
Accelerated Mean Shift For Static And Streaming
Environments

Daniel van der Ende∗, Jean Marc Thiery†, and Elmar Eisemann‡
Delft University of Technology

Delft, The Netherlands
Email: ∗daniel.vanderende@gmail.com, †j.thiery@tudelft.nl, ‡e.eisemann@tudelft.nl

Abstract—Mean Shift is a well-known clustering algorithm that
has attractive properties such as the ability to find non convex and
local clusters even in high dimensional spaces, while remaining
relatively insensitive to outliers. However, due to its poor compu-
tational performance, real-world applications are limited. In this
article, we propose a novel acceleration strategy for the traditional
Mean Shift algorithm, along with a two-layer strategy, resulting
in a considerable performance increase, while maintaining high
cluster quality. We also show how to to find clusters in a streaming
environment with bounded memory, in which queries need to be
answered at interactive rates, and for which no mean shift-based
algorithm currently exists. Our online structure is updated at very
minimal cost and as infrequently as possible, and we show how
to detect the time at which an update needs to be triggered. Our
technique is validated extensively in both static and streaming
environments.

Keywords–Data stream clustering; Mean Shift

I. INTRODUCTION

Although streams of data have been generated for a con-
siderable amount of time, the analysis of these streams is a
relatively young research field. Data streams present additional
challenges for the field of data mining. Traditional data mining
algorithms cannot be directly applied to data streams, due
to the additional data stream constraints, which has led to
considerable research into new methods of analyzing such
high-speed data streams [1], [2].

Mean Shift, initially proposed by Fukunaga et al. [3] and
later generalized by Cheng et al. [4] and Comaniciu et al. [5],
is a well-known clustering algorithm that has a number of
attractive properties, such as its ability to find non-convex
clusters. However, its performance has always been a concern,
and it is because of this that, we believe, Mean Shift has never
been applied in a streaming environment.

In this article, we present a modification of Mean Shift that
can be used in both static and stream clustering environment.
In the static environment, execution time of Mean Shift is
reduced while a high level of cluster performance is main-
tained (Section III-A). Our main contribution concentrates on
streaming environments, and we derive an efficient triggering
mechanism, used to determine when a reclustering of the
structure is necessary (Section III-B). We provide extensive
experimental validation of our two contributions.

II. BACKGROUND

A. Mean Shift
1) Overview: Mean Shift is a mode-seeking, density-based

clustering technique, with as main parameter a kernel band-
width h describing the scale at which clusters are expected. In

(a) Each point performs an itera-
tive gradient ascent of the estimated
density towards a local maximum.

(b) Estimated density (red, grey, black)
using various bandwidths. Blue points are
distributed according to the green density.

Figure 1. Mean Shift overview process

this regard, Mean Shift can be seen as a natural multi-scale
clustering strategy.

Considering an input data set P = {pi} in dimension d and
a density kernel K, a Mean Shift clustering of P is obtained as
follows: For every point pi, initialize p0i = pi and iteratively
compute pk+1

i from pki by performing a gradient ascent of the
density kernel. Upon convergence p∞i = p̄i, where p̄i is a local
maximum of the density kernel. Points of P , which converge
towards the same local maximum are then clustered together.
Figure 1(a) gives a schematic overview of this process.

It should be noted, that the underlying geometric structure
of the clusters is of course dependent on the kernel that is used.
In particular, changing the bandwidth of the kernel results in
more or fewer local maxima of the resulting density kernel.
Figure 1(b) illustrates this fact.

A variety of kernels has been used in the literature, the
most common of which is the traditional Gaussian kernel (with
bandwidth h ∈ R):

K(x, p) = π−d/2 exp(−||x−p||2/h2) (1)

Note that this isotropic kernel is sometimes replaced by
an anisotropic Gaussian kernel described by a symmetric
positive matrix H (i. e., exp(−||x−p||2/h2) is replaced by
exp(−(x−p)T ·H ·(x−p))). However, if the anistropy of the
kernel is uniform (i. e., H(x) = H regardless of the location
x), then these two approaches are completely equivalent.

Indeed, because H is symmetric definite positive, it can be
decomposed as H = UT·Σ·U , U being a rotation matrix and Σ
being a diagonal matrix with positive entries, which describe
the different anisotropic scales of the kernel. Then, by noting√

Σ the diagonal matrix with squared scales (
√

Σ
T·
√

Σ = Σ),
it is easy to verify that (x−p)T·H·(x−p) = ||(x′− p′)||2, with
y′ :=

√
Σ · U · y for every point y.

It is therefore entirely equivalent to use a uniform
anisotropic kernel on the input data and use a uniform isotropic

140Copyright (c) IARIA, 2015. ISBN: 978-1-61208-423-7

DATA ANALYTICS 2015 : The Fourth International Conference on Data Analytics

kernel on data that has been globally transformed through the
rigid transformation y′ :=

√
Σ · U · y. Note that traditionally,

principal component analysis (PCA) [6] is a common strategy
to first transform the input data before applying Mean Shift.

In our work, we will thus only focus on the case of isotropic
Gaussian kernels.

2) Bandwidth estimation: The user may not always have an
idea of what bandwidth to use, in the context of data which is
difficult to explore, visualize and understand, such as high-
dimensional data. There are a great number of bandwidth
estimation techniques [7]–[10] providing results commonly
accepted by the scientific community as intrinsic to the data. In
this respect, Mean Shift can then be seen as a non-parametric
clustering method. In our work, for datasets with non-provided
bandwidth, we will use Silverman’s rule of thumb [9].

3) Performance: Although Mean Shift has many attractive
properties, such as its ability to find non-convex clusters
and its multiscale nature, it also has some limitations and
issues. The most important limitation is its performance. As
Fashing et al. [11] have shown, Mean Shift is a quadratic
bound maximization algorithm whose performance can be
characterized as being O(kN2), where N is the number of
points, and k is the number of iterations per point.

Many modifications to Mean Shift have been pro-
posed [12]–[17]. Carreira-Perpiñán [12] identify two ways in
which Mean Shift can be modified to improve performance:
1) Reduce the number of iterations, k, used for each point,
2) Reduce the cost per iteration. As Carreira-Perpiñán demon-
strates, both of these techniques have their own merits and
issues. Another class of Mean Shift modifications is that of
data summarization, followed by traditional Mean Shift on a
summary of the original data. Our algorithm falls into this
category. This is an approach that other acceleration strategies
have also applied [14], [16]. Further details on this will be
given in Section III.

B. Data Stream Clustering
A number of authors have assessed the complexity of

mining data streams [18], [19]. Barbara [19] focused on data
stream clustering, listing a number of requirements: 1) Com-
pactness of representation, 2) Fast, incremental processing of
new data points, 3) Clear and fast identification of outliers. Due
to the nature of streams, time is very limited. Because of this,
data stream clustering algorithms need to be able to respond
extremely quickly to the changes that occur over time in the
dataset, often called concept drift. Moreover, because of the
often huge datasets, memory is also constrained. Our approach
has both attractive time and memory use characteristics, as will
be discussed in Section III.

Many stream clustering algorithms use a two-phase ap-
proach. The approach centers on an online phase, which
summarizes the data as it is streamed in, and an offline phase,
which executes a given clustering algorithm on the summaries
produced. The summaries are generally referred to as micro-
clusters, and due to a number of attractive properties can be
updated as time progresses and new data is streamed in (and
old data is streamed out). CluStream [20] maintains q micro-
clusters online, followed by a modified k-means algorithm that
is executed when a clustering query arrives. DenStream [21]
is similar, exchanging the k-means algorithm for DBSCAN,

and distinguishing various quality levels of micro-clusters.
Finally, D-Stream [22] uses a sparse grid approach. All these
three algorithms have complex parameters. Moreover, when a
clustering query arrives, a clustering is always executed.

The Massive Online Analysis (MOA) [23] framework
offers a sandbox environment for easy comparison of several
stream clustering algorithms. Among those, D-Stream [22] is
the most related to our approach. Even though, D-Stream is
not a Mean Shift algorithm. It is a density-based approach, and
it partitions the space by computing the connected components
of the set for which the local density is higher than a given
threshold. Other parts of the space are considered outliers
(Mean Shift offers a soft characterization of outliers, through
the number of points in clusters and the value of the density at
the clusters’ center). It integrates a particular kind of density
decaying mechanism, whereas our approach allows for various
windowing strategies. Further, our main contribution is a new
triggering mechanism, which detects events for when the
clustering needs to be updated. Although not investigated,
our triggering mechanism could be used for D-Stream as
well. Note that the purpose of this paper is not to claim
the superiority of Mean Shift over other existing clustering
algorithms. Each algorithm has its advantages and drawbacks.

III. METHOD

A. Static Clustering
As discussed in Section II-A3, there are several ways in

which previous work has improved Mean Shift. Our algorithm
aims to reduce the number of input points for the Mean Shift.
This is achieved by first discretizing the data space using a
sparse d-dimensional regular grid, with a cell size of the order
of the bandwidth (coarser discretizations lead to artifacts). For
each grid cell Ci, the number of points ni assigned to it is
maintained, along with the sum of these points Si. This enables
the computation of an average position of the points within
the cell, denoted Ci = Si/ni. We then simply cluster the
cells {Ci} by applying the Mean Shift algorithm over them,
using KC(p, Ci) = niK(p, Ci) as the underlying kernel (see
Algorithm 1). This is equivalent to computing the Mean Shift
over all input points, after having set each point to the center
of its cell. Although extremely simple, this strategy proved
robust and efficient during our experiments. It also allows us to
run Mean Shift over infinitely growing datasets with bounded
memory, as long as the range of the data remains bounded,
which is a required property in streaming environments.

Algorithm 1 Update clustering of cells {Ci}.
for all cell Ci do

Ci = Si/ni
end for
kdt = computeKdTree({Ci})
for all cell Ci do

ĉi = Ci
for it < ItMax do

NN=kdt.nearestNeighbors(ĉi)
ĉi =

∑
k∈NN

nkK(ĉi, Ck)Ck/
∑

k∈NN
nkK(ĉi, Ck)

end for
end for
cluster {Ci} based on proximity of {ĉi}.

141Copyright (c) IARIA, 2015. ISBN: 978-1-61208-423-7

DATA ANALYTICS 2015 : The Fourth International Conference on Data Analytics

a) b) c)

Figure 2. a): Two clusters in 2D, with their centers in red. b): Clusters in
each dimension (dot lines), whose product badly approximate the 2D

clusters. c): Consensus over additional axes helps to identify the 2D clusters
from the product of the 1D clusters of the projected data.

B. Stream Clustering
For stream clustering, the most common methodology is a

two-phase approach, as discussed in Section II-B. A major
disadvantage of this approach is that when a user query
arrives, the offline clustering algorithm is executed over the
data summaries, regardless of whether the dataset has changed
significantly since the previous execution of the offline phase.
This leads to unnecessary and expensive computations.

Our algorithm aims to avoid such needless clustering
algorithm execution by accurately detecting when the data
has changed sufficiently to warrant a new clustering. This is
achieved by fast, effective analysis of the data currently being
considered. It should be noted that this approach can be used,
regardless of the type of window used. In this article, we have
applied both landmark and sliding windows of various sizes.

First, when the stream clustering is initialized, a static
clustering, as described in Section III-A is performed. This
clustering will serve as our initial reference clustering. On
each stream iteration, we evaluate whether the data distribution
has changed sufficiently compared to this reference clustering
to require a reclustering. If so, a clustering is executed and
the result is considered the reference clustering for future
iterations. By only executing the clustering algorithm, Mean
Shift in our case, when necessary, a great amount of execution
time is saved. Querying the cluster for a point is then done
by finding the closest cell average and retrieving its cluster
index (this requires an acceleration structure such as a Kd-
Tree, which was already computed at the Mean Shift step).

We base our trigger mechanism on the monotonicity lemma
defined by Agrawal et al. [24] as:

Lemma 3.1 (Agrawal): If a collection of points S is a
cluster in a k-dimensional space, then S is also part of a cluster
in any (k − 1)-dimensional projections of this space.

Following this lemma, if any of the k-dimensional clusters
change, a (k − 1)-dimensional subcluster should also change.
We make use of this point and set up a collection of low-
dimensional data observers (in our case, 1D), which we can
update efficiently when adding or removing points from the
structure, and which will trigger a reclustering of the structure
when necessary. Our algorithm is parametrized by the chosen
distribution of observers as well as by their sensitivity.

Each observer i is defined as an histogram Hi of the
data projected onto an axis ai. Because high-dimensional data
usually overlaps in separate dimensions (see Figure 2), we
consider not only the canonical axes {ek}, but also randomly
distributed axes in Rd, and we will define the final decision

for the reclustering as a consensus over the observers. Since
we cannot make any assumption on the upcoming data (e. g.,
align data using PCA), we create a random set of pairs of
indices (k1, k2) ∈ [1, d]2 and define the additional axes as
(ek1+ ek2)/

√
2 and (ek1− ek2)/

√
2 (we thus intricate the

canonical dimensions (k1, k2), see Figure 2(c)). All histograms
are treated equally throughout.

When a clustering is performed, each histogram is saved as
H̄i. On each subsequent stream iteration, data points are added
to the grid (or removed from it if a time-dependent window
is used), all histograms are updated, and we determine if the
stream iteration has significantly altered the data distribution,
in which case we need to update the clustering.

We define the measure between histograms H̄i and Hi as
their Jensen-Shannon divergence:

DJS(H̄i ‖ Hi) =
1

2
DKL(H̄i ‖M) +

1

2
DKL(Hi ‖M) (2)

where M = 1
2 (H̄i + Hi), and DKL(P ‖ Q) is the Kullback-

Leibler divergence between histograms P and Q:

DKL(P ‖ Q) =
∑
k

P (k) ln
P (k)

Q(k)
(3)

This measure is a distance, which is (symmetric and) always
defined. Note that the direct use of the Kullback-Leibler
divergence between H̄i and Hi results in +∞ in cases where
points are removed from a cell, i. e., Q(k) = 0 in (3).

A histogram i votes for a reclustering if DJS(H̄i ‖ Hi) > ε
(ε defines the sensitivity, which is our main input parameter).

A reclustering is then decided if the proportion of his-
togram voting for a reclustering is larger than a random
variable, which we take between 0 and 1. This procedure is a
standard Monte Carlo voting scheme, which will never (resp.
always) trigger a reclustering if no (resp. all) histograms vote
for it, and which will trigger a reclustering with probability
defined by the consensus among the observers.

The procedure described above (for which pseudo-code is
given in Algorithm 2) is easily maintainable in a streaming
environment, as it only requires removal and addition of points
to histograms, which can take place very quickly. Moreover,
the discretization of the data space bounds the memory use
in such a way that very large datasets and data streams can
succinctly, but accurately be stored and used.

Algorithm 2 Add (remove) p during streaming.
Require: saved histograms {H̄i}, sensitivity ε

grid ← (→) p . update grid
nvote

histo = 0
for all histogram Hi with axis ai do

Hi ← (→) ai
T· p . update Hi

nvote
histo+ = DJS(H̄i ‖ Hi) > ε ? 1 : 0 . get vote of Hi

end for
if nvote

histo > rand() ∗N total
histo then

for all histogram Hi do H̄i = Hi . save Hi in H̄i

end for
require update of Mean Shift

end if

142Copyright (c) IARIA, 2015. ISBN: 978-1-61208-423-7

DATA ANALYTICS 2015 : The Fourth International Conference on Data Analytics

IV. EMPIRICAL RESULTS

A. Metrics
We have computed the following cluster validation metrics:

Jaccard Index, Rand Index, Fowlkes-Mallows Index, Precision,
Recall, F-Measure (see the work of Meila et al. [25]). These
metrics are based on pair-wise comparison of points of a
reference clustering A and a comparison clustering A′. All
metrics assess whether A′ correctly classified the relation
between the points in each pair. We use these 6 metrics to
quantify our results instead of simply picking one, because
there is no real consensus on what is the correct metric between
clusterings. Furthemore, the metrics we chose are common in
the data clustering scientific community and will hopefully
provide a real insight into the behaviour of our algorithms
to the reader. A value of 0 indicates completely different
clusterings whereas 1 indicates identical ones.

We implemented our method in Python, since it is cross-
platform and integrates well with real-world systems.

For the static clustering experiments, we compared the
traditional Mean Shift and our modified algorithms on the input
data points (with the same input bandwidth).

For the stream clustering experiments, the metrics show
the deviation between the clustering of the cell averages {Ci},
when using the triggering mechanism or instead updating the
clustering every time.

The reason for this choice (comparing clusterings of the
averages instead of the original points) is simply practical:
we could not run the computation of these metrics on huge
datasets for every stream step in a reasonable amount of time.
Fortunately, the depicted errors are over-conservative: the true
errors are actually lower than the ones we show. Indeed,
consider the case of false classification of a new point in a
clustering of 100k points: it will have a minor impact on the
metrics as it is an outlier in the data, however it will create
a new grid average in our coarse summarization grid (e.g.,
summarized by 100 cells) and will therefore result in computed
errors (based on the averages), which are much higher.

B. Static Clustering
In order to evaluate our algorithm’s performance, a large

number of datasets were used. For each dataset, we compare
our method with the traditional Mean Shift. Figure 3 shows a
comparison between our approach and traditional Mean Shift.
Most metric values have a value of the order of 0.99. While
there are some minor differences, these regard points which
are at the boundaries between visible clusters or outliers. In
general, higher errors occur for datasets presenting a high
variability of the range over its various dimensions (see the
remark on the equivalence between isotropic and anisotropic
Mean Shift in Section II-A1).

We have conducted experiments in higher dimension. Al-
though visually comparable, it is difficult to even assess the
correctness of the Mean Shift clustering by projecting the data
on a 2D space, due to overlap in the visualization. Table I
summarizes our results on various datasets commonly found
in the scientific literature.

While we experienced a reasonable gain in performance for
small to reasonably big datasets, this is of small importance.
Rather, we emphasize that our approach produces results which

Ours Mean Shift Ours Mean Shift

Figure 3. Comparison with Mean Shift on 2D data.

TABLE I. Summary of static clustering results. d: dimension. N : number of
points. M1: Jaccard Index. M2: Fowlkes-Mallows Index. M3: Rand Index.

M4: Precision. M5: Recall. M6: F-Measure

d N M1 M2 M3 M4 M5 M6

A1 2 3000 0.95 0.97 0.99 0.97 0.97 0.97
A2 2 5250 0.96 0.98 0.99 0.98 0.98 0.98
A3 2 7500 0.96 0.98 0.99 0.98 0.98 0.98
S1 2 5000 0.99 0.99 0.99 0.99 0.99 0.99
S2 2 5000 0.95 0.98 0.99 0.98 0.97 0.98
S3 2 5000 0.87 0.93 0.99 0.95 0.91 0.93
S4 2 5000 0.85 0.92 0.99 0.94 0.90 0.92
Birch 1 2 100000 0.91 0.95 0.99 0.95 0.95 0.95
Birch 2 2 100000 0.64 0.78 0.95 0.76 0.99 0.78
Birch 3 2 100000 0.95 0.97 0.99 0.97 0.97 0.97
Dim 3 3 2026 0.99 0.99 0.99 0.99 0.99 0.99
Dim 4 4 2701 0.99 0.99 0.99 0.99 0.99 0.99
Dim 5 5 3376 0.99 0.99 0.99 0.99 0.99 0.99
D5 5 100000 0.99 0.99 0.99 0.99 0.99 0.99
Abalone 8 4177 0.99 0.99 0.99 0.99 0.99 0.99
D10 10 30000 0.99 0.99 0.99 0.99 0.99 0.99
D15 15 30000 0.99 0.99 0.99 0.99 0.99 0.99

are consistent with the traditional Mean Shift. This is the
most important part of the validation, as it indicates that our
approach can be used for Mean Shift clustering in a streaming
environment, with potentially infinitely growing data. Note
that, by construction, the error which is introduced by our
approximation decreases with the size of the datasets on which
it is used, while its efficiency obviously increases drastically.

C. Stream Clustering
For the stream clustering validation, we compare the results

obtained when running our approach with the reclustering
trigger enabled and disabled (i. e., reclustering on every stream
iteration, regardless of lack of changes in the data distribution).

We show results on datasets of dimension 2 and 7, with a
varying value of ε, with a fixed time window (with removal of
old points) or not (adding points only), and with time-coherent
or time-incoherent streaming of the data (i. e., whether the
data is streamed in a structured way). Please note that “time-
coherency” refers to the fact that points which are streamed
in successively are roughly expected to belong to the same
cluster. Table II summarizes the statistics of the conducted
experiments, and the metrics plots for these test runs are
presented in Figure 4. One interesting aspect with regards
to our reclustering triggering is the value of ε which is used
to threshold the Jensen-Shannon divergence value. For the
CoverType dataset (dimension 7, 581k points), two test runs
with identical configurations were performed, with ε = 0.001
(Figure 4 (a)), and with ε = 0.003 (Figure 4 (b)). The initial
clustering was both times performed with 25k points, which is

143Copyright (c) IARIA, 2015. ISBN: 978-1-61208-423-7

DATA ANALYTICS 2015 : The Fourth International Conference on Data Analytics

TABLE II. Statistics of the experiments conducted in streaming
environments. N : number of points. d: dimension. n: number of points for

the initial clustering. δn: number of points added at each stream step.
Window: number of points of the sliding window (if used). TC:

time-coherency of the data stream.

N (tot.) d ε n (init.) δn Window TC

a) Cov 581k 7 0.001 25k 1k 25k NO
b) Cov 581k 7 0.003 25k 1k 25k NO
c) Synth.1 1M 2 0.003 50k 1k 50k NO
d) Synth.2 1M 2 0.003 50k 1k 50k YES
e) Synth.3 1M 2 0.003 50k 1k NO YES

Metrics:

b
)

C
o
v.

a
)

C
o
v.

c)
 S

y
n

th
.1

d
)

S
y
n
th

.2
e
)

S
y
n
th

.3

Figure 4. Comparison between our triggered clustering and constantly
updated clustering on various datasets. For the timings, the red curve

indicates the computation time per stream iteration when no triggering is
used, and the blue curve indicates the one when our triggering mechanism is

used. The vertical, dashed red lines indicate triggering events.

also the length of the sliding window that was used, and data
points were streamed by sets of 1k points.

A lower value for ε should result in more frequent reclus-
tering triggers, in an attempt to maintain a higher level of
clustering quality. Although hard to see due to the high number
of reclusterings, it is clear from these images that the lower ε
affects the triggering mechanism. Reclusterings are more fre-
quent and generally cluster quality is kept at a higher level. It
should be noted that this dataset is also an example of a failure
case of our algorithm, but also of the Mean Shift algorithm
and any bandwidth-dependent algorithm. From the clustering
results it is clear that the bandwidth estimate is completely
incorrect. The bandwidth for this dataset was computed to
be approximately 105.39. However, the CoverType dataset is
not normally distributed, and the range of the data over the
various dimensions varies from 1 to 109. Note for example

that, on this dataset, a state-of-the-art Mean Shift grid approach
implemented in Scikit-learn [26] provided results with metric
values of 0.2 (with the same grid parameters).

For other experiments, the value of ε was set to ε = 0.003.

Experiment Synth.1 (Figure 4 (c)) was done with a dataset
of 1M points in dimension 2, with a sliding window of 25k
points, with 1k points added at each stream and for time-
incoherent streamed data. We observe that no reclustering
is ever performed for this experiment. However, the metrics
we obtain over time consistently remain over 0.7, which
indicates that the initial clustering we had was good enough
for the whole streaming session. Note that 0.7 is roughly
the metrics values for which a reclustering was decided in
previous experiments under similar conditions (ε = 0.003),
which indicates that the a-posteriori errors resulting from a
given value of ε are consistent over the experiments.

Experiment Synth.2 (Figure 4 (d)), which was conducted
under similar conditions as experiment Synth.1 with the sole
difference of streaming time-coherent data, presents highly
structured reclustering events. The reclustering events cor-
respond to the appearance and disappearance of complete
clusters, Our triggering mechanism visibly adapts in a non-
trivial way to the structure of the underlying data.

Note that, for real-life datasets, the reality corresponds
probably to a mix of these two behaviours (i. e., there are
several levels of consistency in data, e. g., for visited websites
during the day or in various places over the world, etc.). The
strength of our approach is that we make no assumption on
the structure of the data which is going to be streamed in, and
that it adapts automatically to its underlying structure.

Finally, experiment Synth.3 was performed on a dataset of
1M points, without window (i. e., no points are removed). It
is visible that the time for updating the structure grows almost
linearly over time, while the frequence of the triggering events
is actually inversely linear over time, which is the behaviour
which is to be expected in order to provide timely-bounded
analysis of growing data. Of course, there is a limit to this,
and it is impossible to guarantee this behaviour for arbitrarily
distributed data (over space and/or time).

V. DISCUSSION

The experiments performed have shown that our algorithm
produces accurate clusterings, at reduced cost, and only when
necessary to maintain cluster quality. Moreover, our triggering
mechanism allows Mean Shift to be applied in a streaming
environment, which, to our knowledge, has not been achieved
before. We now discuss possible extensions of our method.

First, it may be possible to apply a divide-and-conquer
approach to the overall data space using the information
contained in the histograms. In some cases, the clusters in
the data space are clearly separated. It could then be useful to
split the space, based on this information, into separate areas
using cutting hyperplanes, and run our method on these distinct
subspaces. This would allow for greater parallelism and avoid
unnecessary work being done on clusters that do not change.
Hinneburg et al. [27] developed a clustering algorithm based
only on such cutting hyperplanes. Their technique for finding
the optimal cutting hyperplanes could be applied to the sparse
grid used in the approach discussed in this article.

144Copyright (c) IARIA, 2015. ISBN: 978-1-61208-423-7

DATA ANALYTICS 2015 : The Fourth International Conference on Data Analytics

Second, data sparseness can reduce the performance im-
provement over Mean Shift to some extent. In these extreme
cases, if each point is placed in a grid cell of its own, running
the Mean Shift on these cell averages Ci is effectively the same
as running on the input data. This is also dependent on the
bandwidth value used. Note however, that this effect appears
mostly for “small” datasets. For very big datasets, which we
target, it becomes improbable to keep a high degree of sparsity.

Third, as was discussed in Section II-A2, the bandwidth
value h to a large extent determines the final clustering
result. Thus, the quality of the results are also dependent on
the quality of the bandwidth estimate or the value provided
by the user. This sensitivity to the bandwidth parameter is
an inherent problem for all approaches based on a kernel
density estimate. An interesting avenue of research could be
to maintain clusterings for various bandwidth values, and to
use this information to derive a continuous clustering as the
interpolation of the computed ones. Currently, if the bandwidth
is reset by the user during streaming, our approach cannot
update the clustering efficiently.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented an effective and efficient
modification of the Mean Shift. The modification allows for
faster execution when applied in a static context, and makes
it possible to use Mean Shift in a streaming environment. The
application of Mean Shift in a streaming environment is based
on a two-phase approach, where a memory-efficient structure
is maintained online, and Mean Shift is executed on this
summary structure offline. Our triggering mechanism ensures
that the expensive process of executing Mean Shift happens as
infrequently as possible and only when necessary to ensure
a high clustering quality. Only if the data distribution has
changed strongly Mean Shift is executed again. Our approach
is extensively validated in both the static and streaming envi-
ronments, and shows good performance in both. We believe
that our triggering mechanism might be usable for other
stream algorithms. However, designing optimal mechanisms
for specific stream algorithms as well as for specific error
measures is an interesting lead for future work.

ACKNOWLEDGMENTS

This work was partly funded by Mobile Professionals BV
and EU FET Project Harvest4D.

REFERENCES

[1] C. C. Aggarwal, Ed., Data Streams - Models and Algorithms, ser.
Advances in Database Systems. Springer, 2007, vol. 31.

[2] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. de Carvalho,
and J. Gama, “Data stream clustering: A survey,” ACM Computing
Surveys (CSUR), vol. 46, no. 1, 2013, p. 13.

[3] K. Fukunaga and L. Hostetler, “The estimation of the gradient of a
density function, with applications in pattern recognition,” Information
Theory, IEEE Transactions on, vol. 21, no. 1, 1975, pp. 32–40.

[4] Y. Cheng, “Mean shift, mode seeking, and clustering,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 17, no. 8, 1995,
pp. 790–799.

[5] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 24, no. 5, 2002, pp. 603–619.

[6] K. Pearson, “Liii. on lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 2, no. 11, 1901, pp. 559–572.

[7] D. Comaniciu, V. Ramesh, and P. Meer, “The variable bandwidth mean
shift and data-driven scale selection,” in Computer Vision, 2001. ICCV
2001. Proceedings. Eighth IEEE International Conference on, vol. 1.
IEEE, 2001, pp. 438–445.

[8] D. Comaniciu, “An algorithm for data-driven bandwidth selection,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 25, no. 2, 2003, pp. 281–288.

[9] M. C. Jones, J. S. Marron, and S. J. Sheather, “A brief survey of
bandwidth selection for density estimation,” Journal of the American
Statistical Association, vol. 91, no. 433, 1996, pp. 401–407.

[10] S. J. Sheather and M. C. Jones, “A reliable data-based bandwidth
selection method for kernel density estimation,” Journal of the Royal
Statistical Society. Series B (Methodological), 1991, pp. 683–690.

[11] M. Fashing and C. Tomasi, “Mean shift is a bound optimization,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 27,
no. 3, 2005, pp. 471–474.

[12] M. A. Carreira-Perpinan, “Acceleration strategies for gaussian mean-
shift image segmentation,” in Computer Vision and Pattern Recognition,
2006 IEEE Computer Society Conference on, vol. 1. IEEE, 2006, pp.
1160–1167.

[13] D. DeMenthon and R. Megret, Spatio-temporal segmentation of video
by hierarchical mean shift analysis. Computer Vision Laboratory,
Center for Automation Research, University of Maryland, 2002.

[14] D. Freedman and P. Kisilev, “Fast mean shift by compact density
representation,” in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 1818–1825.

[15] B. Georgescu, I. Shimshoni, and P. Meer, “Mean shift based clustering
in high dimensions: A texture classification example,” in Computer
Vision, 2003. Proceedings. Ninth IEEE International Conference on.
IEEE, 2003, pp. 456–463.

[16] H. Guo, P. Guo, and H. Lu, “A fast mean shift procedure with new
iteration strategy and re-sampling,” in Systems, Man and Cybernetics,
2006. SMC’06. IEEE International Conference on, vol. 3. IEEE, 2006,
pp. 2385–2389.

[17] X.-T. Yuan, B.-G. Hu, and R. He, “Agglomerative mean-shift cluster-
ing,” Knowledge and Data Engineering, IEEE Transactions on, vol. 24,
no. 2, 2012, pp. 209–219.

[18] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. ACM, 2002, pp. 1–16.

[19] D. Barbará, “Requirements for clustering data streams,” ACM SIGKDD
Explorations Newsletter, vol. 3, no. 2, 2002, pp. 23–27.

[20] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for clus-
tering evolving data streams,” in Proceedings of the 29th international
conference on Very large data bases-Volume 29. VLDB Endowment,
2003, pp. 81–92.

[21] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise.” in SDM, vol. 6. SIAM, 2006,
pp. 326–337.

[22] Y. Chen and L. Tu, “Density-based clustering for real-time stream data,”
in Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2007, pp. 133–142.

[23] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa: Massive
online analysis,” The Journal of Machine Learning Research, vol. 11,
2010, pp. 1601–1604.

[24] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic sub-
space clustering of high dimensional data for data mining applications.
ACM, 1998, vol. 27.

[25] M. Meilă, “Comparing clusteringsan information based distance,” Jour-
nal of Multivariate Analysis, vol. 98, no. 5, 2007, pp. 873–895.

[26] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, 2011, pp. 2825–2830.

[27] A. Hinneburg and D. A. Keim, “Optimal grid-clustering: Towards
breaking the curse of dimensionality in high-dimensional clustering,” in
Proceedings of the 25th International Conference on Very Large Data
Bases, ser. VLDB ’99, 1999.

145Copyright (c) IARIA, 2015. ISBN: 978-1-61208-423-7

DATA ANALYTICS 2015 : The Fourth International Conference on Data Analytics

