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Image Ref. Left: https://phys.org/news/2024-05-chimps-shown-tool-skills-adults.html
Image Ref. Middle: https://www.nbcnews.com/id/wbna9535875

Image Ref. Right: https://stock.adobe.com/nl/images/a-man-chopping-wood-in-the-forest/115368859
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The development of complex cognitive functions during human  pot|

evolution coincides with pronounced encephalization and expan-  opd https://doi.org/101038/s41586-021-03465-8  Alistof auth
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and then analyzed using network neuroscience tools. We demon-  the| makeup of
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connectome. Furthermore, connections observed in humans but  5p( consensus
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important for language processing. Network analysis demon- specializat|
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12), along with proportionally more white matter compared with o) ing the evolution of cell types, but have limitations: differen
other primates (13-15). These observed differences suggest that 3034 regions have been profiled in humans and mice; different seg
the evolution of advanced cognitive features in humans was ac-  'To scripts have been captured with single-cell and single-nucley
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Abstract:

Humans have unique cognitive abilities among primates, including language, but their molecular,
cellular, and circuit substrates are poorly understood. We used comparative single nucleus
transcriptomics in adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets
from the middle temporal gyrus (MTG) to understand human-specific features of cellular and molecular
organization. Human, chimpanzee, and gorilla MTG showed highly similar cell type composition and
laminar organization, and a large shift in proportions of deep layer intratelencephalic-projecting neurons
compared to macaque and marmoset. Species differences in gene expression generally mirrored
evolutionary distance and were seen in all cell types, although chimpanzees were more similar to

Nature, 2021
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Motor control: specialized brain region
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Contributions

- Domain Abstraction
» Develop Cytosplore EvoViewer

» Expert evaluation
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Domain abstraction setup

» Participatory design approach
» Bi-weekly online meeting with experts

» |terative development
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Domalin questions

» How do cell type abundances vary across species?
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Domalin questions

» Which genes are potential marker genes for a cell type and how
do they vary between species?
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Domalin questions

» To what extent are marker genes related to subtrees of the
phylogenetic tree or other prior evolutionary knowledge?
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Task: Lookup cell types

Lookup cell types at different levels of the taxonomy
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Task: Explore markers across species
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Task: Compare prior knowledge
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User study

» Exercises based on research questions
» Likert scale usability responses

» Open ended feedback
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User study setup

» 3 expert participants
» Participants not familiar with the software and design

* Online one hour sessions
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User study results

Patterns in abundance

++ 000 ©©0@® @
+ C X
O
Easy Easy Confident
selection |identification findings

L ]
\ MFCJ ‘ TUDelft

Pacific Visualization 2025



User study results

Marker gene expression

+ + @@ ® OXC
+ @ ®
o @
Easy Clear Confident
confirmation, location findings

L ]
\ MFCJ ‘ TUDelft

Pacific Visualization 2025



User study results
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Phylogenetic relationships
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User study results

Patterns in abundance

Open Feedback:
“Side-by-side absolute and
relative abundances
enable unbiased cross-
species comparisons.”

Marker gene expression

Open Feedback:
“Embedding view provides
clear insights. P-values and
fold changes can be added
for deeper analysis.”

L |4
\C

Phylogenetic relationships

Open Feedback: “Phylogenetic
tree offers valuable information.
Differential expression can be
added for more comprehensive
analysis.”

UDelft
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Conclusion

* Compare multi-species single-cell data
* FInd conserved cell types & genes

* Developed with expert collaboration
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Conclusion

* Future:
Reverse confirmation workflow Current:

Cell types — Genes — Species

Future:
Species — Genes — Cell types
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