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Diffusion Tensor Imaging: Brain Pathway Reconstruction

Diffusion tensor imaging (DTI) is a recently de-
veloped modality of magnetic resonance imaging
(MRI), which allows producing in-vivo images of
biological fibrous tissues such as the neural axons
of white matter in the brain. The techniques for
reconstructing connections between different brain
areas using DTI are collectively known as fiber
tracking or tractography. The brain connectivity
map, derived from the tractography visualization
and analysis, is an important tool to diagnose and
analyze various brain diseases, and is of essential
value in providing exquisite details on tissue mi-
crostructure and neural networks.

Assuming that fiber pathways follow the most
efficient diffusion propagation trajectories, we
specifically develop a geodesic-based tractography
technique for the reconstruction of fiber pathways.
Results we obtain using our technique, based on
finding multiple geodesics connecting two given
points or regions are encouraging and give con-
fidence that this method can be used for practical
purposes in the near future.

1. Brain Structure

The nervous system functions as the body’s communica-
tion and decision center. The brain and spinal cord are
collectively known as central nervous system. Brain and
spinal cord are made of grey matter and white matter.
White matter consist mostly of myelinated axons and non-
neural cells. Grey matter is a type of neural tissue mainly
consisting of dendrites and both unmyelinated and myeli-
nated axons. The grey matter takes care of the processing
functions whereas the white matter provides the commu-
nication between different grey matter areas and the rest
of the body. Sensory nerves gather the information from

the environment and send them to the spinal cord. The
spinal cord sends this information to the brain.

The white matter axons are surrounded by myelin; see
Figure 11. The myelin gives the whitish appearance to the
white matter. Myelin increases the speed of transmission
of all nerve signals and is distributed diffusely or is con-
centrated in bundles. These bundles are often referred to
as tracts or fiber pathways. Our goal is to develop ac-
curate mathematical models for in-vivo reconstruction of
brain fiber bundles to study a host of various disorders
and neurodegenerative diseases including, among others,
Parkinson, Alzheimer and Huntington.

2. Diffusion Process

It is known that a significant amount of the human body
consists of water. At a microscopic scale water molecules
move freely and collide with each other. This movement
of water molecules is known as Brownian motion, which
implies that molecules in a uniform volume of water will
diffuse randomly in all directions. At a macroscopic scale,
this phenomenon is known as diffusion. Diffusion is the
thermal motion of all (liquid and gas) molecules at tem-
peratures above absolute zero. Depending on the medium,
diffusion can be either isotropic or anisotropic. Figure 2
illustrates the difference between diffusion processes in dif-
ferent media. For free or isotropic diffusion, the probabil-
ity distribution of a single molecule located at position x0

to reach another position x1 after a given time t is spher-
ically symmetric, i.e., every direction is equally probable.
This is illustrated in Figure 2(a).

Einstein [2] describes diffusion by relating the diffu-
sion coefficient D, which characterizes the mobility of the
molecules, to the root mean square of the diffusion dis-
placement, i.e.,

(1) D =
1

6t
〈RTR〉.

1http://www.adameducation.com/
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Figure 1. (a) Structure of a typical core component (neuron) of the central nervous system, (b) Axial
view of a brain illustrating white and grey matter.
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Figure 2. (a) Isotropic diffusion, (b) Anisotropic diffusion. The arrows indicate possible trajectories
which molecules may follow. In the presence of barriers, e.g. axons, diffusion is restricted in certain
directions.

In this expression R is the net displacement vector R =
x1 −x0. The bracket 〈〉 denotes the ensemble average. In
the isotropic case, the scalar D depends on the molecule
type and the medium properties but not on the direction.

Using Fick’s law of diffusion, the diffusion process can
be approximated as follows [3]:

(2)
∂P (R, t)

∂t
= D∇2P (R, t).

Here, ∇2 is the Laplacian in R and P (R, t) represents the
probability of a water molecule displacement R in time
t, and is known as the diffusion displacement probability
density function (PDF). Under the condition

(3)

∫
R3

P (R, t)dR = 1,

the solution to equation (2) is a Gaussian distribution and
can be written as

(4) P (R, t) =
1√

(4πDt)3
exp

(
−1

4Dt
RTR

)
.

In anisotropic biological tissues, the mobility of water
molecules is restricted by obstacles formed by surround-
ing structures, such as the axons in the brain; see Figure
2(b). It is known that myelin sheaths have a property to
modulate the anisotropy of diffusion [5].

Several models have been proposed for the PDF of
anisotropic diffusion. Amongst these models, the most
popular one is known as the diffusion tensor (DT) model
[6]. In this model of water diffusion, Einsteins law of dif-
fusion is generalized to anisotropic diffusion by replacing
the scalar diffusion coefficient D in (1) by a symmetric



positive definite matrix D, as follows

(5) D =

 d11 d12 d13
d12 d22 d23
d13 d23 d33

 =
1

6t
〈RRT〉.

Analogously, equation (2) generalizes to

(6)
∂P (R, t)

∂t
= ∇ ·

(
D∇P (R, t)

)
.

The solution of (6) is a Gaussian distribution and gives the
diffusion PDF of water molecules. Given the condition (3),
it can be written as

(7) P (R, t) =
1√

(4πt)3|D|
exp

(
−1

4t
RTD−1R

)
,

where |D| > 0 is the determinant of D.

3. Acquisition and Reconstruction of Diffusion

Diffusion-weighted magnetic resonance imaging (DWMRI)
is an acquisition technique to measure the random Brow-
nian motion of water molecules within a voxel of tissue.
This technique provides a unique non-invasive tool for
measuring the local characteristics of tissues. The first
diffusion weighted imaging (DWI) acquisition was done
by Taylor et al. [4] using a hens egg as a phantom in a
small bore magnet. Later, Le Bihan et al. [7] applied the
first DWI acquisition for the human brain on a whole body
scan.

To obtain diffusion weighted images, a pair of strong
gradient pulses of a magnetic field, which defines the di-
rection in which the diffusion is measured, is applied. The
diffusion weighting sequence is commonly known as the so-
called Stesjkal-Tanner sequence. Since the diffusion prob-
ability distribution function has assumed to be Gaussian,
the attenuated signal of the Stesjkal-Tanner sequence in
relation to D is specified as follows,

(8) S(y) = S0e
−byTDy,

where y is a unit vector in the diffusion gradient direc-
tion and S(y) is the associated signal. Here b represents
the so-called b-value and is the diffusion weighting factor
depending on scanner parameters and S0 is the reference
nuclear magnetic resonance signal.

Given multiple diffusion weighted images, we can mea-
sure quantitative scalars such as the apparent diffusion co-
efficient (ADC), which describe the diffusion process. The
ADC is given by the relation

(9) D(y) = −1

b
ln

(
S(y)

S0

)
.

The ADC in anisotropic tissues varies depending on the
direction y in which it is measured; see Figure 3. To
model the intrinsic diffusion properties of biological tis-
sues, Basser et al. proposed to fit the DWI data to a
second order symmetric and positive-definite tensor D [9].

To this end, one can write the relation between the ADC
and the diffusion tensor D as follows,

(10) D(yi) = yTi Dyi =

3∑
β=1

3∑
α=1

dαβy
α
i y

β
i ,

for i = 1, 2, . . . , n with n the number of sampled gra-
dient directions. Using relation (10), the six unknown
coefficients of the diffusion tensor D can be computed
by choosing at least six gradient directions, typically we
take 20 ≤ n ≤ 60. Relation (10) gives rise to an over-
determined system and can be solved using least squares
fitting [17]. This is in fact the same diffusion tensor
(DT) as introduced earlier in Einsteins equation (5) for
anisotropic diffusion.

The DT is determined by its three eigenvalues λ1 ≥
λ2 ≥ λ3 > 0 and its three corresponding orthogonal eigen-
vectors e1, e2, e3. The largest eigenvalue λ1 gives the
principal direction e1 of the diffusion tensor. Note that
the other two eigenvectors span the plane orthogonal to
the main eigenvector. Using the three eigenvalues and
their corresponding eigenvectors a DT can be visualized
as an ellipsoid which corresponds to the implicit surface
{R : RTD−2R = const} [19, 18]. Figure 4(b)-4(a) are
illustrations of these procedures. Figure 4(c) shows the
diffusion tensor field for a slice of a brain image.

Diffusion tensor images are useful when the tissue of in-
terest is dominated by isotropic water movement such as
grey matter in the cerebral cortex, where the diffusion time
appears to be the same along any axis. Therefore, they are
for example applicable to diagnose vascular strokes in the
brain. However, in the cases where the direction and shape
of the diffusion propagation is important, the resulting im-
age using this technique is difficult to interpret directly and
does not provide much information about the underlying
fibrous structure. This is particularly crucial for analysing
the white matter stucture. Therefore, further reconstruc-
tion techniques have been developed in order to extract
more useful information from these images.

4. Reconstruction of Brain Fiber Tracts

Due to the fibrous structure of white matter, diffusion of
water molecules is dominant in the direction of the fibers.
As we described before, diffusion and its directional varia-
tion can be measured by DWI. The process of reconstruct-
ing fibers using DWI is commonly known as tractography
or fiber tracking.

In cliniques, the most commonly used DTI tractography
algorithms are principal diffusion direction (PDD) meth-
ods [3] where the fibers are integrated along the main
eigenvector field e1(x) of the diffusion tensor. This is nu-
merically equivalent to solving the initial value problem

(11)

{
ẋ = e1(x(t)), t > 0,
x(0) = x0.

Here x0 denotes the initial position or seed point and t
is the time. The initial value problem (11) can be solved



Figure 3. Diffusion-weighted images with three different acquisition directions. Note the differences
in contrast as the gradient direction is changing. Arrows indicate the gradient directions. Adapted from
Campbell [3].

using a fourth-order Runge-Kutta method. Figure 5 illus-
trates an example of PDD tractography.

The PDD methods just employ local information and
are therefore sensitive to noise. Small changes can pro-
duce completely different results or undesired fiber path-
ways; see Figure 6. A relatively small amount of noise in
the diffusion tensor field causes accumulative errors in the
trajectory of the fibers. Tackling this problem in tractog-
raphy algorithms has been a main inspiration for intro-
ducing many variations of PDD tractography. Moreover,
it has been recently shown that the expected properties
of actual fibers, such as fanning, cannot be reconstructed
using PDD based tractography [15]. To overcome this
problem, advanced models, such as global geometric trac-
tography methods, were developed to deduce connectivity
in the white matter by globally optimizing a certain cost
function on the basis of the diffusion tensor information.
The goal of global geometric tractography is to find op-
timal paths that connect two given regions/points. This
can potentially overcome accumulative errors introduced
in tractography due to local noise. Besides, these models
use the whole diffusion tensor profile instead of reducing
this information into a single direction of the main eigen-
vector.

5. Geodesics for Tractography

In order to reconstruct the globally optimal pathways we
assume that fiber tracts coincide with geodesics in the Rie-
mannian manifold defined using the inverse of the diffusion
tensor as metric. The rationale behind this assumption is
that water molecules move freely along fiber tracts, and
their movement is restricted in the perpendicular direc-
tions. Therefore, it is assumed that the fiber connecting
two points follows the most efficient diffusion path for wa-
ter molecules. We are searching for a path that maximizes
diffusion. This can be achieved by inverting the metric
that converts the largest eigenvalue into the smallest one.

Therefore, we choose G = (gαβ) = D−1 with D defined in
(5). Consequently, the geodesics for this metric represent
the fibers [10].

Thus, consider a bounded curve C, with parametriza-
tion x = χ(τ), a 6 τ 6 b. A geodesic between two points
χ(a) and χ(b) is the smooth curve whose length is the
minimum of all possible lengths. In the following we use
the Einstein notation, i.e., we sum over repeated indices,
one in the upper (superscript) and one in the lower (sub-
script) position. For a general metric ds2 = gαβdxαdxβ ,
the length of C is given by

(12) J [χ] =

∫
C

ds =

∫ b

a

(
gαβ(χ(τ)) χ̇α(τ)χ̇β(τ)

)1/2
dτ.

The metric tensor (gαβ) only depends on x, and is symmet-
ric positive definite. The solution to the so-called geodesic
equations minimizes J [χ]. These are given by

(13) ẍα + Γαβγ ẋ
β ẋγ = 0,

where Γαβγ is the Christoffel symbol of the second kind,
defined by

(14) Γαβγ = gαδ[βγ, δ],

where [βγ, α] is the Christoffel symbol of the first kind,
and given by

(15) [βγ, α] =
1

2

(
∂gαβ
∂xγ

+
∂gαγ
∂xβ

− ∂gβγ
∂xα

)
.

Alternatively, we consider the functional that minimizes
the length of all curves joining the fixed point χ(a) and
the time variable end point χ(t), i.e.,

(16) T (x, t) = min
χ

∫ t

a

(
gαβ(χ(τ)) χ̇α(τ)χ̇β(τ)

)1/2
dτ,
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(a) (b) DT ellipsoids

(c) Human Brain saggital view

Figure 4. (a) Restricted diffusion process, (b) DT ellipsoids, (c) Saggital view of DT ellipsoids gener-
ated for a healthy Human Brain.

with x = χ(t). The geodesic connecting χ(a) with χ(t)
can be determined from the Hamilton-Jacobi (HJ) equa-
tion, given by

(17) H

(
x,
∂T

∂x

)
= 1,

where the Hamiltonian H is given by [11]

(18) H2(x,p) = gαβ(x)pαpβ pα := gαβ(x)ẋβ .

The HJ-equation may generate multi-valued solutions
when, for example, there are discontinuities in the gra-
dient field. Therefore, the viscosity solution is needed to
ensure the existence and uniqueness of the solution to the
HJ-equation [16]. This implies the viscosity solution is the
minimum time; i.e. the first arrival time, for any curve
from a given initial point to reach any other points inside
the domain. Using the viscosity solution will not ensure
that the solution we obtain is the real physically meaning-
ful one; e.g., shortcuts when they are not desired. In order
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Figure 5. (a) Small group of fibers generated using PDD tractography. The main eigenvectors of the
diffusion tensors determine the local orientation of the fibers. (b) Fibers generated by PDD tractography
showing part of the cingulum and the corpus callosum.

Figure 6. Illustration of the influence of noise in PDD tractography. Small changes in the direction
of the tensor can cause deviation of the fiber from the actual pathway.

to tackle this issue, multi-valued solutions of the arrival
time can be approximated by computing the geodesics di-
rectly from the geodesic equations [12, 8].

The geodesic equation (13) can be rewritten as the sys-
tem of ordinary differential equations

ẋα = uα,

u̇α = −Γαβγu
βuγ .(19)

Consider (x1(0), x2(0), x3(0)) as given initial point and
(u1(0), u2(0), u3(0)) as initial direction. We compute the
solution of (19) for the given initial position and multiple
initial directions using the standard fourth order explicit
Runge-Kutta method. This gives us a set of geodesics
for the given initial point and integrate till they hit the
boundary of a given domain. Here, the domain is the
outer surface of the brain.

6. Human Brain Fiber Reconstruction

We applied our proposed multi-valued geodesic tractog-
raphy to reconstruct the fibrous tissue structure of the
underlying neural axons of the white matter of a healthy
human brain. Using available atlases of the human brain
map [1], we select the region of interests. Geodesics are
then computed until they meet one of the boundaries. To
determine the fiber connecting two given regions we ap-
ply the line-plane intersection [12]. This allows us to cut
off the geodesics once they enter one of the selected end
regions.

Figure 7(a) shows the geodesics reconstructed for cor-
ticospinal tracts (top-right) and postcentral gyri areas of
the corpus callosum using PDD (bottom-right) and multi-
valued geodesics (bottom-left). Figure 7(b) illustrates the



results for the complete area of corpus callosum multi-
valued geodesics.

Since there is no available ground truth for fiber bun-
dles, simulated diffusion tensor data sets or white mat-
ter brain atlases are used for validating the tractography
methods. We validate the results for our method with sim-
ulated phantoms and the report can be found in [8, 12].
Moreover, multi-valued geodesics tractography has been
applied for various human brain data sets. According to
clinical experts, multi-valued geodesics are more coherent
with expected fiber tracts associated with the underlying
bundles. Our model reconstructs the fanning tracts, par-
ticularly the ones connecting the cortex area, while those
were completely missing using the PDD approach. Our
proposed model has been integrated as a part of Vist/e
biomedical visualization software and is publicly available
2.

7. Future Work

Despite the simplicity of the DTI model, tractography
techniques using the DT are shown to be very promising
to reveal the structure of brain white matter. However,
DTI assumes that each voxel contains fibers with only one
single main orientation and it is known that brain white
matter has multiple fiber orientations, which can be in
many directions. High angular resolution diffusion imag-
ing (HARDI) acquisition and its modeling techniques have
been developed to overcome this limitation. The models
applied to HARDI data result in a function on the sphere
that gives information about the diffusion profile within
the voxel [13]. An ongoing extension of geodesic based
tractography models is to apply the previously discussed
geodesic based models for the HARDI data [14]. Never-
theless, DTI is still widely used in clinical research due to
either unavailability of the scanning protocols for HARDI
or computationally expensive data processing. Therefore,
improving existing methods and algorithms for DTI pro-
cessing is beneficial for clinical purposes.
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(a)
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Figure 7. Illustration of a healthy human brain fiber bundle reconstructions. (a) The motor tracts in
red and corpus callosum tracts in blue modified from [20] (top-left), fibers reconstructed for corticospinal
tracts using multi-valued geodesics (top-right) and postcentral gyri areas of the corpus callosum using
PDD (bottom-right) and multi-valued geodesics (bottom-left). (b) Results for the complete area of
corpus callosum multi-valued geodesics


