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Automatic cardiac contour propagation in short axis

cardiac MR images
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Abstract. Active contours are a popular method for automatic extraction of object boundaries based

on image features in medical images. However, in short axis cardiac MR images, they fail to give

correct results due to the presence of papillary muscles along the left ventricular endocardium

boundary. We propose a new automatic cardiac contour propagation method based on active

contours. The method can be used to propagate cardiac contours that conform an initial manual

segmentation, by exploiting information in adjacent images. In this paper, we present the results of

the optimization and extensive validation of our method, which was found to be robust and accurate

for the delineation of the LV endocardium, LV epicardium and RV endocardium contours.

Additionally, the processing time is reduced significantly compared with manual contour delineation.
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1. Introduction

Short axis cine cardiac MRI acquisitions usually consist of 15–25 phases at 10–15

slices (150–375 images) that are approximately perpendicular to the long axis of the left

ventricle. Segmentation of the left ventricular (LV) and right ventricular (RV) blood pool

and the myocardium is required for quantification and diagnosis of cardiac function.

Current automatic segmentation methods often do not provide adequate contours in the
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presence of papillary muscles or trabeculae, requiring elaborate interaction of a skilled

user. Besides this, currently applied automatic methods often make little or no use of

anatomical knowledge and of already defined contours in adjacent images.

2. Purpose

The purpose of our work is to reduce user interaction to drawing a single initial

segmentation by developing a dedicated contour propagation method based on Active

Contours [1]. The method propagates contours over all phases exploiting information from

adjacent images, to generate contours reflecting the preferences of the user (e.g. inclusion

or exclusion of the papillary muscles).

3. Methods

3.1. Active contours

The starting point for the new method was the Active Contour [1], currently used in the

Philips Medical Systems ViewForum workstation (formerly EasyVision). The structure of

this contour model is a set of connected vertices. The movement of these vertices is limited

to the direction perpendicular to the contour. The internal forces in this algorithm minimize

the curvature of the contour. These internal forces are balanced with external forces, to

define a total force for each vertex, which drives the contour to its final location. For our

purpose, the external force is redefined to use information from adjacent images by

applying gray value profile matching.

3.2. Profile matching

To imitate the initial segmentation, the vertices of the contour should be driven to

locations with a similar gray value neighborhood. This gray value neighborhood can be

represented by profiles perpendicular to the contour. Features in these profiles, such as the

transition between blood and myocardium, are translated between phases due to the

contracting motion of the heart. We calculate an external energy distribution by calculating

the match between profiles in the reference and the target phase. The resulting distribution

has a well-defined minimum at the location where the target profile is translated such that

it best resembles the reference profile (see Fig. 1). This is accomplished by calculating

normalized sums of differences between reference and translated target profiles. This

external energy distribution drives the Active Contour towards locations with similar

contour neighborhoods. By repeating this process from phase to phase, the dinitial
behaviorT of the contour is copied, until each phase in the data set is segmented. If
Fig. 1. Profiles from consecutive phases reveal a shift. The external energy distribution has a well-defined

minimum at the location where the target (T=1) matches the reference (T=0) best.
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necessary, the influence of noise can be reduced by applying a Gaussian filter on the

profiles in the direction tangential to the contour [4].

3.3. Validation

The resulting contours were validated by calculating positioning errors in terms of

average, RMS and maximum distance with respect to a golden standard. Distance

calculations between discrete contours require a correct definition of chords between pairs

of corresponding points along which distances are measured. To establish a so-called

correspondence we use the Repeated Averaging Algorithm (RAA) [2], which defines

chords perpendicular to an iteratively determined average contour.

Furthermore, we determined the influence of our algorithm on relevant physiological

parameters, such as end-systolic volume (ESV), stroke volume (SV) and ejection fraction

(EF). The required volumes were calculated by adding contour areas according to

Simpson’s rule.

4. Parameter optimization

The accuracy of our method depends on a number of parameters. To achieve accurate

results an optimal parameter configuration for segmentation of short axis cardiac MR

images was determined experimentally.

4.1. Data

The optimal parameter configuration was determined using a training set containing

four cardiac MRI data sets. Each data set contained 75 short axis images from three slices,

corresponding to approximately basal, mid and apical positions, and 25 phases. The data

was obtained from two patients; scans were made before and after administering

adenosine, to stimulate the heart cycle. The data was acquired using ECG gated cine MRI

with a Philips Gyroscan Intera.

4.2. Golden standard for training set

Three experts segmented each data set in our training set twice. These six manual

segmentations were averaged using the RAA, resulting in average contours, which reflect

the common intentions of the experts. These average contours were considered to be the

actual contour location and were therefore used as golden standard. The inter-observer

variance for manual segmentation was determined in terms of positioning errors with

respect to the golden standard. This resulted in RMS distances for the LV endocardium

(1.1F0.5 mm), LV epicardium (0.8F0.3 mm) and RV endocardium (1.6F0.9 mm).

Furthermore it is important to note that the end systolic (ES) phase proved to be the most

difficult to segment, exhibiting the largest inter-observer variation.

4.3. Experiment

The optimal parameter configuration was determined in an exhaustive search of the

parameter space. Our method was tested by propagating all golden standard contours to

the adjacent phase at each possible combination of parameter settings. The resulting

contours were validated against the golden standard by calculating positioning errors. Such



Fig. 2. Selected images from a short axis cardiac MR time sequence with propagated cardiac contours.
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a so-called full factorial experiment generates a large, multidimensional parameter space

filled with performance values. By applying Analysis of Variances (ANOVA) to this

parameter space we determined the significant relations between parameters, consequently

leading to the optimal parameter configuration.

4.4. Results

At the optimal parameter configuration, our method proved to be both fast and accurate.

Fig. 2 shows an example of the results. The resulting contours of propagation from end

diastole (ED), both forward and backward into time towards ES, were validated against the

golden standard, again by calculating distance metrics, resulting in Fig. 3. The average

positioning errors were within inter-user variation and pixel dimensions.

5. Validation

An elaborate validation was performed on a large number of clinical data sets. This

validation included an evaluation of relevant physiological properties, next to determining

positioning errors. Furthermore, our method was compared to a similar approach

introduced by Spreeuwers and Breeuwer [3], which positions coupled active contours

based on matching a single profile for both the LV endocardium and epicardium.

5.1. Data

Our test set contained 69 data sets, which included 9–14 contiguous slices and

15–50 phases. Consequently the number of images in the data sets varied (150–500).

All images were 256�256 in size, covering a field of view ranging from 350�350

mm up to 480�480 mm. Only 11 data sets (16%) were continuous in time. In the

other data sets, a number of phases from the repolarization phase of the heart cycle

were missing.
Fig. 3. Average RMS distanceFstandard deviation between resulting contours and the golden standard over time.



Table 1

Average, RMS and maximum distancesFstandard between the golden standard and the resulting contours from

our method at end systole

Contours Average distance (mm) RMS distance (mm) Maximum distance (mm)

LV endocardium 2.2F1.1 2.6F1.3 5.0F1.7

LV epicardium 1.8F1.0 2.3F1.4 4.7F3.6

RV endocardium 2.0F1.2 2.6F1.8 7.9F8.1
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5.2. Golden standard

Time considerations made the creation of a complete multiple user golden standard

for 69 data sets not feasible. Therefore, the golden standard for these 69 data sets

consisted of ED and ES manual segmentations only. The test set contained 753 time

series, of which 511 were suitable for propagation and validation, i.e. all three cardiac

contours were present at end diastole and end systole. A single cardiologist, who was

not involved in generating the golden standard of the training set, generated the manual

segmentations.

5.3. Experiment

All end diastolic contours were propagated towards end systole using our optimized

method. The resulting ES contours were validated by calculating average, RMS and

maximum positioning errors (see Table 1). The ESV, SVand EF were determined for all 69

data sets. We determined correlation coefficients and average errorsFstandard deviation

for the ESV (�0.8F5.5 ml, R2=0.98), SV (0.8F5.5 ml, R2=0.71) and EF (1.7F6.8%,

R2=0.78), see Fig. 4. The resulting errors were small with respect to the errors made due

to mispositioning of the apex (F2 ml) or basal slice (F10 ml).

5.4. Comparison

Repeating the experiment for the algorithm introduced by Spreeuwers and Breeuwer

[3] resulted in positioning errors that are listed in Table 2. Furthermore, we determined

the accuracy for the ESV (�2.3F7.3 ml, R2=0.96), SV (2.3F7.3 ml, R2=0.62) and

EF (3.3F8.6%, R2=0.70). The contours resulting from our method were positioned
Fig. 4. Scatter plots from the ESV (a), SV (b) and EF (c).



Table 2

Average, RMS and maximum distancesFstandard between the golden standard and the resulting contours from

the contour propagation method from Spreeuwers and Breeuwer [3] at end systole

Contours Average distance (mm) RMS distance (mm) Maximum distance (mm)

LV endocardium 2.6F1.2 3.0F1.3 5.7F2.6

LV epicardium 2.1F1.0 2.5F1.2 5.1F2.4
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more accurately. Consequently, the estimated ESV, SV and EF were more accurate as

well.

6. Conclusions

We have developed, optimized, technically evaluated and clinically validated a new

cardiac contour propagation algorithm. The method has shown to be fast, robust and

accurate. The resulting cardiac contours are positioned within the inter-observer manual

segmentation range. The resulting contours can be used to accurately determine

physiological parameters such as stroke volume and ejection fraction.
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