. (3)

Blurring is applied to improve the robustness to
noise of the curvature calculation.

We need to determine which particles to draw con-
tours from. Using a threshold on ~n ·~e results in wide
contours in areas of low curvature, while contours in
areas of high curvature are smaller or may be missed
altogether if no particles are in the contour area (fig-

(a) Contours based on~n ·~e (b) Constant-width contours

Figure 9: Controlling the width of the contours

ure 9(a)). Kindlmann et al. [13] observed a similar
problem when drawing contours using transfer func-
tions in direct volume rendering. They proposed us-
ing a 2D transfer function dependent on not only the
~n ·~e value, but also on the local surface curvature.
Their method requires the surface curvature in the
viewing direction, which they derive from the geom-
etry tensor matrix for each point whenever the view-
point changes.

We can avoid additional expensive computations
by re-using our earlier approximation of the contour.
The distance of a particle to the contour can be de-
rived from the distance of this line to the origin in the
(~k1,~k2)-plane,

τ =
~n ·~e√(

κ1

(
~k1 ·~e

))2
+

(
κ2

(
~k2 ·~e

))2
. (4)

Assuming orthogonal projection, the distance of
the particle to the contour in the image plane is T =
τ (~n ·~e). We can therefore place a threshold on the
value of T in order to obtain contours of approxi-
mately constant width (see figure 9(b)). The only dis-
advantage is that principal curvature information has
to be computed for all particles. However, as this in-
formation is independent of the viewpoint this can be
performed in a pre-processing step.

7 Results

The algorithms described in this paper have been
implemented in C++ using the OpenGL 3D graphics
API. The resulting system allows a user to easily con-
figure a number of sets of particles within a volume
dataset, each of which can have its own visualization
technique and parameters.

Different techniques can be combined to visualize
multiple features in a volume dataset. Figure 1 shows
a CT dataset of a hand visualized using our frame-
work. The focus of the image, the bones of the hand,
are visualized using an iso-surface. This is combined
with principal-curvature directed hatching and con-
tours in order to better illustrate the shape of this sur-

face and emphasize it in the image. Context is pro-
vided by a visualization of the skin (using stippling
and contours) and of the arteries (using accurate con-
tours based on curvature).

In comparison, figure 10 shows a photorealistic
visualization (Direct Volume Rendering) of a simi-
lar dataset. The DVR techniques allow for visualiza-
tion of ranges of values in the data rather than only
selected iso-surfaces, for example, the muscle tissue
and tendons (shown in red). However, the result of-
ten looks fuzzy and may clutter the image, especially
when one is mainly interested in the bones. In these
cases, the sparseness of our NPR techniques may of-
fer a better alternative. Because only simple geomet-
ric primitives were used to render our results (points
and lines), these two types of visualizations may also
be easily combined, for instance in a focus / context
type of visualization.

Our framework is flexible enough to produce visu-
alizations similar to the work by Nagy et al. [4] and
Dong et al. [5]. The current implementation of the
system is limited to visualizing iso-surfaces, there-
fore we can not create volumetric visualizations as
used by Lu et al. [3]. However, the methods pre-
sented can be extended to other types of surfaces if
the required derivative properties (surface normal and
in some cases curvature) are available.

The system runs at interactive speeds (with the ex-
ception of the pre-processing steps), allowing a user
to immediately observe the result of changing most
of the visualization parameters. Table 1 gives an
overview of the performance of the (unoptimized)
prototype implementation, for some of the images
presented in this paper. All datasets used were in
the range of 2563 voxels. Stages 1 and 2 are pre-
processing steps (executed once per dataset) while
stages 3 and 4 are executed during interactive render-
ing when certain parameters are changed.

Figure 10: DVR visualization of a CT hand dataset,
created using VolumeShop by Bruckner et al. [1]

Image particles stage 1&2 stage 3&4
Figure 1 449529 120 s 2 fps
Figure 6(a) 34162 20 s 30 fps
Figure 6(b) 218432 70 s 6 fps
Figure 7(a) 58367 35 s 19 fps
Figure 7(b) 58367 60 s 17 fps
Figure 8(a) 27070 15 s 19 fps
Figure 9(a) 29481 20 s 4 fps
Figure 9(b) 29481 20 s 2 fps

Table 1: Performance of the framework on a modern
computer (Athlon 2 GHz)

8 Conclusions

We have discussed a framework for particle-based
non-photorealistic volume visualization. Our main
contributions are:

• The VolumeFlies framework, a framework for
non- photorealistic rendering of volume data,
based on particle systems and operating directly
on the voxel data. The framework is flexible,
scalable and largely independent of data resolu-
tion. It supports various styles in a unified way,
including stippling, hatching and contouring.

• A new hidden surface detection algorithm for
surfaces rendered using particles. This method
does not require the construction of an explicit
geometric representation of the surface and can
be applied at interactive speeds.

• New techniques for NPR and visualization,
including a simple density-based shading algo-
rithm, contour approximation methods and a di-
rection field smoothing algorithm for hatching
based on principal curvature directions, which
uses the shape index to indicate the local suit-
ability for hatching.

Non-photorealistic methods for data visualization,
such as the ones presented in this paper, may be
used to simplify visualizations in cases where “re-
alistic” methods would clutter the image. They are
by no means a replacement for photorealistic meth-
ods but rather a useful addition. We expect that
non-photorealistic methods are particularly suitable to
provide context for more realistic visualizations, as
their inherent simplicity will serve not to distract the
viewer from the focus of such an image.

We also conclude that the use of particles presents
a useful alternative to traditional surface-based meth-
ods. The flexibility presented by particles combined
with the advantages of working directly on the data
may present new possibilities for data visualization.
While such techniques are currently non-accelerated,
recent developments in graphics hardware may well
be used in order to improve performance.

References

[1] S. Bruckner and E. Gröller. Volumeshop: An
interactive system for direct volume illustration.
In Proc. IEEE VIS, pages 671–678, 2005.

[2] V. Interrante, H. Fuchs, and S. Pizer. Convey-
ing the 3d shape of smoothly curving transpar-
ent surfaces via texture. In IEEE Visualization
and Computer Graphics, pages 98–117, 1997.

[3] A. Lu, D.S. Ebert, C. Hansen, M. Hartner, C.J.
Morris, P. Rheingans, and J. Taylor. Illustrative
interactive stipple rendering. IEEE Visualization
and Computer Graphics, 9(2):127–138, 2003.

[4] Z. Nagy, J. Schneider, and R. Westermann. In-
teractive volume illustration. In Proc. Vision,
Modeling and Visualization Workshop, 2002.

[5] F. Dong, G.J. Clapworthy, H. Lin, and M.A.
Krokos. Nonphotorealistic rendering of medi-
cal volume data. IEEE Computer Graphics and
Applications, 23(4):44–52, 2003.

[6] D. Cornish, A. Rowan, and D. Luebke.
View-dependent particles for interactive non-
photorealistic rendering. In Proc. Graphics In-
terface, pages 151–158, 2001.

[7] A. Pang and K. Smith. Spray rendering: Visual-
ization using smart particles. In Proc. IEEE VIS,
pages 283–290, 1993.

[8] A.P. Witkin and P.S. Heckbert. Using parti-
cles to sample and control implicit surfaces.
Computer graphics and interactive techniques,
28:269–277, 1994.

[9] M.D. Meyer, P. Georgel, and R.T. Whitaker. Ro-
bust particle systems for curvature dependent
sampling of implicit surfaces. In Shape Mod-
eling and Applications, pages 124–133, 2005.

[10] O.M. Pastor and T. Strotthote. Graph-based
point relaxation for 3d stippling. In Proc. ENC
Computer Science, pages 141–150, 2004.

[11] S. Rusinkiewicz and M. Levoy. Qsplat: A
multiresolution point rendering system for large
meshes. In SIGGRAPH, pages 343–352, 2000.

[12] S. Busking. Volumeflies - a smart-particle-
inspired framework for illustrative volume ren-
dering. Master’s thesis, Technische Universiteit
Eindhoven, July 2006.

[13] G. Kindlmann, R. Whitaker, T. Tasdizen, and
T. Moller. Curvature-based transfer functions
for direct volume-rendering: methods and ap-
plications. In IEEE VIS, pages 513–520, 2003.

[14] A. Hertzmann and D. Zorin. Illustrating smooth
surfaces. In Proc. Computer graphics and inter-
active techniques, pages 517–526, 2000.

[15] J.J. Koenderink and A.J. van Doorn. Surface
shape and curvature scales. Image and Vision
Computing, 10(8):557–565, 1992.

[16] D.J. Struik. Lectures on Classical Differential
Geometry. Courier Dover Publications, 1988.

