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Abstract

We present a novel pipeline to generate a depth map from a single image that can be used as input for a variety of
artistic depth-based effects. In such a context, the depth maps do not have to be perfect but are rather designed with
respect to a desired result. Consequently, our solution centers around user interaction and relies on a scribble-based
depth editing. The annotations can be sparse, as the depth map is generated by a diffusion process, which is guided by
image features. We support a variety of controls, such as a non-linear depth mapping, a steering mechanism for the
diffusion (e.g., directionality, emphasis, or reduction of the influence of image cues), and besides absolute, we also
support relative depth indications. In case that a depth estimate is available from an automatic solution, we illustrate
how this information can be integrated in form of a depth palette, that allows the user to transfer depth values via a
painting metaphor. We demonstrate a variety of artistic 3D results, including wiggle stereoscopy, artistic abstractions,
haze, unsharp masking, and depth of field.
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1. Introduction

Representing 3D content on a standard 2D display is
difficult. This topic has been of much interest to artists,
who learned over centuries how to use effective picto-
rial cues to enhance depth perception on a canvas. On a
computer display, it is also possible to add animation for
the purpose of an increased depth perception. The Ken
Burns effect is a simple example that combines zooming
and panning effects and is widely used in screen savers.
For television and movie productions, this technique can
be obtained by a rostrum camera to animate a still pic-
ture or object. In its modern variant, the foreground is
often separated from the background, which requires a
rudimentary segmentation. The resulting parallax effect
leads to a strong depth cue, when the viewpoint is chang-
ing (Fig. 1). Today, with the help of image-manipulation
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software, such effects can be easily produced. However,
the picture elements are only translated, which is very re-
strictive and leads to a reduced effectiveness.

When several views are available, image-based view
interpolation (Park and Park, 2003) is more general. The
perceived motion of the objects helps in estimating spa-
tial relationships. Nonetheless, these techniques often re-
quire a special acquisition setup or a carefully produced
input. Wiggle stereoscopy can be seen as a particular case
of view interpolation, which simply loops left and right
images of a stereo pair and can result in a striking paral-
lax perception despite its simplicity (Fig. 2). These tech-
niques all avoid special equipment, e.g., 3D glasses, and
they even work for people with limited or no vision in one
eye.

Alternatively, it is possible to use a single input image
and warp it based on a depth map to produce stereo pairs.
Yet, computing depth maps for a monocular image is an
ill-posed problem. While important advances have been
made (Eigen et al., 2014; Lai et al., 2012; Saxena et al.,
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Figure 1: Ken Burns effect. Panning and zooming on still images. (Im-
age source: http://maxpixel.freegreatpicture.com.)

2005, 2009), the methods are not failsafe. Furthermore,
many depth-based effects require the possibility for man-
ual adjustments, such as remapping the disparity range of
stereoscopic images and video in production, live broad-
cast, and consumption of 3D content (Lang et al., 2010),
or to modify a depth-of-field effect in an artistic man-
ner (Lee et al., 2010), which is why we focus on a semi-
automatic solution. We will show that a depth estimate,
if available, can be beneficial as a starting point for our
interactive depth-map design.

In this paper, we propose a new framework to generate
a depth map for a single input image with the goal of sup-
porting artistic depth-based effects to illustrate the spatial

left right

Figure 2: Wiggle stereoscopy. Looping a left/right image pair (Image
source: Wikimedia Commons).

information in the image. We build upon the insight that
a depth map does not have to be perfect for such appli-
cations but should be easily adjustable by a user, as this
option allows fine-tuning of the artistic effect. Our results
are illustrated with a variety of examples, ranging from
depth-of-field focus control to wiggle stereoscopy. Ad-
ditionally, with such a depth map at hand, it is possible
to produce image pairs for 3D viewing without (e.g., via
establishing a cross-eyed view) or with specialized equip-
ment (e.g., stereo glasses).

Our approach builds upon the assumption that depth
varies mostly smoothly over surfaces and only exhibits
discontinuities where image gradients also tend to be
large. In consequence, we follow previous work and
require only coarse annotations, such as sparse scrib-
bles (Gerrits et al., 2011; Lin et al., 2014; Wang et al.,
2011) or points (Lopez et al., 2014). These annotations
form hard constraints in an optimization system that leads
to a diffusion process, taking the image content into ac-
count. We focus on the control of this process and our
method offers ways to influence the result via local and
global constraints, such as defining relative depth differ-
ences, a non-linear depth diffusion by assigning a strength
to scribbles, or privileged diffusion directions. We ensure
that all these elements can be formulated in a linear opti-
mization problem to ensure a fast solving step. We addi-
tionally show a selection of effects in our results.

This article presents an improved and extended version
of (Liao et al., 2017a). Besides all relevant aspects of pre-
vious work, we introduce several new contributions. The
original contributions include:

• A fast depth-map creation solution from a single im-
age;

• Various tools to refine the depth map;

• A selection of effective effects, including wiggle
stereography.

In this work, we also present the following extensions:

• A new depth design tool, in form of a depth palette
if an estimated depth map is available.

• Additional depth-based effects, such as unsharp
masking, haze, or new artistic abstractions.
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• An extended discussion of the presented techniques
and new experiments.

Furthermore, we describe new interface decisions to
ease the creation of the depth map and facilitate the choice
of adequate depth values.

2. Related Work

Depth perception helps us perceive the world in 3D
using various depth cues, classified into binocular and
monocular cues. In an image, we typically encounter
monocular cues — depth information that can be per-
ceived with just one eye. Motion parallax (Kellnhofer
et al., 2016), size, texture gradient (Bajcsy and Lieber-
man, 1976), contrast, perspective, occlusion (Liao et al.,
2017b), and shadows (Bruckner and Gröller, 2007) are
examples of these. Motion parallax and occlusion are par-
ticularly strong (Cutting, 1995). Parallax arises due to the
non-linear displacement relative to the depth when shift-
ing the viewpoint of a perspective projection. In order
to add such an effect, one can warp an image based on a
depth map, which associates to each pixel the distance to
the camera.

Depth estimation for a single image is a well-known
problem in computer graphics and computer vision that
received much attention. Recent approaches (Eigen et al.,
2014; Lai et al., 2012; Saxena et al., 2005, 2009; Liu
et al., 2015; Karsch et al., 2014) are based on learning
techniques. They enable an automatic conversion from a
photo to a depth map. Nonetheless, the quality depends on
the variety of the training data set and provided ground-
truth exemplars. Additionally, in practice some manual
segmentation is needed and the methods are not failsafe,
as problematic elements are quite common (e.g., the re-
flections in a mirror or a flat image hanging on the wall).
Even if an accurate depth is obtainable, it is not always op-
timal for artistic purposes (Lang et al., 2010; Didyk et al.,
2011), which is our focus.

Depth from defocus (DFD) is another approach where
the amount of blur in different areas of a captured image
is utilized to estimate the depth (Pentland, 1987). Meth-
ods for single DFD from conventional aperture are usually
based on such assumptions. Aslantas (2007) assumed de-
focus blur to be the convolution of a sharp image with a
2D Gaussian function whose spread parameter is related

to the object depth. Lin et al. (2013) designed aperture fil-
ters based on texture sharpness. Zhu et al. (2013) took
smoothness and color edge information into considera-
tion to generate a coherent blur map for each pixel. Shi
et al. (2015) inferred depth information from photos by
proposing a non-parametric matching prior with their con-
structed edgelet dataset, based on small small-scale defo-
cus blur inherent in an optical lens. Their method is lim-
ited to photos in their original resolution and does not re-
solve ambiguities due to smooth edges. A general disad-
vantage of single-image DFD methods is that they cannot
distinguish between defocus in front and behind the focal
plane. Coded-aperture setups (Levin et al., 2007) address
this issue by using a specially-designed aperture filter in
the camera. Sellent and Favaro (2014) proposed an asym-
metric aperture, which results in unique blurs for all dis-
tances from the camera. All these latter coded methods
require camera modifications and have limitations regard-
ing precision and image quality.

In our approach, the depth map will be designed by
the user in a semi-automatic way. Hereby, also artistic
modifications are kept possible. Early interactive tech-
niques (Criminisi et al., 2000; Liebowitz et al., 1999),
and their extensions (Lee et al., 2009), focused on scenes
containing objects with straight edges to reconstruct a 3D
model by geometric reasoning and finding the best fitting
model to line segments. In general, the use of edges is a
good choice, as many natural scenes consist of smooth
patches separated by object boundaries. Gerrits et al.
(2011) introduced a stroke-based user iterative framework
in which users can draw a few sparse strokes to indicate
depths as well as normals. Their technique optimizes for
a smooth depth map in an edge-aware fashion, which is
typically applied to photographs containing large planar
geometry. Lin et al. (2014) focused mainly on recover-
ing depth maps for 2D paintings, where the 2D paintings
have to be segmented into areas based on input strokes
and the depth values are only propagated locally based on
the color difference. Wang et al. (2011) proposed a work-
flow for stereoscopic 2D to 3D conversion, where users
draw only a few sparse scribbles, which together with
an edge image (computed from the input image) propa-
gate the depth smoothly, while producing discontinuities
at edges. Similarly, Lopez et al. (2014) used points instead
of scribbles to indicate depths and made additional defi-
nitions available for the user, such as depth equalities and

3



inequalities, as well as perspective indications. Tools for
the definition of equalities and inequalities (Yücer et al.,
2013; Sỳkora et al., 2010) can help reduce the amount
of user intervention. Our work follows similar princi-
ples, but offers additional possibilities with the goal of
a direct application to artistic depth-based effects. Our
work builds upon depth propagation via a diffusion pro-
cess, similar to diffusion curves(Orzan et al., 2008) and
their extensions (Bezerra et al., 2010).

3. Our Approach

Our approach is illustrated in Fig. 3. Given a single
image as input, e.g., a photograph or even a drawing, we
seek to create a depth map and show how it can be used
as input to various depth-based effects. Consequently, we
first describe the depth-map generation via the diffusion
process, then discuss additional tools provided to the user
(Sec. 3.1), before illustrating our implementation of vari-
ous depth-based effects (Sec. 3.2). Finally, we discuss the
results (Sec. 4) before concluding (Sec. 5).

3.1. Depth Map Estimation

The basic input by the user are a few depth indica-
tions in form of scribbles. These scribbles will be con-
sidered hard constraints that should be present in the fi-
nal depth map. The rest of the depth map will be solved
via an optimization procedure. In order to ensure ac-
ceptable performance, we cast our problem into a con-
strained linear system. This initial setup is identical to
Diffusion Curves (Orzan et al., 2008), based on Poisson
diffusion (Pérez et al., 2003), except the scribbles take the
role of the diffusion curves.

Poisson Diffusion
Given the image I := {Ii, j | i ∈ 1..w, j ∈ 1..h}, where

Ii, j are brightness or color values at pixel (i, j), we aim
at creating a depth map D := {Di, j | i ∈ 1..w, j ∈ 1..h},
given a set of scribbles with associated values {S i, j | i ∈
1..w, j ∈ 1..h} on these scribbles. The depth map D is
then implicitly defined:

∆D = 0
subject to:Di, j = S i, j,∀(i, j) ∈ I

where ∆ is the Laplace operator. The discretized version
for a pixel (i, j) of the first equation is:

4Di, j − Di+1, j − Di−1, j − Di, j+1 − Di, j−1 = 0. (1)

The depth map can, thus, be constructed by solving a con-
strained linear system. A result is shown in Fig. 4 (mid-
dle). It can be seen that the colors on scribbles smoothly
diffuse across the whole image. The absolute depth val-
ues defined by the scribbles are useful to roughly associate
depth ranges to different objects or parts of the scene. This
is common in practice (Mendiburu, 2009) where a coarse
layout of the scene depth is defined in the preprocess of
the 3D design.

scribbles without our approach

Figure 4: Depth estimation from scribbles. Scribble input (left), only
using the scribble input results in a smooth depth map lacking disconti-
nuities (middle), by involving the input image gradients, the depth prop-
agation is improved (right). (Image source: www.pixabay.com)

Anisotropic Diffusion
Eq. 1 implies that each pixel’s depth is related to its

four neighbor pixels in an equal way. Consequently, the
map is smooth and free of discontinuities. Nonetheless,
discontinuities can be crucial for depth effects at object
boundaries. Hence, we want to involve the image gra-
dients in the guidance of the diffusion process and, basi-
cally, stop the diffusion at object boundaries (Perona and
Malik, 1990). To this extent, we will rely on the differ-
ence of neighboring input-image pixels to steer the diffu-
sion, transforming the Laplace equation into a set of con-
straints. For a pixel k and its 4-pixel neighborhood N(k),
we obtain: ∑

l∈N(k)

ωkl(Dk − Dl) = 0, (2)

where ωkl is the first order difference for the two neigh-
boring pixels ωkl = exp(−β|Ik − Il|). At the border of an
object, ωkl is often close to 0 because the pixel values typ-
ically differ. In consequence, the impact of the constraint
is reduced, which, in turn, relaxes the smoothness condi-
tion. Hence, depth discontinuities will start to occur at
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Figure 3: Overview: From left to right, starting from a monocular image, the user draws scribbles, which spread via a diffusion process to define
a resulting depth map. The interface allows for constant or gradient-color scribbles, the definition of a diffusion strength, brushes to ignore or
emphasize gradients in regions or Bézier curves to direct the diffusion process. Further, relative depth differences and equalities can be annotated.
(Image source: c©Robert Postma/Design Pics), used with permission.

boundaries. Fig. 4 (right) shows the effect of integrating
the image gradient.

scribbles ignored region without our approach

Figure 5: Ignored-gradient region. Shadows and reflections introduce
unwanted large gradients, which hinder the depth diffusion and lead to
discontinuities. Using the ignored-gradient region brush, these gradients
can be excluded from the depth derivation. (Top image: courtesy of Erik
Sintorn; bottom image: Flickr - salendron)

Ignored-gradient Region. While object boundaries are
useful barriers for the diffusion, some gradients (e. g.,
shadows, reflections etc.) in the image may introduce un-
wanted depth discontinuities. For example, Fig. 5 (top
row) exhibits shadowed areas, which produce strong gra-
dients that lead to artifacts on the floor, although it should
actually have been smooth. For automated methods (Liu
et al., 2015), a user might also want to tweak the result-
ing depth map. For example, reflections from a mirror in

Fig. 5 (bottom row) might lead to artifacts, which can be
addressed with an interactively designed depth map. To
this extent, we provide the user with the possibility to use
a simple brush to annotate regions where gradients should
be ignored. For pixels which were selected in this way, the
corresponding diffusion constraint would change back to
Eq. 1. Fig. 5 shows a comparison with and without this
annotation.

Emphasized-gradient Region. Contrary to the previous
case, depth discontinuities might also need a boost in
other areas. Consequently, we also allow the user to em-
phasize gradients. The gradient of the brushed pixels is
enlarged by a scale factor (two in all examples). This
tool is of great use when refining depth maps (Fig. 6),
as it helps to involve even subtle gradients when needed.
As illustrated in Fig. 6, there is no clear boundary at the
highlighted (red and blue rectangles) locations. With this
tool, the depth discontinuities at these image areas could
be well pronounced.

Directional Guidance. While the previous methods stop
or accelerate diffusion, its directionality remains unaf-
fected. Still, in some cases, the intended diffusion direc-
tion might be relatively clear, e.g., along a winding road
to the horizon. In order to integrate a directional diffusion
in the linear equation system, we let the user provide a di-
rectional vector field and remove the gradient constraints
orthogonal to the indicated direction, following Bezerra
et al. (2010). For an arbitrary direction d := (cos θ, sin θ),
the derivative of an image I along direction d is given by
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Figure 6: Emphasized-gradient region. Weak gradients can be enhanced
to induce depth discontinuities. Here, it ensures a better separation be-
tween the foreground and background. (Image source: ”Girl with a Pearl
Earring” by Johannes Vermeer)

∇Id. In consequence, the constraints for pixel (i, j) are
replaced by:

cos θ ·ωi jx(Di+1, j−Di, j)−sin θ ·ωi jy(Di, j+1−Di, j) = 0 (3)

where ωi jx = exp(−β|Di+1, j − Di, j|) and ωi jy =

exp(−β|Di, j+1 − Di, j|). Here, the diffusion will then only
occur along direction d.

To define the vector field, we first ask the user to indi-
cate the region, where to apply the directional guidance
with a brush. To specify the directions, the user can then
draw Bézier curves. The tangent of a point on the curve
is defining the diffusion orientation that is to be used for
the underlying pixel. To propagate the information from
the Bézier curves to the entire region, we let the direc-
tion vector itself be diffused over the marked region using
Eq. 1. To avoid singularities, we diffuse the cosine and
sine values of the direction and normalize the result af-
ter diffusion. Fig. 7 (middle, top) shows the curves and
brushed region in which the diffusion is guided, as well
as the diffused direction information for each pixel of the
region (Fig. 7 (right,top)).

It is possible to reduce the directionality by adding a
constraint for the direction orthogonal to the diffusion di-
rection (i.e., d := (− sin θ, cos θ)). If we do not apply a
scale factor to the constraint, the resulting diffusion would
go back to a uniform diffusion. The scale factor could be
chosen by the user, but we also propose a default behav-

ior based on the image content. The idea is that the user
indicates a direction because it is connected to the input
image’s content. We thus analyze the input image’s gra-
dient, and compute the angle θ between gradient and pro-
vided diffusion direction to derive an adaptive scale factor
1 − |cos θ|.

guided curves direction vectorsscribbles

without our approach

Figure 7: Diffusion guidance. A user brushes the region and draws the
direct curves to define the direction in which he or she is interested in.
Our approach can direct the diffusion mainly happens in this direction.
(Image source: http://maxpixel.freegreatpicture.com)

Depth Diffusion Strength
Perspective projection can result in a non-linear depth

mapping, e.g., via foreshortening. Furthermore, surfaces
might not always be mostly planar but exhibit a convex
or concave bent surface. For these situations, we want
to provide the user with a way to influence the diffu-
sion strength. Following (Bezerra et al., 2010), diffusion
strength can be added by introducing an additional com-
ponent to the vector value that is diffused; besides a depth
value d, we will have a strength α. For two such elements
(d1, α1), (d2, α2), a mix is assumed to yield:

α1d1 + α2d2

α1 + α2
. (4)

The higher the strength, the higher the influence of the
associated depth value on the final result. Fig. 8 demon-
strates a simple example with two input scribbles, a darker
scribble on the left and lighter scribble on the right. We
obtain a result where the two values uniformly spread
across the image when using equal strength (Fig. 8 (left)).
When selecting a bigger influence on the right part by as-
signing a higher strength to the left scribble its influence
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equal strength stronger strength on the left

Figure 8: Scribble strength. Equal strength (middle); strength of left
scribble stronger than the one on the right.

on the result is increased (Fig. 8 (right)). This equation
directly extends to many depth values:∑

αidi∑
αi

. (5)

This insight makes it possible to formulate this behav-
ior in our linear optimization system — we now solve for
two maps, containing values of type αd and α. Once the
diffusion converged, we can divide the first map’s values
by the second, establishing the result of Eq. 5. Fig. 9
shows the influence of the diffusion strength for different
values.

Figure 9: Non-linear depth mapping. Assigning a strength to different
scribbles can be used to influence the diffusion speed.

Equal and Relative Depths
It can be useful to indicate that two objects are located

at the same depth, without providing an absolute value.
Given our constraint system, this goal can be achieved by
adding a constraint of the form Dk = Dl, similar to Bez-
erra et al. (2010). This possibility is quite useful for im-
ages containing symmetric features, as shown in Fig. 10,
where pixels on the pillars, which are at the same depth,

can be linked. There are also cases in which it may be
hard for a user to choose adequate depth values for scrib-
bles. Fig. 11 shows an example, in which drawing scrib-
bles with absolute values for each gap inside the wheels
would be very difficult, as the correct value depends on the
background. With our tool, we can link the background
to other regions. It is worth noting that many pixels can
be connected at the same time.

scribbles equal and relative depths

without our approach

Figure 10: Depth equality and relativity We connect depths from differ-
ent places together via depth equality and relativity to globally influence
the depth estimation. (Image source: wikipedia)

Figure 11: Equal constraints. Connecting depth from different places
via depth equality can reduce the user interventions. (Image source:
Eisemann et al. (2009))

We also introduce a new feature to describe relative
depth relationships; let D1, D2, D3 and D4 be four lo-
cations in the depth map. If the user wants the distance
of D1 to D2 equal to the distance of D3 and D4, we can
add the constraint D1 − D2 = D3 − D4. For example, the
relative depth indications can be used to ensure the equiv-
alent distances between pillars. Again, this solution can
be extended to multiple relative points.
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Depth Palette

With the advent of single-image depth estimation, au-
tomated approaches (Liu et al., 2015; Karsch et al., 2014)
can provide useful information to initiate the depth map
design. Unfortunately, there can be multiple depth incon-
sistencies or noise, as shown in Fig. 12 (top row, left)
highlighted (red rectangles) regions. Additionally, the
resulting depth might not be adequate for artistic pur-
poses (Wang et al., 2011). Hence, directly using the re-
sulting depth as an input for the 3D effects, e.g., wiggle
stereography, could cause visible artifacts (please refer to
supplementary video). However, the initial depth maps
can serve as a good starting point for the depth-map de-
sign. Similar to a color or normal palette, a user can trans-
fer depth values directly from the reconstruction. For this
purpose, a position is chosen in the reference depth im-
age. The selected depth value can then be used to draw
a scribble with the corresponding value, which will gen-
erate a corresponding hard constraint. While drawing the
scribble, the value can either be held constant or the val-
ues of the corresponding pixels from the reference could
be transferred.With only a few depth transfers, it is possi-
ble to improve the depth-map quality using our solution.

Liu's method

our method

Figure 12: Depth palette. Using the result of automated methods (Liu
et al., 2015) as depth palette can ease the depth creation.

Additional Interface Elements
Our framework offers the possibility to globally adjust

the resulting depth map. We provide the user with a map-
ping curve, similar to a gamma curve, to specify a non-
linear remapping. We use an interpolating spline, adjusted
via control points. A result is illustrated in Fig. 13 (left),
where the depth appearance of the scene is globally influ-
enced to obtain Fig. 10. Global adjustments are particu-
larly useful for stereo-based effects, as they allow the user
to influence the global disparity range. In this context,
we provide a simple user interaction to control the 3D ef-
fect on the canvas. Instead of defining the stroke values
by choosing from a palette, the user can also simply drag
the mouse to indicate a disparity baseline that then corre-
sponds to a depth value that is automatically transferred to
the stroke. This process makes it easy to control warping
effects, in case the depth map is used to derive a stereo
pair. Please also refer to supplementary video.

original depth

tu
n
ed

 d
ep

th

Figure 13: Depth adjustment. Depth map can be globally adjusted using
a mapping curve.

3.2. 3D Effects

In this section, we illustrate a few of the 3D effects that
can be introduced in the input image, when relying on the
derived depth map, whose values we assume normalized
between zero and one.

Color-based Depth Cues
Given the depth map, we can easily add an aerial per-

spective to the result. An easy solution is to apply a de-
saturation depending on the distance as shown in Fig. 14.
Alternatively, we can convert the distance to a fog density
and apply it as an overlay on the image (Willis, 1987).

Depth-of-Field Effects
It is possible to simulate lens blur to refocus on different

parts of the scene. Fig. 15 (right) shows an example.
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original desaturation haze

Figure 14: Distance-based desaturation and haze.

Unsharp Masking
Textures and colors in images can be enhanced by uti-

lizing unsharp masks. Contrary to what its name may in-
dicate, unsharp masks are used to sharpen the images. An
unsharp mask is created by subtracting a low-pass filtered
(usually Gaussian filter) copy from the original image.
The mask is then added back to the original image to get
a local contrast enhancement. While typically applied for
color images, the involvement of depth enables us to well
separate different elements from each other (Luft et al.,
2006). Note that even when colors are similar (color of
the puppy’s hair and the background), involving the depth
map makes sure that the depth difference becomes more
evident.

Luft et al. (2006) proposed a depth-based unsharp-
masking method. Assuming that a depth map D is avail-
able, the unsharp-masking process is applied to the depth
buffer: ∆D = G ∗ D − D, with G ∗ D is the convolution of
a Gaussian filter. The resulting high frequency ∆D is then
used to alter the original image I to achieve a sharpening
or a local contrast enhancement: I

′

= I + ∆D · λ, where
λ is a user defined gain parameter. Thus, the greater the
spatial difference, the higher the local enhancement.

We found that in some cases, distant elements receive
an overly strong enhancement. In consequence, we pro-
pose an adaptive gain value and Gaussian kernel size.
Based on the observation in Ritschel et al. (2008) that un-

original refocused

Figure 15: Image refocusing based on the depth values.

sharp masking can be performed in 3D instead of image
space, we propose a hybrid approach. We adapt the kernel
size depending on the depth map values, i.e., the farther
away, the smaller the kernel size. Specifically, we define
the kernel size as: δadapt = δ(1−0.5D), with δ being 2% of
the image diagonal. Moreover, we apply a bilateral filter
instead of a Gaussian filter, to ensure that elements from
different depths do not mix and, hereby, keep the contrast
of edges. To avoid oversatuation, all operations are exe-
cuted in CIELAB color space.

Stereographic Image Sequence
When adding motion parallax to the input image, the

resulting images can be used as stereo pairs, for wiggle
stereoscopy, or even as an interactive application that can
be steered with the mouse position. Please also refer to
our supplemental material for looping videos, of which a
few frames are shown in Fig. 17.

For a given displacement direction γ and a maximum
pixel traversal distance S , the newly-derived image N, in
which nearer pixels are shifted more strongly than far-
away pixels, is given by:

N(i + (1.0 − di j) cos(γ)S , j + (1.0 − di j) sin(γ)S ) := I(i, j)

.
Unfortunately, the definition of N is imperfect, as sev-

eral pixels may end up in the same location or holes oc-
cur (no pixel projects to this location). The first case can

9



Figure 16: Unsharp masking using a depth buffer. It can enhance the
depth arrangement in the scene and make a dull appearance more inter-
esting.

be easily solved; as our motion direction does not affect
depth, we can, similar to a depth buffer, keep the repro-
jected pixel with the smallest depth value. To address
holes, we rely on a post-processing step. We search from
a hole in N along the opposite direction of γ, until we find
the first non-hole pixel. Its value is then copied over to
the hole location. Fig. 18 shows the comparison with and
without hole filling. Note that our hole filling method is
not suitable for big motions.

Figure 17: Examples of looping videos, please refer to the supplemental
animations.

Figure 18: Hole filling. Holes due to reprojection (left) are filled (right).

Artistic Effects
Besides changing the viewpoint, the derived depth map

can also be used to apply artistic filters. First, we il-
lustrate the use for movement and show a special rota-
tion, where the radius depends on the distance. Sec-
ond, there are many depth-based abstraction filters and
we show an example, based on the work by Jodeus http:
//jodeus.tumblr.com/post/131437406357. Here,
discs are used to replace a subset of the pixels to achieve
an abstract look (Fig. 19). These effects are best illus-
trated in the accompanying video.

4. Results and Discussion

We have implemented our framework in Java on a desk-
top computer with an Intel Core i7 3.7 GHz CPU. The
linear solver is implemented in Matlab and called from
within the Java program. To make the solver more effi-
cient, we build up an image pyramid for the input of the
solver and solve each layer from low to high resolution,
while using the result of the previous layer as the input
for the current layer. It takes about 30 seconds to com-
pute a depth map of 600 × 500. Nonetheless, we did not
optimize our approach and it could be possible to achieve
even real-time rates via a GPU implementation. Further-
more, the approach would lend itself well to upsampling
strategies. For now, we provide a small-resolution pre-
view to the user, which is interactive.

We tested our depth estimation on various datasets
(e.g., Fig. 20). It works for real photographs, paintings,
but also cartoons. All results and all sequences shown in
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Figure 19: Example of different depth-based abstractions.

the video have been produced by a user in less than 3 min-
utes.

We did not conduct a user study to investigate the ef-
fectiveness of our tools. In practice, we received positive
feedback from three test users. Nonetheless, expertise in
image editing is definitely an advantage. This is similar to
novice users applying advanced tools in software, such as
Photoshop or Gimp. A certain amount of training is also
helpful to gain familiarity. Increasing user friendliness
further could be an interesting direction for future work.

5. Conclusion

We presented a pipeline for integrating depth-based
effects into a single-image input. We proposed editing
tools to facilitate the depth-map creation by influencing
a depth-diffusion process. We demonstrated that our so-
lution enables users to generate depth maps very rapidly
and presented various examples for depth-based enhance-
ments. In the future, we want to increase performance,
which could be achieved via a sparse GPU linear solver.

It would also be interesting to apply our method for an-
imations. One possible solution might be to design depth

Figure 20: Examples. We support a wide variety of inputs including
real photographs, paintings and cartoon images. Image source: from
top to bottom, row 1, 2, 3, 5 are from https://pixabay.com/; row 4
is from Lone Pine Koala Sanctuary; row 6, 7 are from c©Blender open
source movie Big buck bunny and Monkaa, respectively; row 8 is from
(Scharstein and Szeliski, 2003); row 9 is ”Girl with a Pearl Earring” by
Johannes Vermeer.
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maps for several key frames and propagating the annota-
tions, similar to rotoscoping (Agarwala et al., 2004).
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