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a b s t r a c t

The exploration of volumetric datasets is a challenging task due to its three-dimensional nature. Seg-
menting or classifying the volume helps to reduce the dimensionality of the problem, but there remains
the issue of searching through the feature space in order to find regions of interest. This problem is
aggravated when the relation between scalar values and spatial features is unclear or unknown. To aid in
the identification and selection of significant structures, interactive exploration methods are important,
as they help to correlate the volumetric rendering with the scalar data domain. In this work, we present a
semi-automatic method for exploring volumetric datasets using a graph-based approach. First, we
automatically classify the volume from a 2D histogram, following ideas from previous proposals. Then,
through a graph structure with dynamic edge weights, a hierarchy is generated to identify similar
structures. The final hierarchy allows for an interactive and in-depth volume exploration by splitting,
joining or removing regions in real-time.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Volume visualization has grown to be an accepted and useful
tool in many communities [1]. However, due to its volumetric
nature, naively applying rendering techniques may lead to a poor
inspection of the dataset's internal structures. In most situations,
at least some effort must be placed into segmenting the volume or
designing transfer functions to have a clear insight about the
feature space.

By separating the volume into regions, internal structures can
be better isolated and visualized. Nevertheless, volumetric seg-
mentation and classification is a challenging task, and for the
general case it still requires manual intervention [2,3]. Further-
more, the segmented regions must be presented in a meaningful
way as their correlation with the volumetric rendering is impor-
tant to provide an intuitive exploration of the dataset.

Transfer functions can further help the visualization by map-
ping ranges of scalar values to colors and opacities, but also imply
in some, either manual or automatic, segmentation of the volume.
Moreover, when going beyond one-dimensional transfer functions,
their design becomes a complex task [4].

The issue is even more aggravated if there is no deep under-
standing of the dataset beforehand, for example, when one is
exploring the data without previous knowledge about how its
internal structures relate to the scalar values. Even for researchers
in visualization, sometimes it is hard to extract meaningful images
from volumetric data.

Motivated by the need to intuitively and interactively explore a
volumetric dataset, we propose a method to navigate a graph-
based hierarchy generated from a previous classification of the
volume. The hierarchy generation only takes around one minute or
less, and once ready, exploration can be performed interactively by
hiding, splitting and joining regions. It may serve as an initial
exploration of the feature space to quickly highlight the internal
structures (Fig. 1), or as a first step in designing transfer functions.
The main contribution of our proposal is twofold:

� our graph-based structure is compact and efficient, allowing for
real-time exploration, and a natural correlation of regions in the
2D domain and the volumetric rendering;

� by fine controlling the hierarchy generation we are able to
isolate noise regions and produce a balanced structure that
keeps most relevant segments near the top of the hierarchy,
avoiding loading the user with tedious tasks.

The paper is divided into the following manner. In Section 2 we
review the most related works and those that inspired our
approach. In Section 3 we briefly overview Wang's method for
automatically segmenting the volume's 2D histogram. To achieve a
balanced structure from the segmentation, we propose new cri-
teria to join segments as described in Sections 4.1 and 4.2. In
Section 5 we describe how the hierarchy can be interactively
explored. Results are shown in Section 6, followed by conclusions
and future research directions in Sections 7 and 8, respectively.
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Fig. 1. The images show the Head dataset at three different moments during exploration. The bottom figures are the corresponding histogram cells that are being rendered.
The red and purple regions had their opacity values manually reduced. Between the first and second images the purple region is deleted. In the sequence, the red region is
also deleted, remaining only the region representing the skull. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)
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2. Related work

Several proposals seek to segment the volume or design
transfer functions in a semi-automatic or automatic fashion. Other
researchers have focused on how to interactively explore the
feature domain. Among these, we cite the most relevant methods
in regard to our work. For a recent and more in depth state of the
art report on the topic, we refer the reader to [5].

Huang and Ma [6] propose the RGVis, an interactive region-
growing method to segment the volume and generate transfer
functions. Correa and Ma [7] propose a size-based criterion to
classify the volume. In another work, they further propose ambi-
ent occlusion as a classification criterion [8], and later introduce
the idea of visibility histograms as a way to design transfer func-
tions [9].

Kniss et al. [10] propose a collection of widgets to interactively
design multidimensional transfer functions. Park and Bajaj [11]
describe a method that specifically alleviates the issue of over-
lapping features in the 2D histogram space. Pinto and Freitas [12]
propose a method for designing multi-dimensional transfer func-
tions by reducing the dimensionality, where the exploration
occurs on a reduced two-dimensional space.

Wu and Qu [13] propose a system to manipulate transfer
functions from the direct volume rendering, using an optimization
approach. Users can fuse and delete regions directly from the 3D
view. In a similar direction, Guo et al. [14] introduce a What You
See Is What You Get system for volume visualization, where the
user explores the volume through sketches: operations such as
coloring, changing opacity, erasing, and visual enhancements are
directly applied on the volume. In a more recent work, Soundar-
arajan and Schultz [4] also propose an approach to directly interact
in the spatial domain, and discuss several classification techniques
to aid in this task. Guo et al. [15] represent different transfer
functions from the same dataset in a multi-dimensional scaling
map, the transfer function map. This 2D space can be navigated to
explore features in the volume data.

Tzeng et al. [16] use high-dimensional classification methods,
such as neural networks and support vector machines, to build
transfer functions. They employ a painting interface to segment
regions and train the system to classify the rest of the volume.
Maciejewski et al. [17] build 2D transfer functions using a non-
parametric kernel density estimation to group similar voxels. After
generating the function the user can further join, inflate or shrink
regions. Praßni et al. [2] describe an uncertainty-aware volume
segmentation, where a guided probabilistic approach is employed
to alert the user about possible misclassifications. Lindholm et al.
[18] describe a boundary aware reconstruction. Their method aims
at reconstructing precise boundaries for each feature with a pie-
cewise continuous model. However, they are only able to visualize
2D slices or small regions using their method due to performance
issues, and rely on manually setting the transfer functions via
widgets to classify the regions. Karimov et al. [3] describe an
editing method to correct volumetric segmentation. Their system
identifies possible segmentation defects and guides the user dur-
ing an editing session. Shen et al. [19] propose a model-driven
method, where a semantic model is used to label the volume's
components.

Ip et al. [20] generate multilevel segmentation based on an
intensity-gradient histogram. They use a hierarchy of normalized-
cuts to segment the volume. From the automatic segmentation it is
possible to interact with the transfer function to further explore
the volume by subdividing or hiding segments.

Jönsson et al. [1] take a different route in exploring volumetric
datasets, and propose a tool that should be intuitive enough for
novice users. Their system is based on the automatic generation of
design galleries to guide the user's choices.

Fujishiro et al. [21] propose the automation of transfer func-
tions based on the analysis of 3D field topology. In a more recent
topology based approach, Wang et al. [22] automatically generate
a 2D transfer function by segmenting the histogram based on the
Morse–Smale theory [23], and using the topological hierarchy
from the work of Bremer and Edelsbrunner et al. [24,25]. They
introduce the notion of persistence as a metric for joining regions
and generating an automatic segmentation. They also build a
limited hierarchy to allow the user to further explore the volume.
3. Histogram generation

We follow the approach by Wang et al. [22] to classify the
volume by segmenting a 2D histogram generated from the voxel
data. We refer to cells as the elements created by the histogram



Fig. 2. Top view of the 6-connected mesh created from the histogram. Each blue
mesh vertex is placed in a histogram bin and connected to six neighbors following
a predetermined pattern. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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Fig. 3. Maximum (in red), minimum (in blue), and saddle points (in green). Three-
folds are converted into three two-fold points to avoid ambiguities when defining
the boundaries. In light-blue are neighbors with lower values than the central
element, and in pink are neighbors with higher values than the central element.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

Fig. 4. A top view of the histogram cells. In this image the histogram frequency
values are not important, only the labels. Maximum points are drawn in red,
minimum in blue, and saddle points in green. The surrounding white area is a flat
zero region and can be considered as empty for illustration purposes. Notice how
between two saddle points there is always a minimum point, thus by following the
descending paths from the saddles a boundary (drawn in black) is formed around
the regions. In some cases the border does not fully divide a region, as happened
within the green region. This is not a problem, as these stray points will be
eliminated in a later step in our approach, when creating the graph structure. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Fig. 5. Maximum points are depicted in red, minimum points in blue, and saddle
points in green. Eliminated saddle points are marked with a red cross, and the
remaining representative saddle point for each pair of adjacent cells is marked with
a black dashed circle. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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segmentation, and to regions when addressing the volume clas-
sification, that is, a region is the group of voxels associated with a
histogram cell. In the rest of this section we briefly describe
Wang's method to segment the histogram.

The 2D histogram is built using as axes any information per
voxel derived from the spatial domain (ex. scalar value and gra-
dient magnitude). From the histogram, a mesh is generated using a
six-connected pattern, as illustrated in Fig. 2. Then, critical points
using the mesh neighborhood are identified, i.e., maximum,
minimum, and saddle points. All other points are labeled as reg-
ular points. To avoid ambiguities, only 2-fold saddles are admitted,
so 3-folds are converted into three 2-fold points, as depicted in
Fig. 3. The histogram cells’ boundaries are created by descending
from saddle points until minimum points are reached (Fig. 4).
After creating the borders, it is trivial to classify regular points
using, for example, a flood fill procedure starting from each
maximum. Refer to [22] for more details.
4. Graph-based hierarchy

We build upon the initial histogram segmentation by proposing
a graph structure to join adjacent cells, and consequently, unify
similar volumetric regions. One of the great advantages of graphs
is that they have a much simpler structure, and thus are easier to
work with than dealing directly with the mesh and relying on
topological operators.

Each cell is represented by its maximum point that defines one
graph vertex. Each saddle point represents a graph edge and
connects two vertices, or maximum points. If there are more than
one saddle point between two cells, the edge will be created using
the saddle point with lower histogram value, which we call the
representative saddle point. The remaining saddle points are
eliminated, as shown in Fig. 5.

Fig. 6 illustrates the graph generated from the structure in
Fig. 5. In the next subsections we describe how we define weights
for the edges. These weights guide the creation of the hierarchy
described in Section 4.2.



Fig. 6. A graph structure is generated by connecting adjacent cells. Maximum
points are painted in red, and the representative saddle points in green. Each
maximum point represents a graph vertex, and each representative saddle point an
edge. Note how the structure now is much simpler than when working directly
with the mesh topology. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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Fig. 7. Profile view of two regions of the histogram, where the heights are relative
to the histogram frequency. The persistence value is defined as the height differ-
ence from the saddle point connecting the adjacent cells, and the lowest maximum
between the two. This figure illustrates two different pairs of cells with the same
persistence value. On the top, cell i is much lower than cell j, and the two max-
imums are closer, while on the bottom they have similar maximum heights and are
farther apart.
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Fig. 8. According to the cell area variation weight w2, cells i and j have similar areas
and should be preserved, while cells j and m should offer less resistance to be
merged. According to the maximum distance variation weight w3, the distance
between cells i and j is greater than the distance between cells j and m, so the
second pair should be joined first.
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4.1. Weight function

It is important to join cells in a controlled manner, since the order
of the join operations will also dictate how one navigates the hier-
archy. The operations on the graph structure (i.e. the histogram cells)
reflect directly on the volume classification and rendering. Cells
representing meaningful volumetric regions, for example, should be
kept separated until the last moment, while we wish to quickly
absorb cells that may represent noise or non-important features.

Wang et al. used the concept of persistence as a single criterion to
unify cells and offered a shallow navigation of the hierarchy. However,
we noted that this criterion alone led to some issues. For example, in
some cases it did not merge adjacent noise regions first, or merged
distinct structures too early. Consequently, more exploration steps are
necessary to isolate the noise or separate important regions.

To this end, we propose a definition of a weight function based
on the original persistence value, and introduce three adjustment
factors. Each factor is based on a criterion of the histogram cells,
such as distance, height, and area, to differentiate similar persis-
tence values. We start by reviewing the persistence criterion, and
then detail and motivate the proposed factors.

4.1.1. Absolute height variation (persistence)
The persistence value is defined as the difference between the

height of a representative saddle point and the lowest maximum
between the two connecting vertices. It reveals the resistance of a
cell to be absorbed by a neighbor with a higher maximum point:

persistence¼min hmaxi ;hmaxj

� �
�hsaddleij ð1Þ

where h is the height of a point, and saddleij is the representative
saddle point that connects cells i and j. Note that the saddle point
is always lower than the two maximum points, hence the persis-
tence value is always positive.

Intuitively, a very shallow valley (saddle point) should offer low
resistance to be absorbed, while a very deep one represents a clear
separation between two peeks. Fig. 7 depicts this concept, and illus-
trates how very different situations might result in the same persis-
tence value, motivating the three adjustment factors introduced below.

4.1.2. Maximum height variation
We would also like to incorporate lower cells to higher cells

first, and leave adjacent cells with similar heights for later. The
first weight factor reflects this criterion:

w1 ¼ 1þhmaxi

hmaxj
ð2Þ

where hmaxi rhmaxj , and w1A ½1;2�.
The maximum height variation weight w1 would prioritize

joining the cells in the top case in Fig. 7, before the bottom one.

4.1.3. Cell area variation
Here we take into consideration the difference between the

cells’ areas:

w2 ¼ 1þAregi

Aregj
ð3Þ

where Areg is the total area of a cell, Aregi rAregj , and w2A ½1;2�.
This second factor prioritizes the union of a small cell with a large

one, instead of joining cells with similar areas. Fig. 8 illustrates this
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Fig. 9. This figure illustrates the fourth merge operation (green dashed line). When
cells 7 and 8 are joined, cell 8 is absorbed by 7 (hmax8 ohmax7 ). However, we still
keep track of the previous state of cell 8. A flag marks the active state of each cell.
The black lines separate regions that were not yet joined. The green box marks the
altered lines for the current iteration. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)

Fig. 10. The remaining cells after the union process for k¼4. The final four active
cells are marked in red in the cells table. The edge list contains the entire history of
join operations. The black lines in the histogram indicate the borders between the
remaining four cells. The edges of the graph on the top right corner indicate the
insertion order of the MST. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)

Fig. 11. The cells of a histogram after the initial segmentation, and after the uni-
fication process. The colors were randomly attributed to the cells. (For interpreta-
tion of the references to color in this figure caption, the reader is referred to the
web version of this paper.)

Fig. 12. A cell can be split by undoing a join operation. To split cell 3, the edge list is
traversed in the reverse insertion order until an edge with index to cell 3 is found
(in this case it is the first visited edge). The edge is removed and placed in the undo
list, and the other cell is restored, in this case cell 7. The two red boxes mark the
lines that were modified during the undo operation. The dotted red-black line in
the histogram indicates the boundary that is restored with the split operation. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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concept. It is important to join small similar cells early on, so they can
be quickly isolated when exploring the hierarchy without splitting the
region multiple times, specially when these cells represent regions
containing only noise.

4.1.4. Maximum distance variation
The last weight regards the distance between the maximum

points of two cells. To keep this factor in the same range ½1;2� as
the previous two, we divide by the maximum possible distance,
that is, the diagonal of the histogram space:

w3 ¼ 1þdistðmaxi;maxjÞ
diag

ð4Þ

where distðpi; pjÞ is the 2D Euclidean distance between the points
pi and pj. Figs. 7 and 8 depict the distance criterion.

The idea is that the inclination to join two cells should be
inversely proportional to the distance between their maximum
points. When the maximum points of two adjacent cells are close,
there is a greater chance that they belong to the same region. For
example, if a cell has all adjacent cells with similar persistence
values, this factor would prioritize a merge with the cell with the
closest maximum point.

4.2. Unifying regions

To unify cells using the described weights, we propose a graph-
based approach using Minimum Spanning Trees (MST). A well
known example of 2D image segmentation based on MSTs is the
work of Felzenszwalb and Huttenlocher [26]. Our weights are,



Fig. 13. Some snapshots of the first interactions to remove noise regions. With four delete operations, we are able to completely isolate the noise regions.

Fig. 14. The final result of the exploration sequence in Fig. 13, followed by the three regions rendered separately.
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however, based on the histogram's frequency values, and not
pixels colors.

We describe a simple modification of the classic Kruskal algo-
rithm for generating the MST, and stop the iterations before
inserting the ðn�kÞ-th edge, where n is the number of edges of the
initial graph, and k is the number of desired regions in the top
level of our hierarchy. Inserting an edge is equivalent to joining
two adjacent cells in our case. At the end of this process the
volume is classified into k regions, where k is defined by the user.
We have noted experimentally that k¼6 is a fair starting value,
and used this value for all our examples.

The final edge weight is defined by the product of the persis-
tence value by the three weight factors previously described:

wedge ¼ persistence � ∏
3

n ¼ 1
wn ð5Þ

However, differently from the traditional graph scenario, every
time a new edge is inserted, the weights change. When two cells
are joined, the weights of the edges connecting other adjacent
cells might be updated since the boundaries are modified.

Nevertheless, when this update occurs no edge receives a
weight inferior to its current value, since joining cells does not
create a lower maximum point, or decreases the distance between
two adjacent maximum points, or decreases areas. Due to the
greedy nature of the algorithm, it is guaranteed that the edges
already in the MST will not be re-visited. Consequently, we only
need to re-order edges that were not yet inserted in the MST and
had their values modified.

When joining two cells, we preserve the one with the higher
maximum. An important remark is that when cells are joined we
maintain the information about the absorbed cell (lower max-
imum), as depicted in Fig. 9, and the corresponding edge is stored
in an edge list. Once the MST is ready, with the edge list we are able
to easily navigate the hierarchy by undoing operations, as will be
detailed in Section 5.

We also keep track of the active state of each cell. At first, all
cells are active. When a join operation occurs, the absorbed cell
goes into an inactive state, while the preserved region (that now
contains the absorbed region) remains active. The active flag is
useful when manipulating regions, as will also be described in
Section 5.

The join operation, or edge insertion, continues until a mini-
mum number k of cells (or subgraphs) remains. Fig. 10 illustrates
an example where k¼4. Fig. 11 shows an example of the histogram
segmentation of a real dataset, before and after the join
operations.

The criteria based on height, area, and distance, not only aim at
classifying the volumetric regions, but also at achieving a balanced



Fig. 15. Exploring the Foot dataset (order is top–bottom, left–right). The surrounding noise is quickly eliminated by removing a single region, leaving the soft tissues and
bones (second image). After removing the red and orange regions, the green region still contains noise (third image), so its subdivided (fourth image) and the pink region is
eliminated (fifth image). For the last image (right bottom corner) some deleted regions were restored with undo operations, and opacity values and colors were modified for
the remaining regions. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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tree. The shallower the hierarchy, the less one has to navigate to
separate structures or eliminate noise. In other words, a more
balanced hierarchy implies in a less tedious volume exploration.
5. Interactive exploration

Once the MST is ready, navigating the corresponding hierarchy
is straightforward. Three operations are permitted: join, split, and
delete. Every performed operation is stored, so it can be easily
reverted.

Delete: Removing a cell means ignoring the corresponding
region during rendering. This can be achieved in time Oð1Þ by
setting the active flag to false. This delete operation is recorded so
it can be reversed.

Split: To subdivide a cell i, the edge list is traversed in reverse
order, until the first edge with index to the cell i is found. The
other index of this edge references the last join operation for this
cell, i.e. the cell that was absorbed during the join operation. This
join is reverted by removing the edge from the edge list, restoring
the absorbed cell and resetting its active flag. Every time a split
occurs, we keep track of the operation in an undo list. The split
operation is depicted in Fig. 12. In the worst scenario, this opera-
tion may traverse the whole edge list taking O(n) time, where n is
the number of edges. However, this is a very improbable case, as
we expect the hierarchy to be well balanced this bound is much
closer to OðlognÞ.

Join: Since the interactive exploration starts with the final MST,
all performed join operations are already stored in the edge list. A
join during the exploration phase is actually an operation that
reverts a previous split. Since we store all the splits in the undo list,
we can again expect this operation to be bounded by time OðlognÞ.

In addition, it is also possible to adjust the opacity value for
each region individually, or change a region's color. With this
minimalist set of operations one can navigate and explore the
hierarchy in a straightforward manner. Moreover, since the whole
hierarchy is stored, it allows for a more in-depth exploration of the
volume dataset when necessary. Nevertheless, fine structures and
details are usually evidenced with a few splits.

The actual hierarchy is transparent to the user. What is shown
is simply the current visible cells, and the volume rendering, as
illustrated in Fig. 1, and the figures in Section 6. We render cells
and corresponding regions with the same color to create the visual
connection between these two representations.



Fig. 16. Exploring the Head dataset. The left column shows the steps taken to remove the outer noise. From the last image on the left, two routes are illustrated, where the
top row shows how to quickly arrive at the skull, while the bottom row explores the exterior head structure, where the cyan region is split and the two subregions are
depicted separately with lower opacity values. Note that one can easily undo operations to return to a previous stage and follow another exploratory path. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 17. By removing the surrounding noise and outer shells, we can easily isolate the internal structure. This separation is achieved with no prior knowledge of the dataset.
The last image shows the same dataset after restoring the outer shell and changing color and opacity values. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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6. Results

The tests were performed with an i7 Quadcore 3.4 GHz with
16 Gb of Ram, and an nVidia 660GTX. To render the datasets we
implemented a GPU ray-casting algorithm with illumination fea-
tures. It takes in average one minute to process the volume:
generate the histogram, segment the histogram, and build the
hierarchy. For all tests the histograms' axes are the scalar value
(density) vs gradient magnitude, and were generated with
dimensions 256� 256 and k¼6. In all images in this section we
depict the volume rendering and the corresponding cells windows
that compose the user interface.

In Fig. 13 we show the first interactions on the Bonsai dataset to
remove the typical surrounding noise. In Fig. 14 we show the
resulting regions of the achieved segmentation from Fig. 13. In
Figs. 15 and 16 the exploration of two other datasets are illu-
strated, the Foot and the Head.

The Engine Dataset is a good example where the hierarchy
helps to reveal hidden features. The fine structures inside the
engine can only be isolated by removing outer layers and splitting
a region. Fig. 17 illustrates this procedure.

In Figs. 18 and 19 two more datasets, the Chest and the Carp,
are depicted in different moments during exploration sessions.

Comparing with results from other methods we can point out
some differences from the three works most similar to ours.

Maciejewski et al. [17] method produces a segmentation of the
volume, but offers reduced exploration capability, since regions
cannot be further split. From their results, it is notable that the
noise of the Bonsai dataset cannot be decoupled from the trunk,
for example. Ip et al. [20] offer a navigation of the hierarchy similar



Fig. 18. By first removing the surrounding noise, and then deleting some outer regions, the inner part of the Chest is exposed in the central image. The remaining region had
its opacity decreased, the color changed to red, and then the region was split to readily expose the bones in the interior. Finally the red regionwas deleted remaining only the
rib cage. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 19. The Carp dataset at different points during an exploration session. For the last image on the right, some regions were painted with the same color, and the opacity
values were modified. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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to ours, but their method does not cleanly separate some struc-
tures. This fuzzy segmentation can be noted in their results from
the Foot and Head datasets, for example, where the skin is not
detached from the surrounding noise.

Wang et al. [22] serve as the basis for generating the initial
segmentation for our method, but we have focused on the navi-
gation structure after the segmentation. Instead of using only the
persistence value to guide the join process, we added three
adjustment factors. This avoided joining significant regions first, or
leaving small noise regions to the end, where they would be
placed at the top of the hierarchy. We illustrate these issues with
the following examples. Fig. 20 shows the case where the under-
lying structure is on the first sublevel of the hierarchy when
applying the factors, or hidden in the fourth sublevel when only
the persistence metric is used. Fig. 21 illustrates another situation
where with only the persistence metric it becomes difficult to
isolate the entire structure. In this case it was not possible to
separated the ribs in one single region, and to promptly eliminate
the adjacent noise.
7. Conclusions

In this paper we propose an interactive and intuitive way to
explore volumetric datasets. A hierarchical structure is generated
from a 2D histogram using a graph-based procedure, where the
edge weights control the resistance to join two adjacent cells. We
propose a weight function based on the persistence value and
three correction factors with two main goals: achieving a more
balanced structure; and controlling the join operation to merge
less significant regions first. Once the edges are attributed weights,
we follow ideas from graph algorithms to join similar cells. The
resulting hierarchy can then be navigated using three simple
operations: join, split and delete. Since our graph-structure is
lightweight, we can navigate the whole hierarchy in real-time.

By visually relating the 2D domain with the volumetric ren-
dering, the navigation becomes intuitive even in the face of
unfamiliar datasets, where the range of scalar values of interesting
spatial features are not known beforehand. We showed through a
series of examples how the method is able to isolate noise regions
as well as reveal fine features that may be difficult to spot or to



Fig. 20. The image on the left is the result using the additional three weight factors,
and on the right using only the persistence value. The final results are very similar,
apart from small variations on the histogram's regions. Nevertheless, when
employing the factors only one split operation was necessary to reveal the internal
structure, while without the factors four splits were necessary, and the extra
operations did not reveal any additional relevant structure.

Fig. 21. The left and right images show the results with and without the three
weight factors, respectively. Using the factors the ribs were clearly separated in one
region, while without some surrounding noise persists and part of the bones
remained in another region, that was not easily traceable. The lateral noise of the
right image can actually be removed but only with some effort, that is, another
sequence of five split and delete operations.
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separate manually. We also illustrated how our three correction
factors improve upon using only the persistence value.

We do not advocate to achieve the best volume classification,
as there are some more advanced techniques to do so, but to allow
for an interactive exploration of the datasets main features. This
could be used for example as an initial inspection of the volume to
highlight its main features, or could be combined with other
classification methods to refine the visualization. It could also help
as a first step in designing more complex transfer functions.
8. Future work

The main limitation of our method is, of course, that the
navigation is restricted by the generated hierarchy. Even though it
is very helpful for an initial exploration, we would like to explore
ways to fine tune the classification. We have used Wang's method
for the initial histogram segmentation, but in fact other techniques
could be adapted to work with our graph-based hierarchy.

Another idea in this direction is to explore a dynamic histogram
generation, that is, to recreate the histogram and the hierarchical
structure during navigation for specific regions. This would allow
for more freedom during navigation, since a part of the model
could be isolated and treated separately. It would also be inter-
esting to explore different attributes when generating the histo-
gram, apart from scalar and gradient values.

We have not at this point, explored ways to automatically set
opacity values for each region. This is left for the user during
navigation. However, the weight parameters could give a good
indication to which active regions are more or less important.

Finally, enhancements to the interaction decisions could be
made by, for example, evidencing regions in volumetric space
when selecting corresponding cells. One straightforward way to
achieve this effect is by raising the opacity of the selected region
while lowering the opacity of the others.
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