
Point-Based Level-of-Detail with Object Textures

André Maximo∗ Ricardo Marroquim†

Universidade Federal do Rio de Janeiro
Claudio Esperança‡

Figure 1: Left: Armadillo with no Level-of-Details and reduced surfel radii. Middle: Different resolution levels according to the per-
pendicular error estimation, where the colors from coarsest to finer are: Red, Blue, Yellow and Gray. Right: Three different models with
Level-of-Details.

1 Introduction

We introduce Object Textures, a technique for mapping complex
objects onto small texture patches which are dynamically retrieved
during rendering. Each patch contains a subset of the object’s prim-
itives which are read from GPU texture by a geometry shader. As
a proof of concept, we demonstrate the method with a Level-of-
Detail application for Point-Based Rendering. Only the coarsest
resolution level is sent to the GPU while the more refined levels are
recovered from an Object Texture.

2 Exposition

An Object Texture stores the object’s primitives grouped inpatches,
where each patch is associated with a single primitive that is actu-
ally sent to the GPU. The number of primitives per patch is arbitrary
and limited only by the graphics card specifications. To allow the
entire object to be retrieved during rendering, each patch contains
information about where its first primitive is stored and howmany
primitives it contains.

We illustrate the use of Object Textures with a Level-of-Detail ap-
plication for Point-Based Rendering. The different resolutions lev-
els are created in a simple manner by merging adjacent samples, i.e.
surfels in this case. Each sample in a coarsest resolution level is cre-
ated by combining up to four adjacent samples from the immediate
higher resolution level. The number of levels is limited to four in
this application, but this restriction can be easily extended to more
levels. The three highest resolution levels are stored in anObject
Texture and ordered from coarsest to finest inside each patch. The
fourth level with the coarsest resolution contains the vertices sent to
GPU and used to reference the patches, thus calledpatch vertices.
These vertices are coarse resolution samples containing some extra
information: the texture coordinates of the first vertex of the patch
and the number of vertices in each level, where the third level may
contain up to four vertices, the second up to 16, and the finestlevel
up to 64 vertices per patch.

Each merged sample stores a perpendicular error pre-computed as

∗e-mail: andre@lcg.ufrj.br
†e-mail: ricardo@lcg.ufrj.br
‡e-mail: esperanc@lcg.ufrj.br

in [Dachsbacher et al. 2003]. This error estimates the localsurface
smoothness prioritizing details along the silhouette, while, at the
same time, taking into account the distance to the camera position.
In the geometry shader, the error of the patch vertex (coarsest res-
olution) is projected and compared with a threshold. If it’ssmaller
than the threshold only the patch vertex is projected, otherwise, one
of the finer levels is selected depending on the amount of error. The
primitives of the chosen resolution level are fetched from the Object
Texture and projected for rendering.

After all patches have been processed, the object is rendered using
the algorithm proposed in [Marroquim et al. 2007]. In Figure1
some examples are illustrated. Note how smoother regions are ren-
dered with coarser levels while more detailed regions are rendered
with the finest level.

3 Conclusion

By projecting a single primitive per patch, the use of CPU-GPU
bandwidth is considerably reduced when compared with sending
the complete geometry. The number of primitives sent in the Point-
Based LOD application is one order of magnitude less than the
model’s samples, or surfels in this case.

In our experiments a nVidia GeForce 8800 GT graphics card was
used. However, we noted that the performance decreases drastically
with the increase of the maximum number of output primitivesof
the geometry shader, thus no significant performance was gained.
On the other hand, we expect that next generation GPUs shall have
faster and more optimized geometry shaders thus making thistech-
nique more attractive.

References

DACHSBACHER, C., VOGELGSANG, C., AND STAMMINGER , M.
2003. Sequential point trees.ACM Trans. Graph. 22, 3, 657–
662.

MARROQUIM, R., KRAUS, M., AND CAVALCANTI , P. R. 2007.
Efficient point-based rendering using image reconstruction. In
PBG ’07: Proceedings of the Eurographics Symposium on Point-
Based Graphics, 101–108.


