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 A B S T R A C T

Dimensionality Reduction (DR) methods have become essential tools for the data analysis toolbox. Typically, 
DR methods combine features of a multivariate dataset to produce dimensions in a reduced space, preserving 
some data properties, usually pairwise distances or local neighborhoods. Preserving such properties makes 
DR methods attractive, but it is also one of their weaknesses. When calculating the embedded dimensions, 
usually through non-linear strategies, the original feature values are lost and not explicitly represented in 
the spatialization of the produced layouts, making it challenging to interpret the results and understand the 
features’ contributions to the attained representations. Some strategies have been proposed to tackle this issue, 
such as coloring the DR layouts or generating explanations. Still, they are post-processes, so specific features 
(values) are not guaranteed to be preserved or represented. This paper proposes DimenFix, a novel meta-DR 
strategy that explicitly preserves the values of a particular user-defined feature or external data (not used to 
generate a layout) in one of the embedded axes. DimenFix can be used to preserve ordinal (e.g., numerical 
measures) and nominal (e.g., labels) values and works with virtually any gradient-descent DR method. It 
requires minimum changes to the underlying DR technique, running in linear time considering the number 
of data instances. In our results, involving Force Scheme and t-SNE adaptations, DimenFix was capable of 
representing features without heavily impacting distance or neighborhood preservation, allowing for creating 
hybrid layouts that join characteristics of scatter plots and DR methods.
1. Introduction

Demand for visualizing and interpreting high-dimensional datasets 
has rapidly increased in recent years. One of the most popular strategies 
to interpret such datasets is projecting them to a lower-dimensional 
space (usually 2D or 3D) while reproducing the similarity relationships 
among high-dimensional data instances in the produced layout. This 
process is usually called Dimensionality Reduction (DR) and has been 
extensively used by the visualization community in most visual analyt-
ics solutions, and by many research fields to support multiple different 
analytical applications, including protein folding [1,2], sensors and 
biosensors [3–5], single-cell transcriptomics [6], or drug design [7], 
just to mention a few.

Common to most DR techniques is that the embedded dimensions 
are defined as combinations of the input data features. Consequently, 
understanding how feature values contribute to the produced layouts 
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can be challenging since the positions of the projected data instances 
are typically influenced by all input features, in some cases, through 
non-linear combinations. Some strategies have been devised to allow 
for such interpretation, as it is one of the most important DR-based 
data analysis tasks [8]. Features can be mapped to axes (lines) in 
the produced layouts to represent the influence of each feature [9]. 
Color can represent the values of a feature or external data (e.g., a 
class) [10]. More advanced approaches can also be employed, for 
instance, contrastive [11] or feature importance [12–14] analyses to 
identify the contributions of features to the formation of groups of 
instances. Although effective methods to interpret a DR layout, they are 
post-process strategies, so they cannot guarantee that specific features 
(values) are preserved and ordered in the final layout. Therefore, the 
spatial position, used in standard scatterplots to represent the original 
features of the data, is not available as the 𝑥 and 𝑦 components of the 
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embedding (for 2D layouts) do not have a clear connection with the 
input features.

This paper proposes DimenFix, a novel meta-dimensionality reduc-
tion strategy that addresses this limitation by explicitly encoding the 
values of a particular feature (e.g., dataset attribute, class, time, or 
ranking) as position in one of the embedded axes. To achieve this,
DimenFix maps such a feature into one of the embedded axes and con-
trols the degree of freedom with which the embedded points’ positions 
can move on that axis. We present different approaches to support this 
process depending on the type of values to be preserved, whether it 
is ordinal or nominal. We also show results of adapting two different 
DR techniques, Force Scheme [15] and t-SNE [16], to employ the Di-
menFix strategy, although it can be used in combination with virtually 
any gradient-descent method, such as UMAP [17]. DimenFix is min-
imally intrusive, requires only small modifications to the underlying 
DR method, and its computational complexity is linear to the number 
of data instances, thus having a low impact on the overall running 
time. Our experiments show that DimenFix can represent features in 
the final layout without heavily impacting distance or neighborhood 
preservation quality. The code for DimenFix, Force Scheme, and t-SNE 
adaptations can be found at omitted for submission.

2. Related work

Dimensionality Reduction (DR) techniques in the visualization field 
are defined as techniques that map instances from a high-dimensional 
space, the input dataset, to points in a lower-dimensional space, the 
visual representation, usually 2D or 3D, seeking to preserve high-
dimensional similarity relationships [18,19]. Different taxonomies are 
used to classify such techniques depending on the different aspects 
of the data to be preserved or the strategy used for the mapping. A 
common taxonomy classifies the techniques into local and global [16]. 
While global methods, such as Multidimensional Scaling (MDS) [20], 
Force Scheme [15], or Part-Linear Multidimensional Projection (PLMP)
[21], look to preserve the overall pairwise distance between data 
instances, local techniques, such as t-Distributed Stochastic Neighbor 
Embedding (t-SNE) [16], Uniform Manifold Approximation and Pro-
jection (UMAP) [17], and Least Squares Projection (LSP) [22], seek to 
preserve local neighborhoods.

Common to these techniques is the fact that they combine all the 
input high-dimensional data features or dimensions to compose the 
final visual representation, using linear or non-linear strategies. For 
linear strategies, the interpretation of the connection between an axis in 
a layout and the original data features can, to an extent, be performed 
since axes are linear combinations of the input features. However, for 
non-linear strategies, this connection is usually not meaningful since 
points are individually mapped instead of axes. To address this issue, 
different strategies have been suggested to allow for interpretation 
considering the contribution of input features. Mapping the original 
dataset features/dimensions to segments in the DR layout has been 
suggested [9], in which shorter segments represent small feature con-
tributions, and the direction of the segments indicates how the related 
feature varies in the layout. Color is also a popular choice, where data 
instances (or points in the visual representation) are colored using the 
values of a feature or class to map additional information [10]. Color 
has also been used to represent distance distortions calculated to a 
reference point by coloring the visual representation background [23], 
or considering the overall distance preservation either by coloring 
points [24] or through a more sophisticated coloring scheme [25]. Al-
though the resulting layouts can be used effectively to identify artifacts 
of the DR approximation, they cannot be used to convey information 
about dataset features, which is a common limitation of the visual 
quality metric strategies such as [26,27], since this is not their focus.

More advanced strategies have also been suggested to describe the 
importance of features in DR layouts using Shapley values [12], by 
contrastive analysis [11], or by detecting the most important features 
2 
to describe groups [13,14,28]. Although effective methods to interpret 
a DR layout, they are post-processes, and thus defining the contribution 
of a specific input feature or requiring it to contribute to the layout’s 
spatialization remains challenging since what is visible is constrained 
by the DR method, and features can have near-zero contribution [9]. 
Neither are there guarantees that ordered values of a feature will follow 
an order in the final layout, making the interpretation of ordered 
values, such as numerical data features or external information, such 
as time or ranking, very hard or even impossible.

Our approach, DimenFix, focuses on solving this issue, allowing for 
the order of a specific data feature or any external information to be 
explicitly represented while still retaining the original distances and 
local neighborhoods of the high-dimensional space as much as possible 
in the produced layout.

3. Methodology

3.1. Overview

DimenFix is a strategy that can be applied to modify virtually any 
Gradient-Descent (GD) Dimensionality Reduction (DR) method, such 
as t-SNE [16], Force Scheme [15] or UMAP [17], to allow for the 
preservation of a given, ordered, e.g., data feature, or unordered, 
e.g., instances’ labels, one-dimensional attribute by mapping it to one 
of the visual layout axes, from now on called fixed axis. Typically, any 
GD-DR method is free to update the values of all the 𝑛 embedded axes 
in the optimization iterations. DimenFix changes this by allowing only 
(𝑛 − 1) axes to change freely, while constraining the movement of the 
fixed axis.

In more formal terms, let 𝑋 = {𝑥1,… , 𝑥𝑁} ∈ R𝑚 denote the input 
dataset, where 𝑥𝑖 = (𝑥1𝑖 ,… , 𝑥𝑚𝑖 ), 𝑥

𝑗
𝑖 ∈ R, 1 ≤ 𝑗 ≤ 𝑚 are the coordinates of 

a 𝑚-dimensional data instance and 𝑥𝑗 = (𝑥𝑗1,… , 𝑥𝑗𝑁 ) is the 𝑗th feature or 
dimension of 𝑋. Also, let 𝑌 = {𝑦1,… , 𝑦𝑁} ∈ R𝑛 be the final embedding, 
where 𝑦𝑖 = (𝑦1𝑖 ,… , 𝑥𝑛𝑖 ), 𝑦

𝑗
𝑖 ∈ R, 1 ≤ 𝑗 ≤ 𝑛 is the mapping of 𝑥𝑖 to the 𝑛-

dimensional (visual) embedding space, and let 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑁} be 
the values to be mapped to the fixed axis, that is, the selected feature 
of 𝑋 or the external metadata, such as labels for the data instances, to 
be preserved.

To adapt a GD-DR technique to use DimenFix, the initial embedding 
configuration is set so that the fixed axis receives the values in 𝑉 , 
and the others are randomly initialized — the free axes could also 
be initialized deterministically, for instance, using PCA. Without loss 
of generality, in this initialization, we set 𝑦1𝑖 = 𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑁 and 
𝑦𝑗𝑖 ∼ 𝑈 ([0, 1]), 1 ≤ 𝑖 ≤ 𝑁, 2 ≤ 𝑗 ≤ 𝑛 where 𝑈 ([0, 1]) denotes a 
random number uniformly sampled in [0, 1]. After that, at every 𝑘
iterations of the optimization, the gradient ∇𝐸(𝑌 ) is calculated, where 
𝐸(𝑌 ) is the embedding cost function, the new embedded coordinates 
𝑌  are computed, and the resulting embedding 𝑌  at such an iteration 
is created by bounding the fixed axis to a range in the visual layout 
while the other (𝑛 − 1) axes are freely updated. Algorithm 1 describes 
this process. Notice that, considering the overall process, DimenFix only 
needs access to the updated projection coordinates resulting from a 
gradient descent iteration (line 6 of the algorithm) to execute a pull. 
In that sense, it is agnostic to the gradient descent strategy. Algorithm 
1 defines a simple gradient descent process for illustration, but other 
improvements or modifications could be included, such as a more 
sophisticated termination criterion, without implying any changes to
DimenFix. We only need to guarantee that a final pull is executed at 
the end of the process (line 19 of the algorithm).

In this process, two main components need to be defined, namely, 
the range of movement which each data instance can occupy on the 
fixed axis and the pulling mode strategy to bound the movement of the 
instances inside a range. These two components, composing the core of
DimenFix, are discussed next.
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Algorithm 1: General DimenFix pseudocode for gradient-descent 
like methods.

Data: 𝑋 = {𝑥1,… , 𝑥𝑁}: dataset
𝜂: learning rate
𝑚𝑎𝑥: maximum number of iterations
𝑉 = {𝑣1,… , 𝑣𝑁}: feature/metadata to be preserved
𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = {𝑜𝑟𝑑𝑖𝑛𝑎𝑙, 𝑛𝑜𝑚𝑖𝑛𝑎𝑙}: feature/metadata type
𝑘: number of iterations to pull the points
𝛼: Overlap control between ranges
Result: 𝑌 : final embedding

1 𝑦1𝑖 ← 𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑁
2 𝑦𝑗𝑖 ∼ 𝑈 ([0, 1]), 1 ≤ 𝑖 ≤ 𝑁, 2 ≤ 𝑗 ≤ 𝑛
3 𝑌 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑌 , 𝑉 )
4 𝑅 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑟𝑎𝑛𝑔𝑒𝑠(𝑌 , 𝛼)
5 while 𝑖𝑡 < 𝑚𝑎𝑥 do
6 𝑌 ← 𝑌 − 𝜂∇𝐸(𝑌 )
7 if (𝑖𝑡 mod 𝑘) = 0 then
8 if 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 then
9 𝑌 ← 𝑟𝑜𝑡𝑎𝑡𝑒(𝑌 )
10 𝑌 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑌 , 𝑉 )
11 𝑅 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑟𝑎𝑛𝑔𝑒𝑠(𝑌 , 𝛼)
12 end 
13 𝑌 ← 𝑠𝑐𝑎𝑙𝑒(𝑌 )
14 𝑌 ← 𝑝𝑢𝑙𝑙(𝑌 , 𝑌 , 𝑅)
15 end 
16 𝑌 ← 𝑌
17 𝑖𝑡 = 𝑖𝑡 + 1
18 end 
19 𝑌 ← 𝑝𝑢𝑙𝑙(𝑌 , 𝑌 , 𝑅)

3.2. Range of movement

To each point 𝑦𝑖 a position 𝑦𝑖 ∈ 𝑌  in the fixed axis and a range 
𝑅𝑖 = [𝑦𝑖 − 𝛼 × 𝐵𝑖, 𝑦𝑖 + 𝛼 × 𝑇𝑖] are associated, defining the preferred po-
sition for 𝑦𝑖 and the section of the fixed axis it can occupy, where 𝐵𝑖
defines the lower limit and 𝑇𝑖 the upper limit of the range around 𝑦̂𝑖. 
In our approach 𝛼 ≥ 0; when 𝛼 = 0, 𝑦𝑖 is fixed to the position 𝑦𝑖; when 
0 < 𝛼 ≤ 1, 𝑦𝑖 can move in [𝑦𝑖−𝐵𝑖, 𝑦𝑖+𝑇𝑖]; otherwise, 𝑦𝑖 can get outside of 
such an interval. Defining how 𝑦𝑖, 𝐵𝑖, and 𝑇𝑖 are set depends on whether 
the values 𝑉 = {𝑣1,… , 𝑣𝑁} used in the fixed axis are ordinal (where >
and < operations apply), e.g., a ranking, or nominal (where only = and 
≠ operations apply), e.g., labels.

3.2.1. Ordinal values
Without losing generality, let 𝑣1 ≤ 𝑣2 ≤ ⋯ ≤ 𝑣𝑁 , then 𝑦𝑖 = 𝑣𝑖, and 

𝐵𝑖 = (𝑣𝑖 − 𝑣𝑖−1)∕2 and 𝑇𝑖 = (𝑣𝑖+1 − 𝑣𝑖)∕2. In this way, the preferred 
positions 𝑌  are the values to be preserved given by 𝑉  and the intervals 
between consecutive values do not overlap while all the available space 
on the fixed axis is used, and an interval 𝑅𝑖 contains the value 𝑣𝑖 that 
should be preserved in the fixed axis. The only exceptions to this range 
definition are the first and last values of 𝑉 . For 𝑣1 and 𝑣𝑁 , 𝑇1 and 𝐵𝑁
do not change, but since there are neighbors only on one side of the 
range, it is symmetrized, so that 𝐵1 = 𝑇1 and 𝑇𝑁 = 𝐵𝑁 . In summary, 
the size and position of the ranges assigned to each point 𝑦𝑖 are defined 
by the order and magnitude of the values in 𝑉 .

3.2.2. Nominal values
For nominal values, the strategy for defining ranges and positions is 

more involved since such values cannot be naturally ordered. Consider 
that 𝑉  contains 𝐾 unique values, for instance, 𝐾 different labels. In our 
strategy, suppose 𝑌 = 𝑌1 ∪⋯ ∪ 𝑌𝐾 is composed of 𝐾 disjoint partitions 
defined by the 𝐾 unique values in 𝑉  and that 𝛷(𝑌 ) returns the order 
𝑖

3 
Fig. 1. Rotation process to solve partitions’ misalignment problems. Points are over-
lapped close to the range boundaries in case a projection with poorly aligned partitions 
with the fixed axis (A) is pulled (B). Better results are obtained if a rotation is executed 
to first align the partitions’ separation with the fixed axis (C) before the pulling is 
executed (D).

in [1, 𝐾] ∈ N of a partition 𝑌𝑖, and that, without loss of generality, 
𝛷(𝑌1) ≤ 𝛷(𝑌2) ≤ ⋯ ≤ 𝛷(𝑌𝐾 ), the position of 𝑦𝑖 ∈ 𝑌𝑗 is defined as 
𝑦𝑖 = (2×𝛷(𝑌𝑗 )−1)∕(2×𝐾), and the minimum 𝐵𝑖 and maximum 𝑇𝑖 values of 
the range are defined as 𝐵𝑖 = (𝑦𝑖−1)∕(2×𝐾) and 𝑇𝑖 = (𝑦𝑖+1)∕(2×𝐾). So that all 
the instances belonging to the same partition receive the same preferred 
position and range.

In this process, the missing element is the strategy to order the 
partitions 𝑌𝑖. In the first execution of DimenFix, 𝛷 defines a random 
order for the partitions; however, as the GD process progresses, 𝛷
defines an ordering for the partitions so that similar partitions are close 
in the ordering. Taking advantage of the fact that DR techniques focus 
on preserving similarity structures of the original space, in this process, 
we first calculate the mean 𝑚𝑖 of each partition 𝑌𝑖 considering the fixed 
axis in the current layout 𝑌 , that is, 𝑚𝑖 =

∑

𝑦𝑗∈𝑌𝑖 (𝑦
1
𝑗∕|𝑌𝑗 |). After that, 

the partitions are ordered based on their means, and 𝛷 returns the 
position of each partition in this ordering. This strategy ensures that 
the ordering of the nominal values on the produced layout 𝑌  considers, 
up to an extent, the similarity among the groups of instances with the 
same nominal value.

Extreme cases may happen when the partitions 𝑌1,… , 𝑌𝐾 are mis-
aligned with the fixed axis; for instance, when the partitions overlap 
with respect to the fixed axis. When this happens, layouts are usually 
of poor quality, even if the partitions are well separated in the visual 
layout by considering the free axes. To prevent this from happening, 
before ordering the partitions, we rotate the layout 𝑌  to align the 
partitions’ separation with the fixed axis. Fig.  1 illustrates this process 
where three reasonably well-separated partitions overlap on the fixed 
𝑦-axis. Based on the partitions’ centroids, we first find the two farthest 
partitions in 𝑌  (dark blue and brown). Considering these two partitions, 
suppose that 𝑝0 is the centroid of the partition with the minimum 
coordinate in the fixed axis, and 𝑝1 is the centroid of the other partition 
(Fig.  1(A)). First, 𝑌  is translated so that 𝑝0 is at the origin and then 
𝑌  is rotated so that the vector 𝑣 = (𝑝1 − 𝑝0) (red segment) is aligned 
(parallel) with the fixed axis (Fig.  1(C)). The misalignment issue in case 
the rotation is not executed is represented in Fig.  1(B) after a Gaussian 
pulling is executed (see Section 3.3.2). Points are highly overlapped 
close to the boundary between ranges. With the rotation (Fig.  1(D)), 
this problem is reduced, and the overall point distribution is better 
preserved.
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3.3. Pulling mode

As the GD process progresses, some points 𝑦𝑖 may get out of the des-
ignated range 𝑅𝑖 = [𝑦𝑖 − 𝛼 × 𝐵𝑖, 𝑦𝑖 + 𝛼 × 𝑇𝑖]. So, at every certain number 
of iterations of the GD process, such points are pulled back to their 
ranges. We developed 3 different modes for pulling points depending 
on the complexity and final application. They are explained in the 
following subsections.

3.3.1. Clipping pulling mode
The simplest pulling mode is Clipping. The general idea is to pull a 

point 𝑦𝑖 to the limits of 𝑅𝑖 if it gets outside of the range. Let 𝑦1 be the 
current calculated values for the fixed axis. In the clipping mode, the 
values 𝑦1𝑖 , 1 ≤ 𝑖 ≤ 𝑁 are updated to 

𝑦1𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑦𝑖 − 𝛼 × 𝐵𝑖 𝑦1𝑖 < 𝑦𝑖 − 𝛼 × 𝐵𝑖

𝑦𝑖 + 𝛼 × 𝑇𝑖 𝑦1𝑖 > 𝑦𝑖 + 𝛼 × 𝑇𝑖
𝑦1𝑖 otherwise,

(1)

composing the function 𝑝𝑢𝑙𝑙() of line 14 of Algorithm 1.
Although a very simple process, the clipping mode is preferred when 

the values 𝑉  to be fixed are ordinal and the intention is to produce 
a layout that preserves such values as much as possible. This can be 
achieved by reducing the value of 𝛼, since with 𝛼 = 0, the fixed axis 
will preserve the same values in 𝑉 .

3.3.2. Gaussian pulling mode
The clipping pull mode allows moving a point on the fixed axis 

within a certain range. However, the hard threshold may cause the 
movement of the points in the fixed axis to be inconsistent when 
compared to the other axes. The Gaussian pull mode produces better 
results by allowing points to go beyond the range threshold using a 
Gaussian function. Under this mode, we use a Gaussian to weight the 
moving force. The farther the point is from its preferred position 𝑦̂𝑖, the 
harder it is to move. As a result, some points may slightly move out of 
the predefined range 𝑅𝑖, resulting in a more consistent movement.

Let 𝛥𝑖 be the difference between the preferred and current positions 
of the fixed axis for the point 𝑦𝑖, that is, 𝛥𝑖 = 𝑦̂𝑖 − 𝑦1𝑖  – without loss of 
generality, we always fix the first axis of the produced layout. Since 
when 𝛥𝑖 = 0 the moving force should be maximum (equal to 1), the 
mean in the Gaussian should be 𝜇𝑖 = 0, and the Gaussian weighting 
function can be defined as 

𝑓 (𝛥𝑖) =
1

𝜎𝑖
√

2𝜋
exp

(

−
𝛥2𝑖
2𝜎2𝑖

)

, (2)

so that 𝑓 (𝛥𝑖) defines a fraction of the actual moving distance along the 
fixed axis for the point 𝑦𝑖.

To calculate 𝜎𝑖, consider a user-defined confidence interval 0 < 𝐶𝐼
< 1. First, we use the 𝑧-score table to find the 𝑧-score (𝑧) where (1−𝐶𝐼)∕2
is the area on the left side of the significance interval. This 𝑧-score refers 
to how far a value is from the mean in a standard normal distribution, 
and we use it as a reference to change the shape of the Gaussian 
function. With 𝑧, a maximum interval spread of 

𝛽𝑖 =

{

|𝑦̂𝑖 − 𝐵𝑖| 𝑦1𝑖 < 𝑦̂𝑖
|𝑦̂𝑖 − 𝑇𝑖| otherwise,

(3)

is defined where 𝑦1𝑖  is the current calculated value for the fixed axis, 
and, based on the condition 𝜇𝑖 = 0, we use the 𝑧-score equation 
(𝑧 = (𝛽𝑖−𝜇𝑖)∕𝜎𝑖) to calculate 𝜎𝑖 as 

𝜎𝑖 =
𝛽𝑖
𝑧 . (4)

Knowing that when 𝛥𝑖 = 0, 𝑓 (𝛥𝑖) reaches its maximum, we can adapt 
𝑓 (𝛥 ) to weight how much the distance (𝛥 ) calculated by the GD-DR 
𝑖 𝑖
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method should be used to move a point by bounding 𝑓 (𝛥𝑖) to [0, 1]. For 
this, we divide 𝑓 (𝛥𝑖)∕𝑓 (0), resulting in 

𝑓 (𝛥𝑖) =

1
𝜎𝑖
√

2𝜋
exp

(

−
𝛥2𝑖
2𝜎2𝑖

)

1
𝜎𝑖
√

2𝜋
exp(0)

= exp
(

−
𝛥2𝑖
2𝜎2𝑖

)

, (5)

and apply such weighting scheme to reduce the distance 𝛥𝑖 a point 𝑦𝑖
has moved outside its range using 

𝑦1𝑖 = 𝑦̂𝑖 +
(

𝛥𝑖 × exp
(

−
𝛥2𝑖
2𝜎2𝑖

))

. (6)

This pulls the point 𝑦𝑖 closer to its preferred position 𝑦̂𝑖 with more force 
as it gets farther from it, and defines the 𝑝𝑢𝑙𝑙() function on line 14 of 
Algorithm 1.

3.3.3. Rescaling pulling mode
The Gaussian pulling mode improves over the Clipping mode by 

reducing the number of points that accumulate close to the limits 
of the ranges 𝑅𝑖 assigned to the points, especially when 𝑉  contains 
nominal values. However, the shape of the groups of points sharing 
the same nominal values is affected. This gives rise to the last type of 
pulling mode, the Rescaling. The rescaling mode is specifically for cases 
where 𝑉  is nominal. The idea is to normalize each disjoint partition 
𝑌1 ∪⋯ ∪ 𝑌𝐾 = 𝑌  that contains points sharing the same nominal value 
in 𝑉  to fit within the designed range.

Considering that 𝑚𝑖𝑛𝑗 and 𝑚𝑎𝑥𝑗 are the minimum and maximum 
values on the fixed axis for the points in the partition 𝑌𝑗 , and that 
𝑅𝑖 = [𝑦𝑖 − 𝛼 × 𝐵𝑖, 𝑦𝑖 + 𝛼 × 𝑇𝑖] is the range assigned to the points in 𝑦𝑖 ∈
𝑌𝑗 , the values 𝑦1𝑖 , 𝑦𝑖 ∈ 𝑌𝑗 are updated to 

𝑦1𝑖 = (𝑦𝑖 − 𝛼 × 𝐵𝑖) +
𝑦1𝑖 − 𝑚𝑖𝑛𝑗

𝑚𝑎𝑥𝑗 − 𝑚𝑖𝑛𝑗
(𝛼 × (𝐵𝑖 + 𝑇𝑖)) (7)

where 𝑦𝑖 is the current computed position for the point 𝑦𝑖, constituting 
the function 𝑝𝑢𝑙𝑙() of line 14 of Algorithm 1.

3.4. Scaling

Before pulling, the embedding coordinates are translated and
rescaled (function scale() on line 13 of Algorithm 1) to match the 
defined intervals (𝑅𝑖). This is necessary to avoid distortions, espe-
cially when the values 𝑉  to be fixed are nominal, so discrepancies 
in magnitude between the fixed and the free axes are minimized. For 
ordinal values, rescaling may not be necessary, but since DimenFix
does not have control over the gradient-descent process, depending 
on the internal implementation of the DR technique, distortions may 
happen, not only due to scaling but also due to translations. In this 
process, we first center the current projection 𝑌 = 𝑌 − 1∕𝑁

∑

𝑦𝑖∈𝑌
(𝑦𝑖), 

and get the maximum (𝑚𝑎𝑥𝑟𝑎𝑛𝑔𝑒) and minimum (𝑚𝑖𝑛𝑟𝑎𝑛𝑔𝑒) values in the 
ranges 𝑅𝑖 and the maximum (𝑚𝑎𝑥𝑎𝑥𝑖𝑠) and minimum (𝑚𝑖𝑛𝑎𝑥𝑖𝑠) values 
on the fixed axis. Then 𝑌  is scaled by 𝜎 = (𝑚𝑎𝑥𝑟𝑎𝑛𝑔𝑒−𝑚𝑖𝑛𝑟𝑎𝑛𝑔𝑒)∕(𝑚𝑎𝑥𝑎𝑥𝑖𝑠−𝑚𝑖𝑛𝑎𝑥𝑖𝑠)
and translated to the range, resulting in 𝑌 = (𝑌 × 𝜎) + (𝑚𝑎𝑥𝑟𝑎𝑛𝑔𝑒 +
𝑚𝑖𝑛𝑟𝑎𝑛𝑔𝑒)∕2. This guarantees that the projection coordinates have similar 
magnitudes and are ‘‘close’’ to the values (𝑉 ) Dimenfix is aimed to 
preserve before the pulling.

Since scaling is necessary, if 𝑉  is composed of non-quantitative or-
dinal values, before the process starts, they need to be transformed into 
quantitative values to compose 𝑌 , the preferred positions. A straight-
forward strategy would be to map the order of the elements in 𝑉
into sequential integers. In other words, and without loss of generality, 
suppose 𝑣1 < 𝑣2 < ⋯ < 𝑣𝑁 ,∀ 𝑣𝑖 ∈ 𝑉 , the transformation could be 
𝛹 (𝑣𝑖) = 𝑖. When 𝑉  is nominal, order and magnitude are irrelevant since 
these are adjusted by DimenFix (see Section 3.2) during the GD process.
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Fig. 2. Force Scheme and Force Scheme DimenFix adaptation layouts fixing datasets features (ordinal) to the 𝑦-axis. When particular features are mapped to color, it is possible 
to see that they do not smoothly vary on the Force Scheme layouts (from small to large values). Hence, reasoning about feature values and point positions is challenging. On
DimenFix projections, this can be attained by fixing such features in one of the projection axes.
4. Results

In this section, we discuss quantitative and qualitative results by 
adapting Force Scheme and t-SNE to DimenFix and fixing one di-
mension during the gradient descent process. We analyze DimenFix
adaptations qualitatively and quantitatively, comparing them to the 
original versions of t-SNE and Force Scheme. For qualitative results, 
we use four benchmark datasets from the UC Irvine Machine Learning 
Repository [29]: Iris (4 dimensions, 150 instances), Wine (13 dimen-
sions, 178 instances), Breast Cancer (30 dimensions, 569 instances), 
and Segmentation (19 dimensions, 2,310 instances), covering different 
scenarios where DimenFix can be useful.

In our first test, we compare the original Force Scheme (FS) and 
the DimenFix Force Scheme (FS-DF) adaptation layouts in Fig.  2. To 
generate such layouts, we randomly select one of the features of the 
original datasets to execute DimenFix (the feature values are assigned 
to the 𝑦 axis). The features are: sepal width for Iris, nonflavanoid_phenols
for Wine, worst texture for Breast Cancer, and region-centroid-row for
Segmentation. For each layout, we show two figures side-by-side, the 
left colored by the class label and the right colored by the selected 
dataset features (where darker indicates larger values).

In the Force Scheme (FS) projections, it is possible to notice that 
the selected features do not smoothly vary across the layout from 
small to large values. The values are mixed without a clear trend. On 
the Iris projection, there is a variation pattern inside the two visible 
big groups, but interestingly, the tendencies for these groups do not 
align. The small group somewhat aligns with the 𝑦 axis, while for 
the larger group, the alignment is not clear. So, although not perfect, 
some global trend can be observed. For the remaining three datasets, 
global tendencies are hardly visible. For the Segmentation dataset, 
most low and high values are somewhat associated with well-defined 
clusters, but in general, small and large values are mixed for the three 
datasets. When analyzing these layouts, not much can be said about the 
importance of such features to the produced layouts, and inferring the 
values of such features based on points’ positions is not possible.
5 
The Force Scheme DimenFix (FS-DF) results using Clipping and
Gaussian modes attain much better results in terms of global tendencies 
regarding fixed features. Interestingly, for the Breast Cancer and Iris
datasets, aligning one of the layout axes with a specific feature of the 
dataset does not have an evident negative impact on class separation. 
For the Segmentation and Wine, the separation is more impaired, with 
more class outliers presented on the produced layouts, although some 
separation is still present. From an analytical point of view, this allows 
for the execution of some interesting tasks; for instance, it is possible 
to verify the instances for which the selected feature has a negative 
impact in terms of group separation, and the ones that can be clearly 
differentiated based on such a feature.

An alternative, straightforward strategy to align 2D DR layouts with 
a given feature would be to create a one-dimensional layout to define 
one of the embedded axes and the other axis to be set to receive the 
selected feature values. The resulting layouts using this strategy for the 
Force Scheme (FS) technique are also shown in Fig.  2, identified as FS-
1D. The results are indeed not bad; the 𝑦-axis represents the selected 
feature correctly, and the resulting layouts seem consistent, with groups 
still somewhat well separated — we later show that quantitatively, 
in terms of distance and neighborhood preservation, these layouts are 
not as good as the ones produced by DimenFix. However, an impor-
tant drawback can be observed for the Iris dataset. Unlike the other 
datasets, where the selected features cover a range of different values, 
in the Iris, many instances have the same values and are defined in 
regular intervals (almost discrete), resulting in a ‘‘line’’ pattern with 
substantial overlap and poor use of the visual space.

The issue with discrete values is magnified when the values to be 
fixed are nominal with only a few different values, for instance, when 
data labels are used. Examples of using label information to fix one 
of the embedded axes are shown in Fig.  3. In these examples, we show 
the results of the adaptation of t-SNE to use DimenFix, as well as layouts 
using the original t-SNE technique, and layouts using the simple one-
dimensional t-SNE plus class strategy (tSNE-1D) to exemplify one of the 
main benefits of DimenFix. In all DimenFix layouts, groups of instances 
are completely separated by labels in the produced layouts (in these 
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Fig. 3. t-SNE and t-SNE DimenFix adaptation layouts fixing the datasets labels (nominal) to the 𝑦-axis. DimenFix excels when compared with the straightforward idea of using 
a 1D t-SNE projection to define one axis and assigning the label values to the other. DimenFix allows the points to occupy the space between the classes in the 𝑦-axis, and the 
different pulling modes enable different results in terms of data instance groups representation.
s 
examples, we set 𝛼 = 1), while data instances can still occupy the 
available space, resulting in layouts that make much better use of the 
available space to represent the relationships between data instances 
compared to the tSNE-1D strategy, where the same label instances 
occupy the same coordinate on the 𝑦-axis.

As expected, some of the layouts produced using the DimenFix
Clipping pulling mode present apparent ‘‘lines’’ of instances over the 
boundaries between different label ranges. This results from the hard 
threshold employed in this strategy, where any instance moving outside 
its range is clipped to its boundary. This is especially true for datasets 
for which the original t-SNE cannot clearly separate the groups, in our 
examples, the Breast Cancer and Segmentation datasets. These ‘‘lines’’ 
are attenuated when Gaussian and Rescale pulling modes are employed. 
In these examples, we set the confidence interval of the Gaussian mode 
to 𝐶𝐼 = 0.45 to allow but minimize the overlap between different 
groups; only in extreme cases, instances with different labels overlap. 
This is completely avoided by using the Rescale mode. In addition, the 
shape of the groups of instances is better preserved in this mode. For 
instance, for the Breast Cancer dataset, some instances are dissimilar to 
instances in their groups. Using the Rescale mode, groups are separated, 
but such instances are positioned far apart from the instances of the 
group they belong to. This is not true for the Gaussian mode, where 
these outliers are hidden.

For all pulling modes, it is possible to set how much the values on 
the fixed axis can overlap. For any mode, if 𝛼 = 0 is used, the result is 
quite similar to the t-SNE-1D in Fig.  3, and all instances having the same 
label overlap on the fixed axis. For 0 > 𝛼 ≥ 1, the instances of different 
labels only overlap in the boundaries between neighbor ranges when 
𝛼 = 1. For 𝛼 > 1, overlap starts to occur. Fig.  4 shows the results of 
varying 𝛼 and the degree of overlap as it increases using the Rescale
pulling mode. From 𝛼 = 1.25, overlap between class-outlier instances 
starts to occur, and when 𝛼 = 2.0, the two existing ranges fully overlap 
and the layout becomes very similar to the original t-SNE layout in Fig. 
3. In this example, the classes are separated because the data allow 
6 
Fig. 4. Results of the t-SNE DimenFix adaptation for the Breast Cancer dataset with 
varying 𝛼. As 𝛼 increases, the separation between the two different groups of instances 
reduces, and the class-outlier instances start overlapping.

that, not because of DimenFix, although the classes are somewhat better 
separated than the original layout.

Lastly, we performed a quantitative analysis. Besides the four dataset
used in the qualitative analysis, we added three datasets used in 
the survey [18] to cover more diverse scenarios, including the imdb
(700 dimensions, 3250 instances), epileptic (178 dimensions, 5750
instances), and spambase (1024 dimensions, 3250 instances). In this 
analysis, we measure the pairwise distance preservation using Kruskal 
stress [30], the neighborhood preservation using trustworthiness/con-
tinuity [31], and class separation using distance consistency [32]. For 
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Fig. 5. Comparison of 1D and 2D Force Scheme and t-SNE with different DimenFix modes (clipping (C), Gaussian (G), and rescale(R)) for fixing the second axis to an ordinal 
value. DimenFix allows for feature value preservation with only a small loss of quality of the attained layouts in terms of distance and neighborhood preservation.
Fig. 6. Comparison of 1D and 2D Force Scheme and t-SNE with different DimenFix modes (clipping (C), Gaussian (G), and rescale(R)) for fixing the second axis to class labels. 
In general, as can be expected, distance and neighborhood preservation drop when nominal values are fixed, but the decrease is not too substantial, and DimenFix is consistently 
better than the simple 1D approximations.
trustworthiness, continuity, and distance consistency, the larger the 
better. For stress, it is the opposite.

Boxplots summarizing executions fixing dataset features are shown 
in Fig.  5. Each dataset is embedded 20 times, starting with random 
configurations and randomly selecting the fixed feature. Boxplots sum-
marizing executions fixing the dataset labels are shown in Fig.  6. In 
this case, each dataset is embedded five times with random initial 
configurations. We show results of the original Force Scheme (FS) and 
t-SNE techniques (tSNE), the 1D Force Scheme (FS-1D) and 1D t-SNE 
(tSNE-1D) approximations, and the DimenFix adaptations of the Force 
Scheme (FD-DF) and t-SNE (tSNE-DF) considering the different pulling 
modes: clipping (C), Gaussian (G), and rescale(R). In all experiments, 
we set ForceScheme’s maximum number of iterations to 𝑚𝑎𝑥 = 100. For 
t-SNE, such a parameter does not apply, and we used the scikit-learn 
standard parameters, only setting perplexity to 15 and initialization to 
random. For the DimenFix parameters, we set 𝛼 = 1 and the number 
of iterations to pull points to 𝑘 = 10. There are no general rules to set 
𝛼, since it depends on the users’ preference. The number of iterations 
to pull (𝑘) should be set so that the pulling and the GD updates work 
‘‘together’’ to define the final layout. Through experimental results, 
we find 𝑘 = 10 a good compromise between the distortion level per 
iteration introduced by a pulling and the increased cost of executing it. 
However, this can differ for other techniques.

When fixing dataset ordinal features (Fig.  5), as expected, the orig-
inal Force Scheme achieved the best results for stress and the original 
t-SNE for trustworthiness/continuity, since two dimensions are fully 
used to approximate the original distances (and neighborhoods) and 
those techniques are known for their quality in those aspects [18]. 
Nevertheless, in general, the results when fixing features are not much 
worse for both the DimenFix adaptations and the 1D approximations 
(sometimes unexpectedly better), indicating that the resulting layouts 
are somewhat similar to those generated by the original techniques 
with respect to distance and neighborhood preservation. Also, Force 
Scheme DimenFix with Gaussian pulling(FS-DF-G) stress and continuity 
results are better than the 1D approximation (FS-1D and tSNE-1D), 
while trustworthiness attains similar results. The opposite happens 
for t-SNE (tSNE-DF), stress and trustworthiness are better for the 1D 
approximation, while continuity attains similar values. This indicates 
that the use of information from both dimensions in the gradient 
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descent process is beneficial when adapting the Force Scheme, a global 
technique, while this is not observed for the t-SNE adaptation, a local 
technique. Nevertheless, the difference is marginal, and either of the 
two types of adaptations could be used interchangeably.

However, when nominal labels are fixed (Fig.  6), overall preser-
vation decreases more substantially (stress, truthworthiness, and con-
tinuity). This is expected given the labels’ discrete nature and the 
non-ordinal relationship between the labels’ values in any of these 
datasets (label 1 is not larger than label 0). This has a more pronounced 
impact on the 1D approximations, with DimenFix presenting better 
results in at least one of the pulling modes, indicating that the proposed 
nominal rotation and ordering strategies address this ordering issue, 
especially for the Force Scheme adaptations. Not surprisingly, DimenFix
presents better class separation (distance consistency) when compared 
with the original Force Scheme and t-SNE techniques since labels are 
not used by such techniques. Notice that the 1D approximations also 
present very good results in terms of distance consistency. Distance 
consistency measures the percentage of points that are closer to the 
centroid of their own class than to the centroids of the other classes. 
Since the 1D approximations position the points on lines (see Fig. 
3), distance consistency can be high, but the other metrics show that 
the layouts are distorted. This further indicates that taking the fixed 
feature/class into consideration in the optimization process results in 
more precise projections that can convey relationships between features 
or classes and the point positions. This is not usually possible using the 
original Force Scheme and t-SNE techniques.

5. Conclusion and future work

This paper presents a novel meta-Dimensionality Reduction (DR) 
strategy, DimenFix, built upon any gradient-descent-based DR method. 
Unlike normal DR methods, DimenFix allows users to fix a feature/class 
of the dataset (or any external data, for example, labels) to an axis in 
the created layout without affecting its quality (too strongly) so that 
the spatialization reflects the fixed values. With this hybrid strategy 
joining DR and scatter plot capabilities, different analytical goals can 
be achieved, for instance, (a) better preserving a particular feature of 
the dataset while simultaneously reducing the dimensionality and (b) 
understanding the data distribution with respect to a specific feature 
specified by the user.
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Despite promising results, claims about high-quality distance and 
neighborhood preservation are constrained by the limited set of tests 
we executed. Although we tested on datasets with different dimen-
sionalities and sizes, we do not claim any guarantee of high-quality 
preservation holding to other datasets. Thus, whenever executing Di-
menFix adaptations, the resulting layout should be validated using 
metrics of interest (e.g. stress and trustworthiness). However, there is 
good evidence that DimenFix will be consistently better than simple 
1D approximations when nominal values are fixed, e.g., dataset labels. 
As such, if a task involves the analysis of a particular feature, or if it 
includes external information, for instance, labels, time, or a ranking,
DimenFix should be considered as an option.

The adaptation of other gradient descent DR techniques to use Di-
menFix, such as UMAP [17] should be straightforward for most existing 
techniques. DimenFix is minimally intrusive as it only requires access 
to the projection coordinates after an update of the GD iteration (𝑌
in line 6 of Algorithm 1). The only important consideration is that a
DimenFix pull needs to be the last step to be executed in a DR process. 
Modifications in the projection coordinates after a pull, such as any 
required post-processing, may negatively influence the results. In case 
any technique needs such a pre-processing, we do not recommend the 
use of DimenFix, or we suggest executing a DimenFix pull after such 
pre-processing.

DimenFix could benefit from some future work. The rotation for 
nominal values we propose is simple and effective; however, we are 
aligning the layout considering only the two most distant groups of 
points. A different strategy involving an optimization to consider all 
groups of instances could potentially result in more precise layouts. The 
challenge is to create a strategy that is not too computationally expen-
sive. Further, more sophisticated pulling strategies could be designed. 
In the proposed strategies, Clipping, Gaussian, and Rescale, the layout 
points move independently and parallel to the fixed axis, since this re-
sults in the smallest overall displacement. However, a better distance or 
neighborhood preservation could be achieved if points move together, 
allowing diagonal movements. Once again, the challenge is to define 
a strategy that does not affect the overall computational complexity of 
the underlying DR technique. In this paper, our focus was to keep the 
elements involved simple but effective, and our complexity is O(𝑁), 
where 𝑁 is the number of data instances for any of the steps proposed 
(range and position calculation, rotation, ordering, and pulling).

Finally, the way we present DimenFix allows setting the dimension-
ality of the projection 𝑌  to any number (considering the underlying 
DR strategy also supports that), for instance, allowing the creation of 
3D projections without any modification in the proposed strategies. 
Although 3D projections require more sophisticated interactive envi-
ronments and are prone to occluding problems, that may be beneficial 
for DimenFix layouts since the gradient descent process recovers the 2
degrees of freedom as in 2D projections, potentially leading to better 
distance and neighborhood preservation. Also, this opens the possibility 
of designing a pulling strategy that results in one of the orthogonal 
views of the 3D projection being the same as the 2D projection, so the 
3D representation would contribute to a more informative exploratory 
process. Further investigation of 3D DimenFix layouts is left for future 
work.
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