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Abstract—Fiber tracking of Diffusion Tensor Imaging (DTI) data offers a unique insight into the three-dimensional organisation of
white matter structures in the living brain. However, fiber tracking algorithms require a number of user-defined input parameters that
strongly affect the output results. Usually the fiber tracking parameters are set once and are then re-used for several patient datasets.
However, the stability of the chosen parameters is not evaluated and a small change in the parameter values can give very different
results. The user remains completely unaware of such effects. Furthermore, it is difficult to reproduce output results between different
users. We propose a visualization tool that allows the user to visually explore how small variations in parameter values affect the
output of fiber tracking. With this knowledge the user cannot only assess the stability of commonly used parameter values but also
evaluate in a more reliable way the output results between different patients. Existing tools do not provide such information. A small
user evaluation of our tool has been done to show the potential of the technique.

Index Terms—Fiber Tracking, Parameter Sensitivity, Stopping Criteria, Diffusion Tensor Imaging, Uncertainty Visualization.

1 INTRODUCTION

Diffusion Tensor Imaging (DTI) is an imaging technique based on
Magnetic Resonance (MR) that offers unique insight into the struc-
tural organisation of the brain white matter. This is accomplished by
measuring the diffusion of water molecules in the tissue. In pure wa-
ter this diffusion is characterized as isotropic, meaning that its mag-
nitude is equal in all directions. In fibrous tissue however, the diffu-
sion becomes restricted and shows a more or less distinct anisotropy,
meaning that the diffusion magnitude depends on direction [4]. DTI
involves measuring the diffusion magnitude in multiple directions for
each point in the tissue. The magnitude distribution is then modelled
as a 2nd-order tensor whose main eigenvector corresponds to the di-
rection of greatest diffusion [2]. By tracing paths through the tensor
field the underlying fiber structures can be reconstruced, a procedure
that is called fiber tractography or fiber tracking [27, 20, 23]. Fiber
tracking allows the white matter structures to be visualized and inves-
tigated in three dimensions. This is of great interest for the study of
cerebral ischemia, neurodegenerative diseases and brain development
but also for neurosurgical applications such as tumor resection and
epilepsy surgery.

Despite its potential, the application of DTI fiber tracking in daily
clinical practice remains limited. The main reason for this is a lack
of understanding what the diffusion measurement actually quantifies.
The notion that fiber structures are aligned with the direction of main
diffusion is only an assumption and has not been completely validated.
However, there are more reasons why acceptance of DTI fiber track-
ing is limited. The acquisition, processing and visualization of DTI
data is fraught with uncertainties. Data acquisition suffers from sig-
nal noise, motion artefacts, partial volume effects and scan sequence
parameters. In the case of DTI, the diffusion profile is assumed to be
Gaussian and is modeled with a 2nd-order tensor. Such a model is
an approximation of the true diffusion profile and is not valid in vox-
els containing multiple fiber orientations. Finally, the process of fiber
tracking is a simplification of the data which is highly dependent on
user input. Typical settings defined by the user are (1) the placement
of seed points where tracking should start and (2) selecting the stop-
ping criteria that determine when tracking terminates. It is unclear to
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what extent the output of DTI visualization techniques is affected by
the combined effect of all these uncertainties. Without showing these
uncertainties any visualization of DTI data can potentially be mislead-
ing.

There has been a substantial amount of research on DTI visualiza-
tion in the last few years. However, little attention has been paid sofar
to the visualization of uncertainties accumulated in the DTI processing
pipeline. Even though the validation of DTI remains an open question,
we believe that the acceptance of Diffusion Tensor Imaging in medical
applications would be significantly improved if we find ways to show
the different aspects of DTI uncertainty in a clinically relevant way.
For this reason, we consider this to be the main focus of our research.
In this paper, we concentrate on the uncertainties introduced by user
parameters. Specifically, we look at the sensitivity of the fiber track-
ing algorithm with respect to the stopping criteria, that is, the thresh-
old values that determine when fiber tracking should terminate. The
two most commonly used stopping criteria are the anisotropy thresh-
old and the angular, angulation or curvature threshold. The anisotropy
threshold specifies that tracing should terminate if the anisotropy of
the underlying tensor field drops below a certain value. There are dif-
ferent ways to compute the anisotropy of a tensor [27]. The curva-
ture threshold specifies that tracing should terminate if the streamlines
make curves that are too sharp. This threshold is primarily meant to
deal with noise that would cause sudden directional changes within a
voxel.
In many cases, a fixed set of thresholds is selected and re-used for dif-
ferent patient datasets. The threshold values are usually based on expe-
rience or empirical measurements of known anatomy. However, such
measurements are not patient-specific. Furthermore, a small change
in the threshold values can lead to very different output results. The
user remains completely unware of such effects and is therefore likely
to either underestimate or overestimate the tracking results. Little or
no effort is spent on evaluating the stability of the threshold values
or what the effect of threshold variations is on the quantitative, tract-
specific features that are commonly used in group studies (e.g. average
fiber length or tract volume). If one is planning to draw conclusions
based on such quantitative features, it is important to know whether
the feature is sensitive to threshold variations or not. This has been
recently confirmed in a clinical trial by Taoka et al. [26].

Different algorithms for fiber tracking exist, either based on line
propagation or energy minimization [21]. We have chosen a line
propagation algorithm based on streamline tracing, also known as the
FACT algorithm (Fiber Assignment by Continuous Tracking) [20].
Because it is fast and simple to implement, it is the most widely used
method for Diffusion Tensor Imaging. However, our visualization
method is not limited to the FACT algorithm. The requirements we
place on the algorithm are (1) that it makes use of stopping thresh-
olds and (2) that variations in threshold values only affect streamline
length. It should not affect streamline shape.
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Fig. 1. Pipeline overview: (1) The pre-computation stage consists of two steps: Zero-threshold fiber tracking computes stopping criteria along
streamlines. Tract feature calculation involves computing a quantitative metric for a discrete grid of sample points on the continuous parameter
space. The feature values are stored in a feature map. (2) The exploration stage consists of tools and views to (i) investigate variations in the
stopping criteria along the fibers and (ii) how these variations affect tract features such as the average fiber length. Selected threshold combinations
can be picked in both 2D maps and 3D fiber view. Picking operations and manipulation of regions-of-interest are linked between the different views.

With existing fiber tracking tools, investigating how different
threshold values in the stopping criteria affect the output results would
require manually trying out many different threshold combinations.
This is a very time-consuming process that may have to be repeated
for every new dataset. Even if parameter values can be modified in-
teractively, it would still leave the user wandering around blindly in
an unknown parameter space. Furthermore, just seeing how a single
parameter combination affects the output, is not sufficient. To give
true insight into the algorithm’s behavior across a range of threshold
combinations, requires specific visualization techniques. To deal with
these issues, we propose a visual exploration tool that allows users to
investigate the behavior and sensitivity of DTI fiber tracking for stop-
ping criteria. We will show that our tool can assist users to gain more
insight into the sensitivity of the algorithm for these criteria. This
should result in more reliable output results and an improved ability
to compare groups of patients based on quantitative tract features. We
also present a small user evaluation based on the experiences of three
domain experts who use DTI fiber tracking on a regular basis in their
own research.

The paper is outlined as follows: Section 2 reports on past research
related to our work. Section 3 provides an overview of the processing
pipeline of our tool. Section 4 describes the different pre-computation
steps that are needed before exploration and visualization can start.
Section 5 provides details on the different interaction features of our
tool. In Section 6, we discuss the results of using our tool for studying
parameter sensitivity in real datasets. We will also report on a short
user evaluation we performed with three domain experts who use DTI
fiber tracking on a regular basis. Section 7 finalizes the paper with
conclusions and future work.

2 RELATED WORK

DTI fiber tracking [21] or fiber tractography [3] is not a specific tech-
nique but a collective name for different algorithms that reconstruct
brain nerve fibers from diffusion-weighted MR data. Streamline trac-
ing is the most widely used technique. The FACT (Fiber Assignment
by Continuous Tracking) algorithm, which is used in this paper, was
one of the first streamline tracing techniques [3, 8, 20]. However,
other line propagation techniques exist such as the tensorlines algo-
rithm where the full diffusion tensor is used to deflect the estimated
fiber trajectory [31]. Once a set of fiber trajectories has been com-
puted there are several ways of visualizing them, ranging from tensor
glyphs, streamlines, streamtubes and hyperstreamlines [27]. The latter
uses all three eigenvectors and eigenvalues to shape the cross-section
of the tube.

Most streamline tracing techniques use the eigenvectors of the dif-
fusion tensor to estimate the direction of white matter fibers. How-
ever, due to noise there is a considerable uncertainty involved in the

calculation of the eigenvectors. Small errors are made at each step of
the path propagation so that the total accumulated error can be quite
large, possibly leading to incorrect pathway reconstructions. Several
authors have investigated directional uncertainty in DTI fiber tracking
from a mathematical viewpoint [14, 16]. However, the visualization
of uncertainty in DTI fiber tracking has received less attention. Some
efforts have been made in the past to visualize uncertainty in vector
fields [6, 17, 22, 33] and surfaces [12, 18]. However, specific uncer-
tainty visualization techniques for DTI fiber tracking are not widely
available, despite reports on the need for such visualizations in neuro-
surgery [30].

One source of uncertainty in DTI visualization that has not received
much attention is parameter sensitivity. Fiber tracking algorithms are
highly dependent on user-defined parameters and this results in a poor
reproducibility of the output results. Some reproducibility studies have
been reported [7, 28], however there does not exist an automatic so-
lution that resolves the problem for each dataset. This is where vi-
sualization can play an important role. However, sensitivity to in-
put parameters is not limited to fiber tracking and can be observed
in other user-guided algorithms as well, such as image registration or
segmentation. Only a few attempts have been reported to visualize the
variability in the output of such algorithms as a result of parameter
changes. Hadwiger et al. [13] apply this concept to feature detection
and quantification in industrial CT data. They perform region growing
segmentation on the CT data for many different combinations of input
parameters, thereby obtaining a complete space of output results that
is subsequently visualized interactively. Our work uses a similar ap-
proach by applying this ”parameter-space” concept to DTI streamline
tracing.

The method we propose for investigating parameter sensitivity is
based on generating a streamline superset that covers the whole pa-
rameter space of stopping criteria, and then using selective culling to
display only specific streamline collections. This is an approach sim-
ilar to Wei et al. [29], Doleish et al. [10] and Wenger et al. [32],
even though they are not specifically focussing on parameter sensitiv-
ity. Furthermore, the tract features we define, such as average fiber
length or average fiber density per voxel, are similar to the tractogra-
phy metrics used in population (comparative) studies as discussed by
Correia et al. [9].

3 PIPELINE OVERVIEW

An overview of our processing and exploration pipeline is illustrated in
Figure 1. The pipeline consist of two main stages: (1) an unattended
pre-computation stage, and (2) an exploration stage where the user
visually explores the results of the pre-computation stage. The pre-
computation stage (Section 4) consists of generating streamlines for
the full space of threshold values. In Section 4.1 we explain in more
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detail how these results can be computed in a fast and simple manner.
We also compute a number of quantitative tract features on a grid of
sample points in the threshold space (Section 4.2). This results in a
feature map that allows the user to see the effect of threshold variations
on such features. Finally, the exploration stage provides a number of
views and interaction tools to visually explore threshold variations and
their effect on tract features.

4 PRE-COMPUTATION

The pre-computation stage generates the information to interactively
explore the threshold variations in fiber tracking. The only user-
defined settings required at startup are the geometry of the seed region
and which anisotropy measure to use (fractional, linear, etc.). How-
ever, our approach is not restricted to the use of seed regions. It is
possible to perform whole-brain fiber tracking and then select a subset
of fibers to be investigated [1, 5].

4.1 Zero-Threshold Fiber Tracking
The basis for our exploration pipeline is the theoretical set of fiber bun-
dles or fiber tracts resulting from streamline tracing with all possible
combinations of threshold values. Once we have this set of tracts, we
can visualize them interactively, compute tract features and show how
the feature values change as we modify threshold values.

A fast and simple way to obtain the required tracking results for
the whole space of threshold combinations is to perform so-called
zero-threshold streamline tracing, meaning that we allow tracing to
proceed in an uninhibited manner without thresholds. We do this
only once for a given seed region and this results in a collection of
streamlines with maximum length and maximum curvature, the so-
called zero-threshold tract. While performing zero-threshold tracing,
we inspect the local tensor anisotropy and curvature in each stream-
line point and store, as additional point attributes, the combination of
threshold values that would have terminated tracing at this point. This
approach works because the thresholds we are considering only affect
streamline length, not shape. Figure 2 illustrates the concept of zero-
threshold tracking for the anisotropy threshold. As can be seen in the
graph the anisotropy along the fiber is not always monotonically de-
creasing. The anisotropy threshold on the other hand, by definition,
is always monotonically decreasing. After all, once the anisotropy
drops below the threshold, streamline tracing terminates regardless of
whether there are higher anisotropy values further along the fiber. The
same exact reasoning holds for streamline curvature and the curvature
threshold. To visualize specific output results for a given threshold
combination we apply a simple filtering procedure on the streamline
points of the zero-threshold tract. Streamline points with threshold
values above the selected threshold combination are simply discarded.

4.2 Calculation of Quantitative Tract Features
DTI fiber tracking is most widely used in population studies that re-
quire statistics to show abnormalities in either brain or muscle tissue
(e.g. in the heart). To be able to quantitatively compare fiber track-
ing results between patients and healthy controls, users often define
so-called tract features (also called tract metrics) that compute some
property of a given fiber tract or muscle. Examples are total and aver-
age fiber length [9].

A general problem of such quantitative features is their dependence
on fiber tracking parameters such as the stopping criteria. It is
important to check whether a particular tract feature remains stable
for any threshold variations, and if so, for which regions of the
threshold space this holds. The anisotropy and curvature threshold
combinations we are considering in this paper span a continuous 2D
space. Obviously we cannot compute a tract feature for each point in
this space since there are infinitely many of them. We can however
define a regular grid of sample points and compute tract features
for those. We call such a grid of computed feature values a feature
map and it allows us to visualize how a given tract feature varies as
a function of threshold combination. In the following paragraphs,
we will discuss a number of tract features that we implemented in
our tool. This list is by no means complete since many different,

Fig. 2. Anisotropy threshold profile along single example fiber starting
from the fiber seed point on the far left. The yellow circles indicate the
variation of tensor anisotropy along the fiber. The orange triangles in-
dicate the anisotropy threshold that is stored for each point. As can be
seen, the anisotropy itself does not need to be monotonically decreas-
ing. The threshold value is always monotonically decreasing. The same
holds for streamline curvature and curvature threshold.

application-specific tract features can be defined. In principle, our
tool can be extended with any scalar-valued tract feature that can
subsequently be analyzed for stability.

Total, Average and Standard Deviation Fiber Length These
tract features are the most widely used. Correia et al. [9] define as
many as nine different tract features based on fiber length, each tuned
for specific white matter conditions. For example, old age is generally
accompanied by a significant reduction in both total and average fiber
length. In conditions where fiber anistropy is interrupted by multiple
lesions, the total fiber length may not differ from a healthy person.
The average fiber length however may reveal this condition quite
clearly.

Average Fiber Density per Voxel We compute this feature by
counting, for each non-empty voxel, the number of streamlines
intersecting that voxel. The total count is then divided by the number
of non-empty voxels to obtain the average fiber density. Of course,
this feature depends on both dataset resolution and seed point density.
However, this is not problematic, because for analyzing feature
stability we are only looking for changes (or lack thereof) in single
dataset. In certain compact and elongated fiber tracts (such as the
cingula or optic radiations) the streamlines remain closely packed
together. If at some threshold values the streamlines start running off
in random directions we expect the average fiber density per voxel to
drop.

Tract Volume This is another popular tract feature whose reduc-
tion can point to neurodegenerative diseases such as Alzheimer’s.
In studies of muscle tissue, tract volume can be used, together
with average fiber length, to create models of specific muscles for
biomechanical simulations. Tract volume can be computed by taking
the volume of a single voxel and multiplying this by the total number
of non-empty voxels. It is also possible to take the fiber density of
each voxel into account as a weighting factor.

Mean of End-Point Distances We derived this feature from the
area of fiber clustering. In fiber clustering you start with a single fiber
and try to find neighboring fibers that look similar according to some
similarity measure. In this case, we already have a cluster (a single
fiber tracking result) and we wish to compute the average similarity
between its streamlines. The average of end-point distances is a simi-
larity measure adapted from Moberts et al. [19]. Fibers are considered
to be similar if they have end-points that lie close together. This re-
flects the fact that fibers from the same anatomical structure connect
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Fig. 3. Histogram of continuously varying anisotropy thresholds along
single fiber. The peak between [0.4−0.6] corresponds to a sudden jump
in fiber length indicating a possibly critical threshold value.

the same areas of the brain. The end point distance dE between fibers
Fi and Fj is defined as,

dE = min(d1,d2) (1)

where,

d1 = ||Fi,1 −Fj,1||+ ||Fi,end −Fj,end || (2)

d2 = ||Fi,1 −Fj,end ||+ ||Fi,end −Fj,1|| (3)

Here, Fi,1 and Fi,end refer to the first and last points on fiber Fi. The
end-point distances are computed for each fiber pair and averaged for
the given tract. This is then repeated for all threshold combinations.

4.3 Cummulative Histograms
In addition to the feature map we also provide a number of histogram
views as an alternative way to show the variation of threshold
values along streamlines and the stability of tract features within
the threshold space. To make it easier to detect stable regions, the
histograms can be viewed as cummulative distributions.

Threshold Histograms If we consider the zero-threshold tract
that was computed in the pre-computation step (Section 4), we can
create a two-dimensional threshold histogram by subdividing the
threshold space into bins. We can then assign each streamline point
in the zero-threshold tract to its corresponding bin according to the
threshold values stored at this point. Technically, the 2D histogram is
not the same as a feature map but we can use the feature map view
to display this 2D histogram. We can also compute a histogream
for each threshold separately. This is illustrated in Figure 3 for the
anisotropy threshold. A peak in the histogram corresponds to a
sudden jump in overall fiber length, possibly pointing to a critical
combination of threshold values. An alternative approach to obtain a
2D histogram is to normalize the individual 1D histograms and adding
them multiplicatively to form a 2D joint probablility distribution. This
would assume however that anisotropy and curvature are independent
variables, which need not be the case. As Figure 4 illustrates it is quite
reasonable to believe that the average anisotropy in a voxel depends
on the average curvature of fibers.

Feature Histogram The feature histogram provides an alternative
view on the distribution of feature values in the threshold parameter
space. The user can choose whether to show a normal histogram or
the cummulative distribution. As explained in Section 4.2 this can
help detect stable regions where threshold changes have little effect.

5 EXPLORATION OF THRESHOLDS AND TRACT FEATURES

After the pre-computation stage has finished the user can start to
interactively explore threshold variations and their effect on different
tract features. For this purpose, we provide a 3D view for displaying
streamline output, 2D plots capturing the threshold space and allowing
the user to select and manipulate threshold ranges interactively, and

quantitative histograms for detecting stable regions in the feature map.
The different elements of our tool’s user interface (shown in Figure 5)
are described in the following paragraphs.

3D Viewing and Interaction: In the upper-left of Figure 5 the 3D
view is shown where the different tracking results can be visualized.
The fibers can be represented either by streamlines or streamtubes.
Each vertex on the streamline or streamtube is associated with a set of
threshold values calculated in that vertex and which are stored as 2D
texture coordinates. This allows us to use 2D texture mapping to apply
different color maps to the fibers. We also provide the option to map
one threshold parameter (e.g., curvature threshold) to the radius of a
streamtube and the other to color. If the user finds color transitions
on the fibers that may point to interesting threshold changes, he or
she can pick specific points on the fiber and see in the color map
view (described next) what the exact threshold value is in that location.

Color Map View: Although this view is also used to display
the color map that is currently active, it is primarily meant as an
interaction tool. It allows the user to pick points in the 2D threshold
space and immediately see what the fiber tracking result would be in
the 3D view. In this case, the color map is applied to the full range of
threshold values ([0,1]× [0,1]). For example, an anisotropy threshold
of zero is mapped to a red color, while an anisotropy threshold of
one is mapped to a blue color with intermediate values going through
white. However, if the user wishes to study variations in the local
Region-Of-Interest (ROI) surrounding a given threshold combination,
the color map should be applied to this region only. Figure 6 shows
the relation between ROI selection and fiber coloring/geometry. The
color map view allows the user to specify such a ROI, and move/resize
it interactively with immediate updates in the 3D view. Figure 7
illustrates how ROI coloring improves the distinction between
threshold variations along the fibers.

1D and 2D Color Maps: We support a number of uni- and
bivariate color maps to highlight threshold variations along the fibers,
either to show the anisotropy threshold, curvature threshold or both.
There has been a substantial amount of research in the area of uni- and
bivariate color mapping [25, 24]. Figure 9 shows the different color
maps we support. Gray scales are well suited for detecting subtle
changes in value and preserves the order of data values. For this rea-
son we use it primarily to highlight tract feature values. Double-ended
color scales specifically highlight low, medium and high values which
make them effective for visualizing threshold variations. This is quite
effective in combination with defining a ROI in the color map view
because the ROI focusses the center and extrema of the color scale to a
smaller threshold range. The 2D complementary color scale is defined
by colors that lie on opposite sides of the hue circle. For example, one
variable X of range [Xmax −Xmin] is mapped to brightness of green.
Another variable Y of range [Ymax −Ymin] is mapped to brightness of
the complementary color, which is purple [11]. The contribution of
both variables is obtained by adding the colors in RGB space. This
color scale highlights the absence or presence of correlations between
two variables [25, 24]. As explained in Section 4.2 there may exist
a correlation between curvature and anisotropy. However, when we

Fig. 4. Example of possible correlation between curvature and
anisotropy. High curvature inside a voxel averages anisotropies with
different orientations, which may result in a measurement with (near)
isotropic diffusion. Zero curvature in a voxel with the identical anisotropy
values results in greater average anisotropy.
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Fig. 5. Main viewports of our exploration tool. Top-left: 3D visualiza-
tion of fiber tract together with anatomical context and axial fractional
anisotropy slice. Top-right: color map view used for selecting individual
threshold combinations and definition of color detail regions. Bottom-
right: feature map view showing changes in quantitative tract features
as a function of threshold combination at discrete sample points of the
parameter space. Bottom-left: cummulative histograms of both thresh-
old and feature values.

Fig. 6. Relation between region-of-interest (ROI) selection and appli-
cation of color map to subrange of threshold values. The streamlines
displayed in the 3D view correspond to lower-left corner point of the
ROI. The color mapping along the streamlines would show how they
shorten due to increasing threshold values.

applied this color scale to the fibers this correlation was not visually
detectable.

Two color scales remain, namely the 1D hue color scale and the
2D hue-saturation color scale. Despite its limitations, hue remains
one of the most popular and widely used color scales. It is difficult
to interpret without the use of a color legend and the scale introduces
discontinuities that may not be present in the data itself. Nevertheless,
we include it for completeness. The 2D hue-saturation scale suffers
from similar drawbacks, even though the problem is somewhat
alleviated if we link hue to curvature threshold (which varies much
less than the anisotropy threshold). Saturation has similar properties
as the gray scale but when combined with hue it loses contrast and is
less effective for detecting changes.

Feature Map View: When DTI fiber tracking is applied in

Fig. 7. (A) Color scale mapped to full threshold domain [0,1]. (B) Color
scale mapped to threshold region-of-interest [0.3,0.7]. This highlights
threshold variations along the fibers with full color detail.

comparative studies of white matter between patients, quantitative
tract features are often used. It is important to verify whether a given
tract feature is sensitive to threshold variations or not. The feature
map view can be used specifically for this purpose. As mentioned
previously each point in the threshold space corresponds to a single
fiber tracking result. Section 4.2 discussed the different features that
can be computed for such a tract. Obviously, we cannot compute a
tract feature for each point in the threshold space because there are
infinitely many of them. However, we can sample the space on a
rectilinear grid and compute a tract feature for each sample point. We
can then display the feature values as a 2D image where each sample
point is represented by a pixel. We call this image the feature map
and by using gray scale coloring we can highlight subtle changes in
the tract feature values as a function of threshold combination. The
user can select different features from a pull-down menu. We decided
not to merge the feature map view with the color map view because
the feature map itself would lose too much gray value contrast when
combined with the RGB/HSV color maps. Instead, we provide the
feature map as a separate view where you can optionally overlay the
color map region of interest with a user-defined opacity.

Histogram Views: We provide several histograms as an alterna-
tive way of displaying threshold sensitivity. The threshold histograms
were already discussed in Section 4.2, except here they are visualized
as separate 1D histograms. They can be converted to cummulative his-
tograms, which makes it easier to detect flat (and therefore stable) re-
gions in the threshold space. We also show a feature histogram which
is simply a histogram constructed from the list of feature values com-
puted on the grid sample points described in the previous paragraph.
The feature histogram shows the currently selected feature.

6 RESULTS AND DISCUSSION

In this section we present a number of visualizations that were cre-
ated for three clinical DTI datasets. The first dataset represents a

Fig. 8. Cummulative feature histogram (indicated by red line) for mean
fiber density per voxel. The white arrows indicate areas where the tract
feature is relatively stable for threshold variations.
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healthy human brain (Siemens 3 Tesla, voxel dimensions 1× 1 × 1
mm3, resolution 231× 172× 131, 72 directions). The second dataset
also represents a healthy human brain (Philips 3 Tesla, voxel di-
mensions 2× 2× 2 mm3, resolution 128× 128× 66, 32 directions).
The third dataset represents muscle tissue of a right human forearm
(Philips 3 Tesla, voxel dimensions 1.79× 1.79× 6 mm3, resolution
112× 112× 54, 15 directions). Figure 10 illustrates how our visu-
alization method can help find critical threshold variations along the
streamlines. You can see a clear white band running across a group
of neighboring streamlines (indicated by the white arrow). The col-
ors sudden transition from blue through white to red corresponding
to a sudden drop in the fractional anisotropy threshold. If this drop
was purely caused by noise it would be unlikely to form such a regu-
lar, localized band pattern across multiple streamlines. Another phe-
nomenon which our approach can help identify is crossing fiber struc-
tures. Figure 11 illustrates how a sudden drop in curvature threshold
can result in the tracking of erroneous fiber tracts such as the cingulum,
which runs along the “gutter” of the corpus callosum complex. Such
a region may contain more disk-shaped tensors where the main diffu-
sion direction not well-defined (λ1 ≈ λ2). In this case, fiber tracking
becomes very sensitive to noise and can start tracing the wrong tract.
Using our tool, you can see exactly the point at which this wrong turn
occurs. If you pick this location with the mouse, the exact threshold
values will be indicated in the color map.

To further evaluate the added value of our visualization approach,
we have asked three expert users to give feedback on the practical util-
ity of our tool using these three datasets. All of them use DTI fiber
tracking on a regular basis albeit for quite different research purposes.
We performed the evaluation by first demonstrating the tool to the user.
We then let the user work with the tool him or herself. After this, we
presented the user with a list of questions designed to obtain structured
feedback about the practical utility of our tool and parameter sensitiv-
ity visualization in general.

6.1 Brain Development in Premature Neonates
Our first user is a clinical physician who uses DTI fiber tracking to
study the effect of hypoxic ischemia on white matter development in
premature neonates. To show the difference between neonates with
white matter deficiencies and healthy controls, this user uses quanti-
tative tract-based features. However, because such features are highly
dependent on stopping criteria, this has been problematic. In the past,
our user investigated the sensitivity of stopping criteria on certain tract
features by repeatedly performing fiber tracking with different combi-
nations of thresholds. With existing DTI tools this is extremely time-
consuming, so the possibility to show this information in a single fea-
turemap of our tool was very much appreciated. Especially regions of
the feature map that are relatively constant are of particular interest be-
cause they point to subranges of the threshold space where the feature
is relatively stable and can be safely used for inter-subject comparison.

Typical tract features our user is interested in are tract volume and
average fiber length. These are available in our tool. We briefly dis-
cussed the average fiber density per voxel feature. Our user is not
using this feature at the moment but thought that it could be combined

Fig. 9. 1D color maps: (A) gray scale, (B) red-white-blue, (C) rainbow.
2D color maps: (D) hue (rainbow)-saturation, (E) complementary colors
(green-purple).

Fig. 10. Effect of small variations in anisotropy threshold on fiber tracts
of the corona radiata (running from the brainstem towards the brain cor-
tex). If fractional anisotropy is increased from 0.30 to 0.32 the red tract
parts (indicated by yellow arrow) completely disappear (A + B). The cut-
off point is already visible in Figure A in the white regions of the fibers
(indicated by white arrow).

Fig. 11. (A) Reconstruction of the corpus callosum with unintended
tracing of the cingulum (indicated by yellow arrows). (B) Close-up of
area where unintended tracing originates. Color variations (blue to red
with narrow band of white) show the sudden drop in curvature thresh-
old which seems to be responsible for deviation of the pathway into the
cingulum.

Fig. 12. Fiber tracking of muscle in human forearm. The elbow is located
in the top-right corner, the hand is located in the bottom-left corner, palm
facing upward. Red colored tissue are tendons running towards the
hand. White colored tissue is muscle. The blueish colorations indicate
attachment of muscle to bone.

with tract volume by weighting each voxel’s contribution with its fiber
density. Some feature that our user suggested to be included are the
average anisotropy (either fractional or linear) along the fiber tract and
the average apparent diffusion coefficient (ADC). We do not support
these features at the moment but they can be easily included. Because
so many different, application-specific tract features are available [9],
we did not provide a complete list.
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6.2 Muscle Tissue
Our second user is a researcher who uses DTI and fiber tracking meth-
ods to investigate injury and repair of muscle tissue. With DTI it is
possible to detect subtle tissue differences that are not visible on nor-
mal MR. After demonstrating our visualization tool, we let the user
interact with one of his own datasets. Showing DTI-based parame-
ters along the streamlines is a feature that is completely missing in
the tools our user is currently working with. He encouraged us to ex-
tend the number of parameters that can be shown along the streamlines
(now we show only anisotropy and curvature thresholds) but even with
just the anisotropy color coding he saw, for the first time in 3D, tran-
sitions from muscle tissue to connective tissue (tendons). Figure 12
illustrates these transitions (red = connective tissue, white = muscle,
blue = bone attachment) for a selected set of muscles in the forearm.

We also discussed the various tract features with our user. He is
particularly interested in tract volume and average fiber length be-
cause these, together with the attachment angle between muscle and
bone, are sufficient to model the muscle for biomechanical simula-
tions. However, since these features are highly dependent on user-
defined stopping criteria, it is difficult to find values that are repro-
ducable. Our visualization method was considered to be very useful
for visualizing the variation of feature values as a function of stopping
thresholds. Another feature that our user found interesting is the mean
of end-point distances. Muscle fibers run highly parallel. As long as
the fiber tracking output contains only muscle fibers, this feature is
expected to remain relatively constant. However, when muscle fibers
converge to form connective tissue the streamline end-points are ex-
pected to come closer together, resulting in a decrease of the mean of
end-point distances. If the goal is to segment only muscle fibers, this
can help to find the exact thresholds where muscle fibers move into
connective tissue. The threshold histogram provides similar informa-
tion because the anisotropy threshold of connective tissue is generally
lower than muscle tissue. As soon as many connective fibers are be-
ing traced by the algorithm, a sudden jump in fiber length is expected
which results in a peak in the threshold histogram. The average fiber
density per voxel is expected to increase as muscle fibers converge to
form more dense tendon fibers (show pictures of this).

The overall feedback of this user was very positive because our tool
directly showed tissue transitions in 3D that had not been seen previ-
ously. The tract features we provided are by no means complete but
the general approach of showing the behavior of any tract-based fea-
ture as a function of threshold was considered very useful, especially
for group studies. Tract features are highly dependent on user settings
however, which is why some people are reluctant to use them. Our user
also strongly encouraged us to extend the parameter-space concept to
other tensor-based properties such as the apparent diffusion coefficient
and the tensor’s main eigenvalue.

6.3 Brain Connectivity
Our third and last user is a researcher involved in the study of brain
connectivity who uses DTI fiber tracking together with functional MR
to investigate a patient with Landau-Kleffner syndrome. This patient
acquired aphasia (loss of receptive and expressive language skills) due
to epileptic seizures in the temporal lobe during early childhood. After
more than 15 years of intenstive training in sign language she is able to
communicate quite well, although she has trouble understanding peo-
ple without actually seeing them. The goal is to investigate whether
she has formed brain connections that are not present in healthy con-
trols. Especially connections between the remaining language areas
and the motor area dealing with hand coordination are of interest. The
main problem when using DTI fiber tracking for this type of research is
finding threshold values that are sufficiently low to confirm a suspected
connection between two regions of interest, but are also sufficiently
high to be plausible. Our visualization was considered very useful in
helping to make a more reliable choice of threshold values. As with
the second user, this user suggested to extend the parameter space con-
cept to include parameters that describe tensor shape. For example, it
would have been interesting to show linear anisotropy threshold on
one axis and fractional anisotropy threshold on the other axis. Using

2D color coding along the streamlines, you could then see where the
tensor shape suddenly changes from linear to planar or vice versa. If
this occurs at regular positions across multiple streamlines, this might
point to true tissue changes (e.g., fiber crossing) instead of just noise.
This user was rather sceptical about using tract-based features because
of their sensitivity to user-defined parameters. We showed how our
visualization method can be used to investigate how stable a tract fea-
ture really is within the range of threshold values relevant for the user’s
application. He agreed that our approach would encourage the use of
quantitative tract features more often. They can provide additional
information for showing that certain brain connections only exist in
patients and not in healthy controls.

7 CONCLUSIONS AND FUTURE WORK

We have presented an approach for visualizing parameter sensitivity
in DTI fiber tracking algorithms. To give a first impression and proof-
of-concept of our method we focussed on the stopping criteria that
determine when fiber tracking should terminate. We have shown that
visualization of variations in the threshold values can give users insight
into why streamlines terminate or follow erroneous pathways. This is
relevant information for both brain scientists and neurosurgeons who
are trying to assess whether their fiber tracking results can be relied
upon. The use of tract-based features is indispensable for compara-
tive studies of white matter development and disease. Being able to
visualize their sensitivity for parameter variations is equally impor-
tant because it provides the investigator with additional information to
choose the most stable feature for the application. The feedback we
received from our users confirms this point. Our tool allows the use of
any scalar-based feature.

Parameter sensitivity is an aspect of visualization that is commonly
ignored even though it can introduce considerable uncertainty in the
output result. In this paper we have focussed on parameter sensitivity
in DTI fiber tracking, however we wish to expand our research to in-
clude other sources of uncertainty regarding DTI and its applications.
The DTI visualization pipeline involves many stages where uncertain-
ties may be introduced. We wish to gain a better understanding of
how these uncertainties propagate through the system and at which
stages the greatest variability occurs. Other parameters that we wish
to investigate are the effect of dataset resolution, but also other user-
defined settings such as seed-point placement. The effect of noise on
fiber tracking has already been investigated by others [15] but it would
be interesting to look at the combination of noise-based variance with
parameter sensitivity.
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