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Fig. 1. The SanMiguel scene at resolution 64K3 containing 12.4 billion voxels. Our lossy compression algorithm
reduces memory requirements to store this scene as a directed acyclic graph from 1228 to 938 MB, while only
changing 0.57% of all voxels. For the close-up shots, all voxels that are different from those in the original
dataset are marked in red.

Sparse Voxel Directed Acyclic Graphs (SVDAGs) losslessly compress highly detailed geometry in a high-
resolution binary voxel grid by identifying matching elements. This representation is suitable for high-
performance real-time applications, such as free-viewpoint videos and high-resolution precomputed shadows.
In this work, we introduce a lossy scheme to further decrease memory consumption by minimally modifying
the underlying voxel grid to increase matches. Our method efficiently identifies groups of similar but rare
subtrees in an SVDAG structure and replaces them with a single common subtree representative. We test our
compression strategy on several standard voxel datasets, where we obtain memory reductions of 10% up to
50% compared to a standard SVDAG, while introducing an error (ratio of modified voxels to voxel count) of
only 1% to 5%. Furthermore, we show that our method is complementary to other state of the art SVDAG
optimizations, and has a negligible effect on real-time rendering performance.
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1 INTRODUCTION
To render highly detailed geometry in real-time on current GPUs, novel representations alternative
to the traditional rendering pipeline have received renewed interest. In particular, voxel-based
approaches have a long history in computer graphics, but typically consumed massive amounts
of memory for higher resolutions. Sparse voxel octrees (SVOs) hierarchically encode empty or
constant space and are often found in out-of-core applications [Crassin et al. 2009, 2010; Gobbetti
et al. 2008]. An extreme memory gain by orders of magnitude only became possible with the use of
the Sparse Voxel Directed Acyclic Graph (DAG) [Kämpe et al. 2013], which merges identical subtrees
of the SVO at every level, without affecting rendering performance. However, the effectiveness
of DAG compression depends on the characteristics of the underlying data, leading to a reduced
compression for very unstructured datasets.

We propose the Lossy Sparse Voxel DAG (LSVDAG), which can merge similar subtrees in addition
to identical ones. Our technique exploits the fact that a large majority of the subtrees in the graph
is referenced infrequently; often only once. In most scenes, these infrequently referenced subtrees
are still very similar to one another. We cluster these similar subtrees and replace clusters by single
representatives. The amount of compression is controllable and can lower the memory cost from
10% up to 50% compared to the original input SVDAG, while only introducing minimal errors for
many different datasets.

Our main contributions are:
(1) An algorithm for efficiently finding geometrically similar subtrees in the SVDAG.
(2) A novel variable lossy geometry compression method, compatible with state-of-the-art

SVDAG encodings.

2 RELATEDWORK
Voxel representations have the advantage of enabling random access to any part of a scene, which
can be useful for many applications. Indirect illumination [Crassin et al. 2011; Kol et al. 2019],
3D free viewpoint video [Kämpe et al. 2016a], and precomputed shadows [Kämpe et al. 2016b;
Scandolo et al. 2016; Sintorn et al. 2014]. The key to making these solutions effective are an efficient
encoding.
Out-of-core voxel-based approaches can handle detailed scenes via data streaming to the GPU

using a sparse voxel representation [Crassin et al. 2009; Gobbetti et al. 2008]. Crassin et al. [Crassin
et al. 2010] also introduces sharing of child nodes, although not for compression, but to instance
objects or represent fractal structures. The introduction of Efficient Sparse Voxel Octrees (ESVOs)
enabled storing a better representation of leaf-node geometry and made a step forward in terms of
compression and rendering [Laine and Karras 2011]. Sparse Voxel Directed Acyclic Graphs (SVDAG)
took the idea of compression further and greatly compresses high resolution SVOs losslessly [Kämpe
et al. 2013] by merging identical regions. These can in fact be found abundantly in most 3D scenes
and especially in binary volumes, for which it was conceived.
Some properties of the SVDAG have been exploited to further reduce its memory cost while

minimally affecting traversal performance. The Symmetry-aware SVDAG (SSVDAG) [Villanueva
et al. 2016] losslessly compresses the SVDAG by merging nodes that are identical through a
symmetry transformation. Additionally, the authors of the SSVDAG and Dado et al. [Dado et al.
2016] independently developed another lossless compression technique that affects the size of
pointers in the data structure, commonly referred to as ESVDAG. Both of the proposed techniques
employ variable bit-rates for pointers based on how common a pointer is per level.

Compared to other compression techniques for 3D volumetric data, such as those described in the
extensive survey by Balsa Rodríguez et al. [Balsa Rodríguez et al. 2014], a major benefit of SVDAGs
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Fig. 2. An overview of our compression technique on a 2D example scene. 1) The scene used as input.
2) The Sparse Voxel Octree (SVO) constructed from the input scene. 3) A weighted undirected graph of similar
subtrees is created per level, where the weights are measured as the voxel difference between two subtrees.
4) Clusters of similar nodes are identified. The cluster representatives are shown as diamond shapes; those
with the least difference to all nodes in a cluster. 5) The nodes in each cluster are replaced by the cluster
representatives in the SVO, resulting in our Lossy SVDAG. 6) The reconstructed output scene.

is their negligible impact on rendering performance, as there is no need for decompression. While
initially limited to only representing geometry, several techniques have had success in assigning
attributes to the voxels in the SVDAG [Dado et al. 2016; Dolonius et al. 2017; Williams 2015].
Lossy voxel data compression is not uncommon for volume visualization but are often aimed at
compressing dense voxel grids containing attribute values, e.g., density [Bajaj et al. 2001; Ballester-
Ripoll et al. 2019; Guthe et al. 2002]. Our scheme is explicitly aimed at sparse representations, which
are typically also suitable for SVDAGs.

3 LOSSY SPARSE VOXEL DAGS
In this section, we outline the details of our LSVDAG construction algorithm. We will first provide
an overview of our method in Sec. 3.1, followed by an explanation of our subtree similarity measure
in Sec. 3.2. In Sec. 3.3 we will explain how to create a graph that globally captures subtree similarity,
which will then be used to find groups of similar subtrees for merging (Sec. 3.4). Finally, in Sec. 3.5
we discuss a method for minimizing the amount of compression artifacts.

3.1 Overview
Our approach produces a lossy SVDAG (LSVDAG), where similar subtrees are replaced with a single
shared representative, resulting in an SVDAG containing fewer subtrees compared to the lossless
input SVDAG. Figure 2 provides a graphic overview of the steps involved in the construction of an
LSVDAG structure.

A main challenge is to identify groups of similar subtrees. To this end, we model global subtree
similarity per level as a graph structure, whose nodes represent subtrees of the SVDAG and edges
between nodes are weighted by similarity. The similarity measure between two subtrees is based on
the Hamming distance (or interchangeably, voxel distance or voxel difference) of the high resolution
binary voxel grids they represent.

Once the similarity graph has been created, we look for clusters of nodes in this graph structure
where intra-cluster subtree similarity is high. To this end, we employ a well-known graph clustering
technique called Markov clustering [Dongen 2000].

Finally, we find a representative for each cluster with high similarity to all cluster subtrees and
replace them in the original structure with this shared representation.

Clustering is performed separately for each level except for the leaf level, where lossy compression
can provide little to no benefit since there are only 255 possible subtree configurations.
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3.2 Subtree similarity
In an SVDAG, a subtree of height n defines a binary voxel grid of size 8n . The distance of a pair of
subtrees of equal height is given by the voxel distance of their corresponding binary voxel grids.
Subtrees with a distance below a threshold are considered similar enough to be interchangeable in
the final LSVDAG structure. The amount of set-voxels in surface-based geometrical data grows
quadratically per subtree level [Kämpe et al. 2013], so we increase the threshold value quadratically
per level, in order to consider the same amount of relative differences between subtrees of any
height. In our tests, we have also experimented with a linear and a cubic function of the subtree
level, but found that they respectively cluster together subtrees too infrequently or too aggressively
as the height of the subtrees increases.

Formally, the applied thresholdm is given bym := h2 ·p, where h is the height of the subtree root
and p is specified by the user, and is set to 1 by default. Lowering p will decrease the compression
ratio, error rate, and computation time. We define the subtree similarity s between two subtrees as
s = 1 − d/(m + 1) , where d is their voxel difference.

3.3 Subtree similarity graph
To identify groups of similar subtrees, we encode the subtree similarity in a weighted undirected
graph and perform a graph clustering algorithm. To explain the procedure, we start by defining the
resulting graph.

Each node in this graph represents a subtree. Each edge in the graph will have a weight in form
of the subtree similarity s . Subtrees with a difference above the threshold are not connected.

Directly checking all subtree pair combinations per level in an SVDAG with millions of unique
subtrees would be infeasible. Instead, we only compare subtrees if we know they are likely to be
similar to each other. To verify these conditions, we rely on two acceleration mechanisms; a fast
topology hash and a bit encoding of height-two subtrees.

A topological hash, akin to [Kämpe et al. 2016b; Scandolo et al. 2016] allows us to efficiently find
sets of subtrees with equal topology except for the bottom (leaf) level. Starting from the second
lowest level and upwards, a 64-bit hash value is computed as a function of the 8-bit mask of the
current subtree node and the hash values of the children, if available. Then, for each level, we
compute the similarity only between subtree pairs of equal hash by counting their voxel difference
in the full binary voxel grid they represent, and assume a zero similarity for all other combinations.
This means that we allow differences between subtrees on the last level only, which prevents
spurious unconnected voxels being introduced by our compression scheme. This approach is
illustrated in Fig. 3.

In the special case that two subtrees are compared that have height two, the above hash approach
would not be efficient, as we would only distinguish 64 cases, leaving us with many potential
matches that would have to be verified. While possible in principle, it would take a lot of compute
time. In order to maintain sensible compute times (see Sec. 4), we overrule the user specified
threshold for this case and enforce a maximum of one-voxel difference. This allows us to employ a
much faster scheme for trees of height two that works as follows.
A tree of height one can be encoded as an 8-bit integer, which we can concatenate to obtain

a unique 64-bit encoding for trees of height two. We store all encountered encodings in a sorted
list, simply ordered by interpreting the bitmask as a number. For a given subtree S, all subtrees
within one voxel difference have a bitmask that is given by the bitmaks of S, in which we flip a
single bit. This means that there are 64 bitmasks corresponding to subtrees that could potentially
be merged. For each of the 64 cases, we search for the bitmask in the sorted list using an efficient
binary search to discover potential matches. Hereby, we reduce the overall complexity from O(N 2)
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Fig. 4. An example of our algorithm for finding sim-
ilar subtrees at the second lowest level. Left: Two
subtrees E andG of height 2. Right: For subtree E, a
unique identifier H (E) is computed by concatenat-
ing the bitmasks of its children. Below H (E), we list
all 16 identifiers created by flipping one single bit of
H (E). These identifiers are then used to efficiently
look up subtrees that differ by one voxel from E,
such as G.

to O(Nloд(N )), where N is the number of height-two subtrees. Fig. 4 illustrates this process. As a
side product, the encoding in form of a 64 bit integer can also accelerate the comparison of taller
subtrees; when reaching the second-lowest level the differences between corresponding height-two
subtrees can be computed by counting the set bits after an xor-operation between their encodings.

3.4 Clustering
Having computed a similarity graph between the subtrees, we can now use this information to
cluster subtrees for our lossy compression. Indeed, clusters of highly interconnected nodes in the
subtree similarity graph correspond to groups of subtrees in the SVDAG that can potentially be
replaced by a single representative. Nevertheless, long chains of connected nodes in the similarity
graph can link two very different subtrees in the SVDAG, so finding groups of nodes that are all
similar to each other is not trivial. Fortunately, this is a well-studied problem within the field of
discrete mathematics, where clustering algorithms are used as a solution.
Two leading clustering algorithms are Markov Clustering [Dongen 2000] and the Louvain

clustering algorithm [Blondel et al. 2008]. Fig. 5 shows a comparison of the clustering results of a
small sample graph for different parameters of the algorithms, modifying the size of the detected
clusters. We can observe that Markov clustering favors clustering outlier nodes (connected to
a single other node) into small clusters of two or three nodes, while Louvain-based clustering
algorithms often include the outliers in larger clusters. In Figure 5 for a few granularities; the
amount of clusters of size 3 or lower is generally quite high. The behavior of Markov Clustering is
favorable, as it minimizes the error rate that is introduced. Additionally, its run-time performance, as
well as memory requirements outperform the alternative. For these reasons, we employed Markov
Clustering in all examples.

Markov clustering works based on the assumption that there will be many edges between nodes
within a cluster, and few edges to outside nodes. The clusters are detected by simulating and
analyzing random walks through the graph, which tend to stay within a single cluster rather than
move out of it, based on the prior assumption.
The computation time and memory requirements of the clustering step can be reduced by

identifying smaller disjoint subgraphs, or islands, in the similarity graph, and clustering them
separately. This can be done efficiently in parallel. Additionally, many of the subgraphs contain a
very low amount of nodes, and can be directly turned into a cluster in trivial cases.
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Fig. 5. A comparison of the Markov and Louvain clustering algorithms for an arbitrary graph of subtree
similarities encountered in one of the datasets from our experiments. In this particular case, all edge weights
are 1. The parameter that decides the granularity of clusters for each algorithm is adjusted for each sub-plot,
shown in the top right. The clusters are indicated with the color of the nodes.

3.4.1 Cluster representatives. For each cluster, the node with the highest similarity sum to all other
nodes (chosen at random in case of ties) is used as a representative for that cluster. At this point,
we could decide to ensure that we replace only the nodes in the cluster by the representative, if
their difference to this representative is below the set threshold. In practice, this has a negligible
effect in the compression and error rates in all of our scenes except for the Lucy scene, which is a
particular case (see Results). Here, we observe a worse compression (around 12% more data, e.g.,
from 216 MB to 242 MB for 32K3 resolution) but a slight increase in fidelity (error rate changed
from 3.5% to 2.5% at 32K3 resolution). Given that no visible artifacts were observed, we proceeded
to merge all nodes within a cluster by default.
The chosen representative then replaces all subtrees within the cluster. We update the SVDAG

by changing all parent references to the chosen representation. After this step has been completed
for all clusters, it is possible that subtrees at higher levels might have become identical. These
subtrees are then merged using the original (lossless) SVDAG algorithm, which in our experiments
can further reduce the amount of subtrees by up to 5%. This last step can either be performed after
clustering each level or after clustering all levels, which leads to identical results.

3.5 Minimizing compression artifacts
To minimize compression loss and speed up compression time, we can decide to only consider
infrequently referenced subtrees for the merging process, as these only occur rarely in the scene
and will therefore have limited global impact. To compute how often the subtree appears in the
scene, we cannot simply count the amount of times a particular subtree pointer appears in the
SVDAG structure, since ancestors of that subtree may be repeated multiple times. Instead, we
determine an effective reference count in an efficient top-down traversal of the SVDAG to derive
precisely how often each subtree appears in the scene.

The distribution of effective reference counts for the bottom four levels of the Epic Citadel scene
is shown in Figure 6, and all other scenes follow a similar distribution. It turns out that uniquely
referenced subtrees amount to roughly 60 to 70% of all nodes in the lower levels of the SVDAG,
with a sharp decrease for subtrees referenced two times and more. Therefore, choosing nodes for
the similarity graph based on the effective reference count provides a good trade-off of compression
and loss. In practice, even using only the nodes that occur once in the scene leads to a strong
compression potential.
Fig. 7 shows two views of our test scenes that have been color coded to indicate the effective

reference count, which expectedly shows the least referenced subtrees appear in curved surfaces
and foliage.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article . Publication date: May 2020.



Lossy Geometry Compression for High Resolution Voxel Scenes 7

Effective reference count

Am
ou

nt
 o

f n
od

es
 (m

ill
io

ns
)

0

2

4

6

8

1 2 3 4 5 6 7 8 9+

Level 12 Level 13 Level 14 Level 15

Fig. 6. Analysis of the effective reference counts of the Epic Citadel dataset at a resolution of 128K3 for the
four deepest significant levels in the SVDAG. The reference counts are measured up to eight; those with a
higher reference count are added up to the 9+ category.

Fig. 7. Epic Citadel (left), San Miguel (middle) and Powerplant (right), where the infrequently referenced
nodes are marked blue, each constructed at 64K3 or 128K3 and rendered at two or three levels lower.

4 RESULTS
The results of this section were obtained on a Linux workstation with 32 GB of RAM and an AMD
Ryzen 1600 processor with 6 cores (12 threads). Our compression pipeline was implemented in
C++ using MP to parallelize limited steps. As such, there is still room for optimization, possibly
by performing parts of the node graph construction and clustering on a GPU. The test scenes
(Fig. 8) were selected to exemplify performance for a wide range of scenes. The Crytek Sponza and
San Miguel scenes are examples of 3D scenes used in interactive applications such as games or
architectural visualization, with the latter displaying complex geometry in the form of tree leaves.
The Lucy scene is an example of detailed geometry obtained from 3D scanning with an abundance
of soft curves. In contrast, the Powerplant scene displays a large amount of sharp corners typically
found in CAD plans of industrial buildings. Finally, the Hairball scene is a complex and hard to
represent scene used as an extreme test case for voxelization methods. In all cases, the input SVDAG
was created via surface voxelization.

Unless specifically stated, our LSVDAG construction method uses as default parameters a dif-
ference threshold factor of 1.0, and subtree maximum effective reference count of 1. The Markov
clustering is controlled by one parameter, the inflation value, which we kept at 2.0. These parameters
were selected empirically to provide a good trade-off between compression and quality.

Our compression technique can run in-core with the complete reduced SVDAG as input. The
result of our method remains an SVDAG [Kämpe et al. 2013], and we measured no noticeable
difference in terms of rendering performance.
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(a) Crytek Sponza (b) Epic Citadel (c) San Miguel

(d) Hairball (e) Lucy (f) Powerplant

Fig. 8. The datasets used in our experiments, rendered in real time using an SVDAG renderer.

4.1 Compression times
Compression times for all scenes using standard parameters are shown in Table 1 and Fig. 9 for
various resolutions. Most time is spent on clustering (roughly 75%) and finding similar nodes
(roughly 20%).

For a resolution up to 4K3, compression times are low (in the order of seconds) for all but the
Hairball scene, since in those cases the amount of subtrees is low. Fig. 9 shows that the overall
computation time grows linearly relative to the resolution. There is no clear correlation between
voxel count and construction time. The construction time rather depends on the scene properties,
namely the overall amount of similar subtrees. As can be seen in Table 1, the total compression time
for the Powerplant scene at 64K3 resolution involves almost 6 billion voxels but can be performed
in roughly two minutes, whereas for the Lucy scene at a lower resolution, and involving 1.5 billion
voxels, the compression can exceed one hour. The Powerplant scene contains mostly axis-aligned
surfaces, resulting in many equal subtrees which the original SVDAG already compresses very well.
Therefore, the amount of distinct subtrees included in the similarity graph is an order of magnitude
lower than for the Lucy scene, explaining the lower compression times.
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Fig. 9. Total computation time of our method for each dataset using default parameters.
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2K 3 4K 3 8K 3 16K 3 32K 3 64K 3

C
ry

Sp
on

za

MVoxels 39.6 159.0 637.3 2.6K 10.2K 40.8K
MNodes 0.04 0.13 0.41 1.16 3.18 8.17
MEdges 0.05 0.27 1.31 5.20 16.39 44.07

SVDAG constr. 0.00 0.01 0.02 0.06 0.18 0.51
Sim. graph constr. 0.0 0.0 0.2 0.9 3.0 9.6

Clustering 0.0 0.2 0.6 1.9 6.0 18.3

Ep
ic

C
it
ad

el

MVoxels 4.5 18.0 72.2 290.3 1.2K 4.7K
MNodes 0.03 0.10 0.32 0.92 2.54 6.54
MEdges 0.07 0.30 1.10 3.46 10.63 31.21

SVDAG constr. 0.00 0.00 0.01 0.05 0.15 0.43
Sim. graph constr. 0.0 0.0 0.2 0.6 2.0 6.3

Clustering 0.0 0.1 0.5 1.6 4.6 13.8

Sa
n
M
ig
ue

l

MVoxels 11.8 47.5 191.9 771.0 3.1K 12.4K
MNodes 0.02 0.11 0.45 1.70 5.86 16.35
MEdges 0.03 0.31 2.00 12.71 62.44 207.94

SVDAG constr. 0.00 0.01 0.05 0.15 0.44 1.35
Sim. graph constr. 0.0 0.0 0.1 1.0 6.1 25.9

Clustering 0.0 0.2 1.2 5.7 26.9 121.4

H
ai
rb
al
l

MVoxels 176.7 731.9 3.0K
MNodes 1.51 4.04 16.07
MEdges 10.32 48.52 226.58

SVDAG constr. 0.13 0.43 1.34
Sim. graph constr. 0.5 3.2 24.1

Clustering 5.3 18.8 103.5

Lu
cy

MVoxels 6.2 24.7 98.7 395.0 1.5K
MNodes 0.04 0.18 0.81 3.18 9.55
MEdges 0.11 0.81 5.84 40.09 218.13

SVDAG constr. 0.00 0.01 0.02 0.07 0.27
Sim. graph constr. 0.0 0.0 0.5 3.9 21.5

Clustering 0.1 0.2 1.3 7.6 56.9

Po
w
er
pl
an

t MVoxels 3.9 17.0 72.5 310.5 1.3K 5.8K
MNodes 0.01 0.03 0.07 0.20 0.56 1.63
MEdges 0.01 0.03 0.10 0.35 1.27 4.54

SVDAG constr. 0.00 0.00 0.01 0.02 0.05 0.14
Sim. graph constr. 0.0 0.0 0.0 0.1 0.3 0.3

Clustering 0.0 0.0 0.1 0.4 1.2 2.8

Table 1. Voxel and similarity node/edge counts in millions and computation times in minutes of the steps in
our technique and the original SVDAG creation. Some entries are missing due to hardware limitations.

4.2 Compression rates
Table 2 compares the structure size of our output to that of the original SVDAG structure. For
reference, we also include the memory consumption of a pointerless SVO [Schnabel and Klein
2006], which is equal to one byte per SVO tree node. Fig. 10 provides a graphical visualization of
the compression rates and corresponding error rates in our test scenes. Error is defined as the voxel
difference of the original and the modified binary voxel grids divided by the count of set-voxels in
the original grid.
Our technique shows the best compression rate on the Lucy scene. This is because the scene

contains many low-frequency curved surfaces in every orientation, leading to many similar but
non-equal subtrees, which can be captured by our LSVDAG compression but not by the original
SVDAG algorithm. Conversely, the Powerplant scene exhibits the worst results. This scene contains
mostly axis-aligned surfaces, which the original SVDAG already compresses very well since the
common alignment results in a large amount of repeated subtrees. However, this means that little
similarity can be found among subtrees corresponding to differently-aligned surfaces. This is visible
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Total number of DAG nodes in millions Memory consumption in MB bits/vox
Scene Method 2K 3 4K 3 8K 3 16K 3 32K 3 64K 3 2K 3 4K 3 8K 3 16K 3 32K 3 64K 3

Crytek Sponza
(0.26 MTri)

SVO 12.7 52.3 211.3 848.6 3,400.6 13,613.6 12.7 52.3 211.3 848.6 3,400.6 13,613.6 2.794
SVDAG 0.2 0.5 1.3 3.5 9.1 23.6 4.3 11.9 31.7 82.3 212.7 545.3 0.112
LSVDAG 0.1 0.4 1.0 2.6 6.6 17.1 3.8 9.9 24.9 62.2 156.0 400.2 0.082

Epic Citadel
(0.39 MTri)

SVO 1.5 5.9 23.9 96.1 386.4 1,552.8 1.5 5.9 23.9 96.1 386.4 1,552.8 2.637
SVDAG 0.1 0.4 1.0 2.9 7.6 19.9 3.0 8.5 23.8 65.4 174.7 454.7 0.772
LSVDAG 0.1 0.3 0.8 2.2 5.7 14.9 2.5 7.0 18.9 50.4 132.2 343.1 0.611

San Miguel
(10.0 MTri)

SVO 3.8 15.5 63.0 254.9 1,025.9 4,118.9 3.8 15.5 63.0 254.9 1,025.9 3,928.5 2.660
SVDAG 0.2 0.7 2.3 6.6 18.6 50.0 4.7 18.1 57.8 164.5 460.5 1,228.2 0.832
LSVDAG 0.2 0.6 2.0 5.3 14.0 36.7 4.5 16.8 51.8 139.2 360.3 938.3 0.635

Hairball
(2.9 MTri)

SVO 53.8 230.4 962.4 53.8 230.4 962.4 2.706
SVDAG 5.8 16.6 48.6 156.3 435.4 1,246.2 3.505
LSVDAG 4.8 13.7 35.6 132.7 373.3 951.1 2.675

Lucy
(28.1 MTri)

SVO 2.0 8.2 32.9 131.6 526.6 2.0 8.2 32.9 131.6 526.6 2.796
SVDAG 0.2 0.5 1.7 5.7 18.3 4.1 11.9 38.6 133.5 439.3 2.332
LSVDAG 0.1 0.4 1.0 2.8 9.3 3.5 9.2 23.8 65.2 216.2 1.148

Powerplant
(12.7 MTri)

SVO 1.1 5.0 22.0 94.4 404.9 1,741.0 1.1 5.0 22.0 94.4 404.9 1,741.0 2.506
SVDAG 0.1 0.2 0.5 1.2 2.9 7.0 2.0 5.1 12.4 30.1 73.3 175.4 0.252
LSVDAG 0.1 0.2 0.5 1.1 2.5 5.8 1.9 4.8 11.5 27.3 64.8 149.3 0.215

Table 2. Structure size of our structure output with defaults parameters compared to the input SVDAG. Bits
per voxel metric is specified for the highest resolution at which the dataset was processed. Some entries are
missing due to hardware limitations.
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Fig. 10. Left: Memory reduction of the LSVDAG compared to the SVDAG. Right: Error rate of the LSVDAG in
percentage of changed voxels out of all non-empty voxels.

in Table 1, where the amount of edges in the similarity graph is roughly three times the amount of
nodes, whereas for the Lucy scene there is a twenty to one ratio. The rest of the scenes contain
a mix of axis-aligned surfaces (e.g. floor and walls), and randomly oriented surfaces, and thus
achieve compression rates between the two previous examples. It is interesting to note that our
algorithm is able to leverage the most compression when surface alignment is well distributed,
which is precisely where the original SVDAG struggles the most, making it an ideal addition when
processing voxel data.
Additionally, the output of our algorithm can also be used as input to other state-of-the-art

optimizations of the original SVDAG algorithm, namely pointer compression dubbed as the ES-
VDAG [Dado et al. 2016; Villanueva et al. 2016] and the Symmetry-aware SVDAG (SSVDAG) [Vil-
lanueva et al. 2016]. Fig. 11 showcases the memory ratio of the SVDAG, ESVDAG and SSVDAG
relative to their lossy variants, which we name LESVDAG and LSSVDAG respectively, for three
of our test scenes. Results for the remaining scenes follow the same trend and can be seen in the
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Fig. 12. Left: Original curved surface in the Epic
Citadel scene at a resolution of 32K3. Right: Square
compression artifacts highlighted when using ag-
gressive lossy compression parameters.

supplementary material. All variants of the SVDAG structure achieve a higher compression rate by
using our technique. The compression rate of the LESVDAG relative to that of the LSVDAG results
in a compression gain roughly 2 to 5% smaller than the gain obtained when applying it on the
conventional SVDAG. We theorize this difference is caused by the reduction in the amount of nodes
inducing a greater reduction in the amount of pointers, which in turn reduces the maximum poten-
tial that the pointer compression can achieve. SSVDAGs benefit less from our lossy compression
algorithm compared to conventional SVDAGs (roughly 10% less relative compression), since our
method reduces the amount of unique subtrees, which lowers the probability that symmetrically
identical subtrees can be found afterwards.
As seen in Fig. 1 and Fig. 13, the errors are well distributed in the scene, and appear mostly in

non-planar surfaces, making them hard to notice. Largely planar areas, where errors would be
most visible are usually represented by subtrees of high effective reference count, and thus remain
unaffected by our compression technique. Due to the cubical shape of the volumes that the nodes
represent, artifacts can become slightly more noticeable where curved edges are turned into a
square ones. Nevertheless, the geometric deviation is small in this case. An example of this type of
artifact is shown in Figure 12. If these artifacts need to be prevented, the similarity measure could
be changed to take not only the current subtree but also its immediate neighborhood into account.

Original Default High Original Default High

174.7 MB 132.2 MB, 102.2 MB, 175.4 MB 149.3 MB, 117.6 MB,
0.96% error 5.4% error 0.09% error 1.07% error

Fig. 13. A visualization of the error introduced by our compression method when using default parameters
and high compression parameters (inflation of 1.5, difference factor of 4, and reference count threshold of 4)
for the Epic Citadel (left) at 32K3 resolution and Powerplant (right) at 64K3 resolution. The voxel difference
to the original is highlighted in red.
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Fig. 14. The influence of changing the lossy compression parameters. In each graph, one of the parameters
is changed while the others are kept at default. The percentages on the Y-axis indicates the amount of
compression rate in terms of memory consumption and error rate in terms of percentual voxel difference. The
data of these graphs was obtained from the Epic Citadel and and Powerplant scenes at a resolution of 32K3,
and Lucy at a resolution of 16K3.

4.3 Parameter evaluation
Fig. 14 shows the influence of the three parameters described in Sec. 3 on the compression ratio
and loss for three of our test scenes at a 32K3 resolution. The clustering inflation parameter has the
smallest relative effect on the final result. Higher values lead to smaller clusters, which reduces the
amount of subtrees replaced by a single representative. The threshold on allowed voxel differences
has the largest effect on compression and error rate. Allowing much larger differences has a limited
effect because we constrain equal topology except for the last level. Finally, including subtrees with
larger effective reference counts also quickly shows a flattening of the achieved compression rates,
since only a small percentage of subtrees (roughly 5%) are referenced more than three times in
the SVDAG. Fig. 13 shows an example of the types of errors introduced by the default and more
aggressive compression parameters on selected views of our test scenes.
A possible line of future work is to consider different similarity measures, e.g., a perceptual

measure [Nader et al. 2016], or application-driven choices. Furthermore, we employ an off-the-
shelf clustering algorithm. A domain-aware clustering algorithm may be able to achieve better
results by finding larger subtree groups to cluster. In our current approach, the clustering of nodes
is performed separately at every individual level, but it could be useful to explore multi-level
clustering. Finally, to make the similarity graph creation tractable for large SVDAGs, we enforce
equal topology up to the last level. A higher amount of levels could be used to obtain more matches,
with an increase in computation time.

5 CONCLUSION
We have shown that the memory consumption of the SVDAG can be significantly reduced at the
cost of only a small loss in precision. Our lossy compression technique clusters similar infrequently
referenced subtrees together in order to reduce the resulting error. Our test scenes were compressed
on average by 27.4% using default parameters at high resolutions, while usually affecting less than
1% of the original voxels. Additionally, the error is well distributed, making artifacts less noticeable.
For more aggressive compression parameters, the amount of compression can increase by an
additional 5% to 15%. Our approach can also be further compressed when using optimized SVDAG
encodings, such as ESVDAG [Dado et al. 2016; Villanueva et al. 2016] and SSVDAG [Villanueva
et al. 2016].
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