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Abstract

We present a combination of techniques for interactive out-of-core visualisation of isosurfaces from large time-

dependent data sets. We make use of an index tree, computed in a pre-processing stage, which effectively captures

temporal coherence in the data set. This tree data structure enables fast extraction of all isovalue-spanning cells from

any time step and for any isovalue. For very large time-dependent data sets, such as those resulting from CFD

simulations, this data structure can easily become too large to fit in main memory. Therefore, we have adapted the

generation of the data structure, as well as the data structure itself for out-of-core application. During generation, the

data set is spatially divided into several regions, each resulting in a separate tree. For visualisation, the application uses

all these trees simultaneously, but will use only part of each of the trees. Only a user-specified time window will be kept

in main memory and other parts of the tree will be read and released on demand. Finally, to avoid time-consuming

triangulation and surface reconstruction, we have used a hardware-assisted direct point rendering algorithm for

displaying the isosurfaces. These combined techniques allow interactive exploration and visualisation of very large time-

varying data sets on a normal PC.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the greatest challenges in visualisation today,

is the interactive exploration of large, time-varying data

sets. Especially in areas such as flow visualisation, time-

dependent simulations are becoming common practice,

and can produce high resolution grid data sets with

many thousands of time steps. In spite of the huge size,

scientists investigating these data sets need interactive

visualisation techniques with which they can browse

through the data in both space and time.
e front matter r 2006 Elsevier Ltd. All rights reserve
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Flexible, general-purpose visualisation techniques

such as particle tracing, volume rendering, or isosurface

extraction are in general not fast enough for time-

dependent exploration, or for interactive control of the

visualisation parameters. For example, when using

isosurface extraction for a time-varying data set, it is

desirable to interactively change the isovalue, and watch

the development of the surface shape over time.

However, extracting and rendering a new isosurface

for each time step is generally too slow for interactive

exploration.

Our approach to this challenge is to use a specialised

data structure allowing very fast access and data

retrieval for answering a specific type of visualisation

query. We used a number of criteria in choosing such a
d.
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data structure. First, it should do fast isosurface

extraction for any isovalue. Second, it should be suitable

for time-dependent data sets. Combining these two, it

should be possible to do time-dependent or ‘‘incremen-

tal’’ surface extraction, or to determine the differences

between successive time steps. This means the data

structure should exploit temporal coherence in the data.

Of course, it should be much faster than straightforward

isosurface extraction from every time step separately.

Finally, the results of the extraction should be directly

passed to a fast rendering algorithm for display.

We have employed a data structure for fast isosurface

extraction from time-dependent data sets [1]. To make

our system achieve interactive frame rates in browsing a

data set, we have directly linked the output of our

isosurface extraction with a fast, hardware-supported

direct rendering algorithm [2], resulting in interactive

isosurface extraction and visualisation from time-vary-

ing data sets. The direct rendering avoids the time-

consuming construction of polygonal surfaces using a

Marching Cubes-type of algorithm [3]. By combining

these two methods, and capitalising on temporal

coherence, the user can specify an arbitrary isovalue

and time step, and the development of the isosurface can

be dynamically visualised in forward or backward time

direction (see Fig. 1).

However, the tree data structure used may become

too large to fit in main memory. We have overcome the

huge memory requirements for creation and use of this

data structure. For this, we have adapted the data

structure for out-of-core application. We designed and
Fig. 1. A 2563 data set of air bubbles rising in water.
implemented an intelligent paging scheme to enable

interactive out-of-core isosurface extraction and render-

ing on a regular pc.

This paper is organised as follows. In Section 2, we

discuss related work in isosurface extraction techniques

from time-dependent data, suitable rendering techniques

to display the isosurface, and out-of-core techniques.

Then we will briefly explain the data structures we have

used in Section 3, together with the out-of-core

algorithms and adaptations in Sections 4 and 5. The

results will be discussed in Section 6, and we will give

our conclusions and directions for future work in

Section 7.
2. Related work

Many techniques for fast isosurface extraction are

based on tree representations. Sutton and Hansen

introduced the Temporal Branch-on-Need Tree (T-

BON) [4]. This is an extension to the original Branch-

on-Need Octree (BONO), described by Wilhelms and

Gelder [5]. The T-BON is a version for time-dependent

data sets, but it does not make use of temporal

coherence. The data structure is suitable for fast

isosurface extraction.

Shen presents an algorithm for fast volume rendering

of time-varying data sets, using a new data structure,

called the Time-Space Partition (TSP) Tree [6]. This

structure could also be adapted for fast isosurface

extraction. The TSP tree is capable of capturing both

spatial and temporal coherence in a time-dependent

field. Both the spatial and temporal domain are

represented hierarchically in the TSP tree: each node

of the octree representing space, contains a full bintree

representing time. Although this allows multi-resolution

access in any dimension, it involves a huge storage

overhead.

Shen describes another data structure for isosurface

extraction from time-varying fields, called the Temporal

Hierarchical Index Tree [1]. The idea behind this

structure is to store voxels that remain approximately

constant throughout a certain time span only once for

that entire time span. Within this data structure, two

other data structures are used. First, the Span Space

representation, as introduced by Livnat et al. [7], is used

to store intervals in a two-dimensional space. Second,

Interval Trees, described by Cignoni et al. [8], provide an

optimal interval search algorithm.

Bordoloi and Shen [9] presented an algorithm for

storing intervals more efficiently than in the Span Space,

using transform coding.

Recently, Gregorski et al. [10] presented a technique

for progressive isosurface extraction with adaptive

refinement from compressed, time-dependent data sets.

However, they are restricted to playing forward and
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Fig. 2. An example of a binary time tree for 10 time steps.
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backward in time. The vertex programming capabilities

of modern graphics hardware are used to speed up the

surface extraction.

Pascucci also uses the vertex programming capabil-

ities of modern graphics hardware [11]. In his approach,

the workload is distributed between the CPU and the

graphics card. A tetrahedral decomposition of the

domain is used. The application draws one quad per

tetrahedron; the vertex program on the graphics card

does the interpolation to find the position of the vertices

of the isosurface, and computes the normal of the

isosurface.

For our purposes, we decided to use and extend the

Temporal Hierarchical Index Tree by Shen [1]. We will

describe this structure in more detail in the following

sections.

We have made an implementation of this data

structure with optimisations for space efficiency. We

have created search routines for retrieving the isosur-

face-spanning cells for any isovalue and from any time

step, and specialised incremental search routines that

allow an even faster cell search from any time step, given

the previous results from another time step [12].

We wanted to overcome the huge memory require-

ments both during creation of the data structure and in

interactive visualisation, when the data structure is used.

Therefore, we have designed a paging scheme for this

tree data structure that makes out-of-core tree building

and extraction possible for very large data sets. In the

application program, this data structure is suitable for

paging per time step, unlike for example the TSP tree.

Recently, Chiang presented a technique for out-of-core

isosurface extraction from time-varying fields [13], which

uses as the basic data structure a time tree similar to the

one described here. The underlying structures of his

technique are however optimised for I/O and out-of-

core computation. We have focused on both fast

extraction and rendering and afterwards adapted the

data structure and added the paging scheme. We did not

try to create I/O-optimal data structures and algorithms;

we used this scheme because it suits our data structure.

For an overview of out-of-core algorithms for computer

graphics and visualisation, we refer to the survey by

Silva et al. [14].

For visualisation we developed two separate point-

based rendering techniques. The first, ShellSplatting, is a

hardware-accelerated direct volume rendering method

that is based on a combination of splatting [15] and shell

rendering [16]. The second is a much faster, but lower

quality, point-based volume rendering method that was

created specifically for the isosurface extraction docu-

mented in this paper. The points are displayed as

opaque, flat-shaded polygons that are parallel with the

viewing plane. This is an extreme simplification of

systems like QSplat [17] and object space EWA surface

splatting [18].
Both rendering techniques have been tightly coupled

with the extraction technique. The cells that result

from the search routines are fed directly into the

rendering algorithm, without the need for retrieving

the raw data or having to perform interpolation or

triangulation. This high level of integration between

extraction and rendering is an important advantage of

our technique.
3. Temporal index tree

Isosurface extraction involves searching the cells that

are intersected by the isosurface, which means that they

contain the isovalue. Therefore, each of these cells must

be enclosed by vertices of which at least one has a scalar

values lower and at least one has a scalar value higher

than the isovalue. To check if a cell is intersected by the

isosurface, it is sufficient to store the extreme values of

the cell.

It is the main idea for the data structure we will

describe next, that for each cell only an interval

½mini;maxi� is stored. To check if a cell is an isosurface

cell, we check if the isovalue is contained in that interval.

We have used and modified the Temporal Hierarch-

ical Index Tree data structure [1]. This data structure

makes use of temporal coherence in the data set by

storing cells that remain (approximately) constant over a

certain time span, only once for that time span.

The basic structure of our index tree is a (Branch-on-

Need) binary time tree in which each node represents a

time range—the root node represents the data set’s

entire time range, the leaf nodes represent the individual

time steps. (See Fig. 2.) To retrieve the data for a

particular time step, we will need to traverse the tree

from root to leaf nodes and collect the data found in

each node.

In each of the nodes of this binary tree, cells are stored

that remain (approximately) constant for that time span.

This implies that those cells need not be stored anywhere

below that node. Any descendant of a node represents a
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sub-span of that node’s time span, so there is no need to

store the cell in the descendant. This is the cause of the

potentially large data reduction that can be achieved

with this tree structure. Of course, it very much depends

on the amount of temporal coherence in a data set. In

the worst case, there will be no coherence between

successive time steps and all the data will be stored in the

leaf nodes of the tree. No data reduction can be achieved

in that case. On the other hand, the best possible

compression will be achieved when all time steps are

similar—all the data will be stored in the root node, and

the total amount of data will be equal to the amount of

one time step.
3.1. Tolerance

We need a tolerance criterion to determine when a cell

is considered constant. We have implemented two

different criteria, which we call absolute and relative,

from which the user can choose. However, more can be

devised and easily implemented. In both cases, the user

can specify a tolerance percentage.

In the absolute criterion the tolerance used will be the

given percentage of the entire data set’s min–max-range.

More precisely, we compute the tolerance as follows:

T ¼ t� ðmaxg �mingÞ, (1)

where t is the user-provided tolerance percentage; maxg

and ming are the data set’s global minimum and

maximum. This criterion can be used when the data

values will be more or less evenly distributed; for every

data value, the same tolerance will be used.

In the relative criterion, the given percentage will be

taken relative to the current value. For example, a

relative tolerance of 1% means that a value of 1:0 may

deviate by � 0:01, but a value of 10:0 may deviate by

� 0:1. This type of criterion can be used if the data can

be expected to be distributed around a certain value, or

if one data value is likely to be picked for the isovalue.

The value of the tolerance parameter influences the

construction of an index tree. The results (the size of the

data structure, the accuracy of the data structure, and

with that the accuracy of the rendering, and the speed of

the isosurface cell search) strongly depend on the value

of this parameter. But even if the connection between

the parameter and the results is intuitively clear, it is not

obvious to state the best possible value.

The parameter determines the amount of variance a

cell is allowed to have over time and yet be called

constant. Obviously, this value should not be too large,

otherwise important variations will not be apparent in

the results. The value should also not be too low,

because then little or no temporal coherence will be

found, which would undermine the whole purpose of the

binary time tree.
On the other hand, the amount of temporal coherence

is a property of the data set. In a very ‘‘turbulent’’ data

set, there will be hardly any coherence, but in a ‘‘stable’’

data set, there will be very much.

Ideally, we would like to quantify the overall

amount of coherence in a data set and automatically

determine the best tolerance parameter for that

amount.

Even if we could do this, the question remains what is

best. There are several criteria to choose from. For

example, the best case with respect to the size of the

data structure would be to choose a very high tolerance.

This will cause many cells to be called constant

and therefore result in all cells being stored in the root

node of the binary tree. We get the best possible

compression, but the worst possible accuracy. On the

other hand, the best case with respect to accuracy

would be to have the tolerance set to 0. This will result

in most of the cells being stored in the leaf nodes.

The compression will be almost 0 and the speed will be

very low.

For our purposes, the optimal case will be somewhere

in between, having a good amount of compression, but

also still a good accuracy. In fact, the highest search

speed for a single time step will be obtained when all tree

nodes contain about the same number of cells. This is

what we will aim for.

3.2. Index tree building

When creating an index tree, we start by building the

structure of the binary time tree. Note that this structure

is determined a priori, only by the number of time steps.

Therefore, the time ranges which are represented by each

node of the tree are fixed.

From the structure of this tree, and the possible time

ranges that can be stored in each node of the tree, we can

start classifying the cells in the data set. For each cell, we

generate a time-vector v containing the cell’s values for

each time step. Given this 0D time-dependent data set,

(being the temporal evolution of one cell) we start

traversing the binary time tree. Referring to Fig. 2, we

start at the root node, with time range ½0; 9�, and check if

the current cell remains (approximately) constant for

this range. For this we need the cell’s time-vector v½0� to

v½9�. If the cell satisfies the tolerance criterion for this

time range, we store the cell in the current binary tree

node. If not, we recursively descend the tree and check

the child nodes ½0; 7� and ½8; 9�.
To determine if a cell remains constant over a certain

time range, we compute its temporal extreme values.

Because a cell itself contains a minimum and a

maximum value, we compute temporal extremes for

both the minimum and the maximum. These will be

treated similarly. Let us call the minimum L, for left

extreme, and the maximum R, for right extreme. Then,
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using the absolute criterion, we would check if

ðmax
t

Li �min
t

LiÞoT ,

ðmax
t

Ri �min
t

RiÞoT ,

where max
t

and min
t

mean the temporal extremes, and Li

and Ri mean the two spatial extreme values stored in cell i.

For the relative criterion, we would check if

ðmax
t

Li �min
t

LiÞoT � kmintLik,

ðmax
t

Ri �min
t

RiÞoT � kmintRik.

Note that if the cell is stored, for example, in node ½8; 9�,
meaning that the above criteria return true, its value is

called constant for time steps 8 and 9, and there is no

need to store the cell in either of the nodes ½8� and ½9�.

Note also that a cell that remains constant for the time

range ½0; 5�, for example, will be stored in the two nodes

½0; 3� and ½4; 5�, because there is no node for the range

½0; 5�. Moreover, we would not even know the cell

remains constant for that time range, because that range

will never be checked. Only the ranges that are

represented by binary tree nodes will be checked.

If a cell is stored in a node of the binary time tree, we

store the cell’s ID and extreme values. For non-leaf

nodes, representing a time range instead of a single time

step, this means we have to store the temporal extreme

values of the cell. For rendering, we also need a normal

(or normalised gradient) for each cell. Non-leaf nodes

represent a time range, meaning there are several

normals to choose from. Currently, we pick one, for

example the middle one; an average normal might be

better, although we have not noticed any artefacts with

our method.

After all cells have been classified and stored in the

binary time tree, they will be reorganised per tree node.

In each of the tree nodes, we have maintained a vector of

cells. For efficient interval searching, these cells will be

rearranged into an Interval Tree [8]. This is where we

deviate from the original data structure as described by

Shen [1]. He uses another data structure, called the Span

Space, in which intervals are stored as 2D points. We

have also implemented this data structure, but even-

tually rejected it, the biggest disadvantage being that it is

very unintuitive. Furthermore, the Span Space in

combination with the Interval Trees, as in the original

article, does not result in much higher search speed or

more efficient storage, than just using Interval Trees.

In our structure, one interval tree will be created in

each binary tree node. This structure and its construc-

tion are fairly straightforward and described in detail by

Cignoni et al. [8] and in our previous work [12].

Therefore, we will not discuss it any further in this

article.
4. Out-of-core tree building

During the creation of the index tree, we have to

iterate through all cells in the data set, determine a time-

vector for each cell and store each cell in the right

node(s) in the index tree. We need a time-vector for each

cell, because we want to determine the time spans in

which the cell remains constant. This poses a number of

problems.

4.1. XYT files

From a practical point of view, the usual way in which

time-dependent data sets are stored, is not very well-

suited for this purpose. Normally, for each time step a

field is stored in a separate file, so the same grid point in

different time steps can be located at the same offset in

different files. When we need to construct a time-vector

for a certain cell, we have to open and search in all files.

Either we have to keep all files opened simultaneously,

or open and close all files for each cell.

We decided to transpose the entire data set in pre-

processing. Instead of storing ðx; y; zÞ data in each file

and a separate file for each time step, we transformed the

data set to files with ðx; y; tÞ data and with each file

representing a different z. Here we assume a regular,

Cartesian grid. Of course, other subdivisions are

possible, as long as the temporal data for one grid point

can be obtained from a single file.

4.2. Multiple trees

There is another obstacle when constructing the index

tree. Each cell’s time-vector is split into a number of time

ranges over which the cell remains constant. Then, the

cell is stored in the index tree nodes corresponding to

those time ranges. In each of these nodes, the cell is

appended to a (potentially very large) list of cells for that

node. Because each cell may be stored in a number of

index tree nodes, it is essential, for efficiency reasons,

that we should try to keep the entire index tree in main

memory during construction.

Of course, it could be possible to store each index tree

node separately on disk during construction, but that

would involve a lot of extra disk I/O for every single cell.

Instead we decided to keep as much as possible in

main memory, but split the entire data set into several

trees. Because of the file layout just described, we

decided to split the data set in the z direction. For

example, for a 2563 data set, we have 256 files, each

containing ðx; y; tÞ information for a different z value.

We could then create 16 index trees, each for a layer of

16 z slices thick. Or 32 trees of 8 slices, or 4 trees of 64

slices. Each of these trees separately can be kept in main

memory, so there is no unnecessary disk I/O during

construction. When a layer has been completed, the
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current index tree can be written to disk and cleared

from memory, and the next z slice will start a new index

tree.

This approach does not give any noticeable space

overhead compared to using a single tree. The total disk

space needed for all trees is equal to the space needed for

a single full tree. In the application program almost no

extra processing is required to use multiple trees

compared to using a single large tree. In fact, the

application just iterates over the array of trees and

performs the same function for each individual tree. For

an isosurface query, the cells returned by the queries on

the individual trees are then concatenated.

Another advantage of using multiple trees, is that we

can easily add trees that represent other quantities,

meaning we can render several isosurfaces simulta-

neously. As an extension to this concept, we can also

reuse a single tree, enabling us to render several

isosurfaces with different isovalues from a single

quantity. To the program, these concepts are almost

identical. In all cases, we iterate over the array of trees,

and for each tree we perform an isosurface cell search. In

one case, the isovalues will be the same for each tree, but

every tree represents another piece of the data set. In

another case, the trees will actually represent the same

data, but we will search for different isovalues (see Fig. 3)

and the last case is that we have different trees, each

representing another quantity, and each having its own

isovalue.

A fourth case is possible, when we have trees

representing the same data set and the same quantity,

but a different time range. Of course, this is sub-optimal.

We should always try to use the data set’s entire time
Fig. 3. Several trees can be loaded simultaneously, either

representing different quantities, different time ranges, or—as

shown in this image—different isovalues.
range, in order to find the most temporal coherence. If,

somehow, it would not be possible to create index trees

for the entire time range, for example because the

simulation is still running, it is possible in this way to

visualise a time range using several trees. The time

ranges for the individual trees will be joined to form one

large time range. The difference with the other cases is

that at any time only a single index tree will match the

current time step, whereas in the other cases all index

trees represent the entire time range and thus all trees

will always match the current time step. Again, not using

the entire time range is sub-optimal. For example, if a

data set consisting of 100 time steps is divided into 10

index trees of 10 time steps, it is not possible to find any

temporal coherence with a length of more than 10 time

steps. This will obviously have a negative impact on the

compression ratio.
5. Out-of-core visualisation

5.1. Time window

During visualisation, we may have a different memory

problem. Although we can split the data set into layers

during construction of the index tree, we cannot do this

during visualisation, as we would like to see the data

set’s entire spatial extent at once. Therefore, we will have

to read all constructed index trees simultaneously.

However, we do not need to have all time steps in

memory at the same time. We created an intelligent

paging scheme that allows us to read only a limited

number of consecutive time steps from the index trees

into main memory. The structure of the index tree

enables us to incrementally read new time steps and

remove old time steps from memory. This is the basic

idea of our sliding time window concept. We assume this

corresponds very well to the way scientists will browse

through the data set. We assume the user will normally

play through the time steps coherently, either forward or

backward. This corresponds to our incremental reading

of new time steps. Sometimes, the user may browse a few

frames backward and forward, within the time window.

If a large jump in time is requested, this will cause a

delay, because a completely new time window will have

to be read. We assume this is a minor problem, because

random jumps in time will probably not happen very

often.

As an example, let us take the same binary time tree as

in Fig. 2, representing a data set with 10 time steps.

Assume we have a time window containing the 5 time

steps ½3; 7�. In Fig. 4 we have depicted which nodes of the

tree will be in main memory. If the time window is

shifted one time step to the right, the nodes ½8; 9� and ½8�
will have to be read from disk. The node ½0; 9� does not
have to be read from disk because it is already in main
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colored nodes will be kept in main memory.

Fig. 5. The GUI element that shows the time window and

current time step.
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memory. In fact, the root node will always be in main

memory, because it is needed for all time steps. While we

need to read extra tree nodes from disk on the one side,

we can remove nodes from memory on the other side:

time step 3 is no longer needed, therefore, we can delete

the nodes ½0; 3�, ½2; 3� and ½3� from main memory.

Knowing this, we can define the memory requirements

for our algorithm. Evidently, the minimal amount of

memory needed is just the space that is needed to store a

single time step.

5.2. Adaptations to the data structure

To make the time window possible, a number of

changes have been made to the index tree data structure.

The skeleton of the binary time tree will always be kept

in main memory. This means that the tree structure will

always be available, together with the time span

information in each node. Using this structure, we can

easily identify which tree nodes have to be traversed to

obtain the data for a certain time step. Only the cell

data, which is stored in the interval trees in each of the

nodes of the index tree, will be eligible for paging to and

from disk.

Each index tree is stored as one large binary file on

disk. When we have to read the interval tree for a

specific index tree node from disk, we need the file offset

and the number of bytes to read from our disk file. These

two numbers are stored with each node of the index tree.

In fact, the number of bytes is not necessary for

reading an interval tree from disk. The entire index tree,

but also the individual interval trees will be recon-

structed in memory on the fly, while reading from disk.

Therefore, we do not have to know in advance the

number of bytes to read. However, the number is

necessary when the interval tree is not read; when only

the structure of the index tree is read, without the data in

the interval trees, it is necessary to know how many

bytes to skip to find the file offset for the next tree node

to read.
This way, the structure of the index tree can be read

entirely from disk, without reading any data. The tree

then occupies only a few hundred bytes in memory.

Next, whenever a time step is requested, the appropriate

tree nodes will be read from disk.

When a tree node has to be freed, the interval tree for

that node is simply removed from memory.

Of course, we must keep track of which tree nodes

currently are in main memory. To this end, we have

added a single boolean variable to each tree node. We

say a tree node is in memory if the interval tree for that

tree node is in memory. Again, the index tree structure

remains in memory at all times, and therefore, all index

tree nodes also exist in memory permanently. Only the

interval tree in an index tree node can be paged in and

out of memory.

5.3. GUI feedback

To provide the user with feedback about the time

window, we have designed a GUI element to show a bar

from the first to the last time step of the window, with an

indicator at the current time step. (See Fig. 5.)

Because reading new time steps will certainly be

slower than visualising them, the visualisation will, in

the end, catch up with the last time step of the time

window. This is of course dependent on the size of the

time window and on the frame rate of the player. It can

happen that the user will notice a delay. Therefore, it is

desirable for the user to get feedback. He will see that

the visualisation is catching up with the reading of new

time steps and be prepared that he will have to wait. Or,

he could slow down the visualisation by lowering the

frame rate. Finally, he could also increase the time

window if memory size allows this.

5.4. Multi-threading

In order to let the visualisation run independently

from the reading of time steps from disk, to prevent

unacceptable delays, we have decided to use a multi-

threaded design for our program. The main thread of

the program is concerned with the visualisation. When a

certain time step is selected by the user this thread

ensures that the part of the index tree containing that

time step is resident in memory. If necessary, it will read
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the corresponding tree nodes from disk. Next, it will

perform an isosurface cell search and visualise the result.

In the mean time, the second thread is awakened and

this thread will start reading new time steps, from the

current time step in both time directions, until the

requested number of time steps (specified as the window

size) has been read in from disk. This could take some

time, especially if all time steps in the time window have

to be read, but as it happens in a separate thread, the

user might not notice anything, while he is investigating

the current time step. Of course, when the user simply

plays through the data set, only one time step will have

to be read at a time, in which case interactive browsing is

quite feasible. A third thread has been designed to

perform the task of cleaning up unused time steps. This

thread will remove all nodes in the tree that are not

needed for the current time window.

These last two threads both consist of an infinite loop

in which they are suspended while waiting for a signal.

The main thread broadcasts the signals whenever a new

time step is selected.
5.5. Point-based direct rendering

After extracting the cells intersected by the isosurface

it would be possible to construct a polygonal mesh for

each frame and visualise this using polygon rendering.

However, this would take away the advantage of the fast

access data structure, as the original data would have to

be read from disk in order to perform surface

reconstruction using for example the Marching Cubes

algorithm [3].

To avoid this, we have used a point-based direct

rendering algorithm [12]. We further optimised our

ShellSplatting rendering algorithm [2], a combination of

shell rendering and splatting, to take advantage of the a

priori knowledge that the voxels we are dealing with are

completely opaque and together constitute an isosur-

face. ShellSplatting makes use of special data structures

that enable fast implicit space leaping and back-to-front

or front-to-back traversal from any viewing angle. This

ordering is very important as the technique makes use of

Gaussian textured polygons that are composited and

scaled by graphics hardware.

The ShellSplatting technique yields high quality

renderings of the extracted isosurfaces. However, due

to the nature of the data structures used, the voxels have

to be ordered in at least the fastest-changing dimension

and this slows down the data conversion stage. We

wished to provide a second, much higher speed

rendering option.

By opting to use flat-shaded rectangular polygons

instead of Gaussian-textured ones, the ordering con-

straint could be ignored. In return, the rendering quality

would be slightly lower. In this second method, the
polygon that is to be used for rendering the cells is

calculated in the same way as for ShellSplatting.

The polygon is constructed to be parallel to the

viewing plane. This is correct for parallel projection.

Strictly speaking, in the perspective projection case each

rendered polygon should be perpendicular to the view-

ing ray that intersects it. However, for efficiency reasons,

we make use of slightly larger screen-aligned polygons

[19]. The details of the construction are described in our

previous work [12].
6. Results

We have tested our application on two large data sets.

The first data set is of a multi-phase flow simulation of a

number of air bubbles rising in water. Five double-

precision floating point values are computed per grid

point: the pressure, the level set value and the three

components of the velocity. We use only one scalar to

create the index tree, being the level set value; this leaves

us with 128MB of data per time step. See Fig. 6.

Another data set we used is of a Large Eddy

Simulation of cumulus clouds, with one vector and

three scalar quantities: the air velocity vector, meteor-

ological temperature, liquid water and total water. For

the creation of an index tree, we only used the

temperature. See Fig. 6.

For each of these data sets, we created two sets of

index trees; the details are in Table 1.

6.1. Benchmarks

For two of the data sets (the second and fourth from

Table 1), we ran a couple of benchmarks. First we ran a

rendering benchmark, both with the ShellSplat renderer

and the Fast Point-Based renderer, for different

isovalues, meaning different numbers of cells to render.

In the other two benchmarks we measured the speed at

which we could play through the data set. This involves

both extraction and rendering for each time step. This

was done for a (worst case) time window of 1, meaning

that each time step has to be read from disk before

extraction can be done, and for a very large time

window. In the latter case, all data is kept in main

memory and no data transfers from disk are needed.

This is done to test the speed of the extraction algorithm.

When we use the ShellSplat renderer, a sorting step is

needed for each time step. To see the influence of this

sorting, we have performed the last benchmark with

both renderers.

We ran the benchmarks on a modern computer with

an Intel Pentium 4 processor, running at 3.0GHz, and

1GB of main memory. The graphics card is a NVidia

Quadro FX 1300 with 128MB of memory on a PCI

Express graphics bus.
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Table 1

Details of the two data sets and of the four generated index trees

Data set Bubbles Clouds

Resolution 256� 256� 256 128� 128� 80

# Time steps 39 600

Raw data size 4992MB 3000MB

# Index trees 16 8 6 8

xy-resolution 256� 256 256� 256 128� 128 128� 128

z-resolution 16 32 80 10

# Time steps 39 39 100 600

Total size 3170MB 1630MB 824MB 750MB

Fig. 6. Scenes from the two data sets. On the left is the bubble data set, on the right is the cloud data set.
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The results of the rendering benchmarks are shown in

Fig. 7. It is clear that interactive rendering is possible

with the Fast Point-based Renderer, even for over

400,000 cells. Also the Shell Renderer can achieve

interactive frame rates up to about 100,000 cells.

Because of the texturing and compositing, the Shell

Renderer is much slower than the Fast Point-based

Renderer.

Next, we timed at which rate we could play through

the entire data set. This involves extraction and

rendering for every time step, using the same isovalue.

With a time window of 1, only a small amount of main

memory is needed, but for every frame, we have to read

a new time step from disk into main memory and delete

the previous time step from memory. The speed is

therefore very much dependent on the amount of data

that is to be read per time step. The cloud data set,

consisting of 600 time steps, occupies a total of 750MB

on disk, or on average 1.25MB per time step. We can
play through the entire range of 600 time steps at an

average rate of 7.8 to 9.5 frames per second, depending

on the number of cells to render.

The bubble data set, on the other hand, with only 39

time steps and occupying 1.6GB on disk, has an average

of almost 42MB per time step. Playing this data set with

a time window of 1 is not really interactive, with an

average frame rate of about 0.46 FPS.

However, if there is more memory available, it should

obviously be used. Therefore, we also tested the speed at

which we could play through the data within a large time

window. We used a fixed time window which could be

completely stored in main memory; no disk transfers

were needed whatsoever. Because the rendering again

depends on the number of cells, we ran the benchmarks

with different isovalues. The results are shown in Fig. 8.

As discussed in Section 5.1, playing randomly in time

is also possible, although naturally slower than playing

consecutive time steps. This is, however, difficult to
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Fig. 7. The results of the rendering benchmarks. On the left is the bubble data set, on the right is the cloud data set.
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benchmark, as the speed will depend upon which

random time step is selected, and whether or not this

time step is within the time window. The size of the time

window determines the chance of a ‘‘hit’’ or ‘‘miss’’.

As long as a time step within the time window is

chosen, visualisation will be interactive. In fact, the

isosurface cell search will be significantly slower, because

of our incremental search algorithm [12], but the

rendering will remain the bottleneck. The achieved

playing frame rate will, therefore, be only slightly

slower (about 10 or 15%). As an example, the extraction

frame rate for the 600 time step data set can be more

than 4000FPS, searching through consecutive time

steps. The playing frame rate will be about 35FPS.
When browsing randomly through these 600 time steps,

the extraction frame rate will drop to about 180FPS.

However, the rendering speed will not be influenced,

therefore, the playing frame rate will only fall to about

30FPS.

When a time step outside the time window is selected,

disc access will be required. The amount of data that has

to be read will determine the update speed. In turn, this

amount of data will depend on the data set and the

temporal coherence in the data and between the current

and the newly selected time step. The update rates will

be comparable (but slightly lower) than those discussed

above, for playing consecutive time steps with a time

window of size 1.
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Extraction of the isovalue-spanning cells can be done

extremely fast. Rendering is also very fast, as long as we

do not need the sorting step to create the shell data

structure for the Shell Renderer. Construction of this

data structure takes so much time that it is not really

suitable for interactive use. Once you have made the

shell data structure, it is suitable for interactive

rendering, but every time you change the isovalue or

the time step, the shell structure has to be regenerated.

The recommended use would therefore be to switch to

the Fast Point-based Renderer when browsing through

time or searching an interesting isovalue. When a

particular isosurface in a certain time step has been

found and needs to be explored, the Shell Renderer can

very well be used interactively.
7. Conclusions and future work

We have presented a combination of techniques to

allow interactive isosurface extraction and visualisation

from large time-dependent data sets. In pre-processing

we create a tree data structure that is designed for fast

extraction of all isovalue-spanning cells for any isovalue

and from any time step. This data structure makes

effective use of temporal coherence in the data by

storing values that remain approximately constant over

a time range only once for that time range. The cells that

are extracted can be quickly rendered using a hardware-

assisted direct rendering algorithm. For this direct

rendering no interpolation and triangulation for surface

reconstruction is needed.

The data structure is in principle limited to isosurface

extraction, however, as was shown in Fig. 6, it is possible

to make an approximate reconstruction of the original

data, providing the ability to perform other algorithms

such as slicing.

We have overcome the huge memory requirements

for creation of the data structure by spatially

sub-dividing the data set and building a separate tree

for each subspace. The memory requirements are

therefore equal to the amount needed to hold a

single tree.

During visualisation the separate trees can be

combined to reconstruct the entire spatial domain.

To overcome the memory requirements for this stage,

we have designed and implemented a paging scheme,

based on a time window paradigm, that will keep

only those parts of the trees in memory that are

required to visualise the time steps within a user-

specified time window. Paging is done per tree

node. Each node will be kept in main memory just as

long as is needed. The memory requirements for

visualisation are therefore equal to the amount of

memory needed to hold the time window, which can

be as little as one time step.
Within the time window, interactive frame rates can

be achieved, for the entire pipeline of extraction and

rendering, both for varying isovalue and varying time

step. Outside the time window, paging will slow down

the frame rates. The amount of data to be transferred

from disk will determine the speed. This amount

depends not only on the size of the data set but also

on the amount of temporal coherence.

Optimisations might be possible by making the data

structure more I/O efficient. This data structure was

designed to do fast isosurface cell extraction and later

adapted for out-of-core functionality. It can perhaps be

optimised for I/O, however, that will be at the cost of in-

core performance.
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