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Real-Time Lens Blur Effects and Focus Control

Figure 1: Example images rendered in real time by our method. We achieve near-accurate depth-of-field effects, including lens aberrations
(e.g., spherical aberration, left). The efficiency of our method makes it well-suited for artistic purposes and we support complex simulations
like tilt-shift photography (middle). Further, our system offers an intuitive control of depth of field and we extend the physical model (middle
right) to achieve an expressive, yet convincing result (right, where the background statues are still focused).

Abstract1

We present a novel rendering system for defocus-blur and lens ef-2

fects. It supports physically-based rendering and outperforms pre-3

vious approaches by involving a novel GPU-based tracing method.4

Our solution achieves more precision than competing real-time so-5

lutions and our results are mostly indistinguishable from offline6

rendering. Our method is also more general and can integrate ad-7

vanced simulations, such as simple geometric lens models enabling8

various lens aberration effects. These latter are crucial for realism,9

but are often employed in artistic contexts too. We show that avail-10

able artistic lenses can be simulated by our method. In this spirit,11

our work introduces an intuitive control over depth-of-field effects.12

The physical basis is crucial as a starting point to enable new artistic13

renderings based on a generalized focal surface to emphasize par-14

ticular elements in the scene while retaining a realistic look. Our15

real-time solution provides realistic, as well as plausible expressive16

results.17

1 Introduction18

Real cameras have an aperture through which light falls on an image19

plane containing receptors to register an image. For a sharp image,20

a small aperture is preferable, but then less light would hit these21

sensors and diffraction becomes an issue. Using a larger aperture in22

combination with a lens, 3D points at a certain focal distance are23

projected to a single point on the sensors, while other points map24

to a circle of confusion (COC) [Potmesil and Chakravarty 1981].25

This latter effect leads to blur and only within a certain distance26

range, the depth of field (DOF), the image is crisp. DOF is a crucial27

component for realistic rendering and dramatically improves pho-28

torealism and depth perception [Mather 1996]. It also has become29

an important aspect for semantic purposes by drawing attention to30

certain elements while maintaining a realistic look.31

In this paper, we present an efficient solution to approximate the32

image capturing process by considering not only aperture, but also33

aspects of the lens interaction itself. We approximate optical aberra-34

tions, which is a unique feature for real-time approaches. Usually35

these are considered an artifact, but they are crucial for realism and36

allow us to reproduce many features often employed in artistic lenses37

(Fig. 1,left). To achieve these effects our algorithm needs a certain38

generality that is also illustrated by support for specialized configu-39

rations, e.g., tilt-shift photography where lens and image-plane no40

longer align (Fig.1, middle). Our work allows to interactively ex-41

plore this large variety of possibilities and even outperforms standard42

competing DOF methods. Our goal is to enable artists and designers43

to enhance, emphasize and layout a scene or animation using our44

simulations to better match their intentions. For this direction, effi-45

ciency is an important aspect, but we further propose physical and46

non-physical possibilities to control the various effects intuitively.47

In particular, we are concerned with focus, as it is the one of the48

most crucial components in this context. Our interface enables even49

novice users to produce convincing results (Fig.1, right).50

Precisely, the contributions of our paper are as follows:51

• An efficient algorithm for DOF and lens effects;52

• An interactive and intuitive focus control system;53

• A generalized DOF method for expressive rendering.54

The rest of this paper is structured as follows: We review previous55

work (Section 2), before discussing our DOF model and rendering56

algorithm (Section 3). Many optical aberrations come directly from57

the simulation and we motivate their use (Section 4). We illustrate58

our method for focus control and extend it to expressive rendering59

(Section 5). Finally, we discuss and present performance results60

(Section 6), before concluding (Section 7).61

2 Previous Work62

Many techniques exist to generate focal imagery in computer graph-63

ics, but the results were often of low quality, or far from real-time.64

The lack of high-quality interactive DOF might be one of the rea-65

sons why little work addressed DOF control, despite the increased66

general awareness that previsualization and control are crucial for67

productions [Ragan-Kelley et al. 2007]. Instant feedback is even68

more central for non-physical solutions and, in fact, DOF is well-69

suited for abstraction: one can guide perception, enhance areas of70

interest (e.g., person in a crowd), emphasize elements, reduce the71

general complexity of a scene (making it more understandable), or72

achieve dramatic appearances when exceeding the physical bound-73

aries. Previously, interactive solutions usually failed to reproduce74

realistic results, provided only a small range of parameters with75

limited possibilities, and generalizations lacked plausibility. We76

obtain a more general almost-accurate simulation, and a physical77

basis for artistic effects.78

Depth-of-Field Rendering Most real-time DOF methods postpro-79

cess a single image shot from the center of the lens. Filters are used80

to approximate COCs at each pixel [Rokita 1996; Riguer et al. 2003;81

Scheuermann 2004; Bertalmı́o et al. 2004; Earl Hammon 2007;82

Zhou et al. 2007; Lee et al. 2009b] leading to high performance,83
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but also artifacts such as intensity leakage (foreground leaks in the84

background). Anisotropic filtering [Bertalmı́o et al. 2004; Lee et al.85

2009b] can only address this issue partially. Alternative scatter meth-86

ods [Potmesil and Chakravarty 1981] transform pixels into COC87

sprites, but the necessary back-to-front blending makes it applicable88

mostly for offline rendering [Demers 2004].89

In general, a single image cannot give information about geometry90

hidden from the lens center which has a large impact on the final91

image. One way of hallucinating missing information is to split the92

single image into layers according to depth and extend the colors93

on each layer into the hidden regions [Barsky et al. 2002; Kass et al.94

2006; Kraus and Strengert 2007; Kosloff and Barsky 2007]. How-95

ever, such extrapolation does not reflect the true scene information96

and can lead to overly blurred and incorrect results, especially for97

out-of-focus foreground elements. Further, fusing layers via alpha98

blending is a coarse approximation. Only for separate objects, such99

approaches work well. Usually, discretization artifacts arise that100

can only be mitigated with special image processing [Barsky et al.101

2005], information duplication [Kraus and Strengert 2007], or depth102

variation [Lee et al. 2008].103

Multiview accumulation can be used to treat visibility correctly, via104

ray tracing [Cook et al. 1984] or multi rendering [Haeberli and Ake-105

ley 1990]. Since each scene drawing induces a heavy cost, these106

methods are usually inappropriate for real-time use. Further, the107

accumulation buffer method [Haeberli and Akeley 1990] forces sev-108

eral constraints on the ray directions, making it difficult to extend109

the solution to more general lens models. A recent method [Lee110

et al. 2009a] combines elements of both. A single render step de-111

rives a layered representation on which an image-based raytracer112

is executed. The algorithm is efficient and achieves quality compa-113

rable to accurate solutions. However, for our expressive scenario,114

where high anisotropic COCs can occur, the method shows reduced115

performance. Many layers are needed to bound the error, increasing116

memory consumption and making rendering artifacts more common.117

Our approach works in the same spirit, but is more efficient (even118

for standard lenses), better adapted to expressive purposes, scales119

better for smaller amounts of layers, and incorporates advanced lens120

effects that no other real-time solution provides.121

User Control, Semantics and Generalized DOF Creating im-122

ages from 3D models imposes certain challenges. Instead of directly123

interacting with the appearance of an object, as is the case for paint-124

ing, the final result is defined indirectly via rendering parameters.125

With the increased complexity of physical simulations, there is a126

need to provide intuitive controls over these parameters in order to127

ease the realization of particular results, especially for the increas-128

ing number of novice users. Further, there is a tendency to extend129

physical models while maintaining a plausible outcome.130

Nowadays, intuitive interaction for lighting design is common and131

a survey can be found in [Patow and Pueyo 2003]. But other areas132

have been explored, such as highlights and shadows [Poulin and133

Fournier 1992; Pellacini et al. 2002], camera placement [Gleicher134

and Witkin 1992], materials [Pellacini and Lawrence 2007], or135

indirect illumination [Schoeneman et al. 1993; Obert et al. 2008].136

Usually, the physical simulation acts as an entry point for the artist to137

refine the appearance. Similarly, we allow both; a simple interaction138

for defining physical and physically-inspired effects.139

In the context of DOF and lens effects, little work exists.140

Kosara [2001] proposed a semantic DOF rendering. The work141

proves the potential of a controlled DOF, but is a purely 2D process,142

making results clearly unrealistic. Bousseau [Bousseau 2009] used143

filtering methods on lightfields to replace the aperture effect for144

DOF. It abstracts filtering, but not the optical system and offers no145

local focus control. Kosloff [2007] specifies blurring degrees for146

3D points and uses anisotropic diffusion, but the outcome also lacks147

plausibility. Our approach delivers often-convincing results. We148

support almost-accurate physical simulations and address dynamic149

scenes. In particular, we enable a large variety of DOF blur that is150

crucial for artistic purposes. E.g., we support tilt-shift photography,151

but avoid costly rendering methods [Barsky and Pasztor 2004] and152

offer real-time feedback coupled with an intuitive control. Tilt-shift153

photography allows a misalignment between the image and focal154

plane. It allows us to focus planar elements not perpendicular to the155

lens and has, recently, received much attention as it can produce a156

miniature look via its strong off-focus blur (Fig. 1, middle).157

3 Realistic Real-Time Lens Blur158

In this section, we explain the model we employ and present our159

efficient rendering algorithm for DOF and lens effects.160

image plane

spherical lens o�-axial sensor

lens ray

Figure 2: Simulation of a spherical lens. For most lenses, rays do
not converge exactly in a point, especially at off-axial sensors.

Model The purpose of a lens is to refocus ray bundles on the161

image plane. Depending on its area of application, the lens’ shape162

is designed accordingly [Smith 2004]. Designers do often rely on163

path tracing to predict the lens qualities by tracing rays from an164

image sensor through the lens system into the scene. Our simulation165

uses the geometric shape and refractive lens properties and captures166

optical aberrations (Section 4) that have previously been neglected in167

real-time methods. Further, we do not assume ray coherence in form168

of a perspective-projection center which many previous approaches169

needed for efficiency.170

Assumptions The most prominent element is the refraction when171

rays enter and exit the lens according to Snell’s law. For our real-172

time approach, we ignore diffraction effects and assume that rays173

are solely refracted exactly twice when traversing the lens and travel174

along straight paths inside the lens (Fig. 2).175

3.1 Our Rendering Algorithm176

Our algorithm works in two steps. First, we derive an image-based177

layered representation of the scene using a modified depth-peeling178

strategy. Second, for each sensor (pixel) we trace several rays. We179

compute the interaction with the aperture and lens and then use a ray180

tracing method to find the scene intersections. For the final image,181

the ray contributions are accumulated.182

Layer Construction via Efficient Depth Peeling We avoid test-183

ing the lens rays against the actual scene and, instead, derive a184

layered image-based representation via depth peeling [Everitt 2001]185

from the lens’ center. Depth peeling is a multi-pass technique: each186

pass peels off one layer of the scene. I.e., in the ith pass, each pixel187

captures the ith-nearest underlying surface by culling all geometry188

closer than the z-buffer of the previous pass. The termination of the189

peeling is detected via occlusion queries.190

Faster peeling exist [Liu et al. 2006], but to accelerate our ray tracing191

step, it is more crucial to reduce the amount of layers. We use two192
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important observations. First, those layer pixels that cannot be193

reached by any lens ray do not need to be extracted. Second, a194

depth-peeled representation is point-sampled at the pixel centers195

which leaves room for interpretation of the actual geometry.196

Lens

d

x
extended 

umbra
original

extension
pixel size

Figure 3: We can use an offset during depth peeling to omit surfaces
hidden behind already extracted pixels. Extended pixels lead to more
occlusion by exploiting point-sampling ambiguities.

Given a pixel P captured by a ray r through a pixel center, P blocks197

some region in space from all lens rays (Figure 3). If one thinks198

of the lens as a light source, this space corresponds to the shadow199

umbra. No lens ray can intersect any sample captured by r inside200

this umbra. Hence, during depth peeling, instead of culling against201

the depth of the previous pass, we offset the previous depth by the202

distance r travels inside the umbra. Especially for distant pixels, this203

solution reduces the amount of extracted layers significantly. Culling204

can be improved further by virtually extending a captured pixel to205

the neighboring pixel centers - depth peeling such a scene delivers206

the same layers. Our result remains artifact free, when assuming207

silhouette pixels to be extended in this way during our ray tracing.208

It can be shown that with our umbra method and a standard camera209

(FOVY=30 deg., dNear=1m, dFar=100m, lens radius = 9mm), 10210

layers are always enough (independently of the scene). In practice,211

3-7 layers occur. Considering larger connected regions did not result212

in a performance gain.213

Computing Lens Rays Our raytracing starts on a sensor from214

where many rays are shot. These are blocked according to the215

aperture and transformed via the lens into a lens ray that is then216

tested against the scene layers. The lens is defined by two height-217

field surfaces - one for each side and we can combine the intersection218

test of the aperture and the first lens surface. At each intersection219

point, the ray is refracted according to the lens’ refraction coefficient.220

The cost of this step is negligible with respect to the remaining221

algorithm. Alternatively, for algebraic surfaces we can solve the222

intersections analytically. E.g., spherical lenses are common in223

reality due to their relatively cheap physical construction.224

lens
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min distance

lens ray
segment’s 
footprint

lens

near plane

Sideview of 3D Con�guration

Figure 4: Instead of searching along the entire ray, we can clamp
the ray by min/max depth extents. The process can be repeated for
the resulting segment.

Efficient Intersection Test For the moment, let’s assume a single225

depth layer and a lens ray to test for intersection with this layer.226

Naively, this involves stepping over all pixels underneath the 2D227

projection of the ray in the layer’s image plane, which we call228

footprint. If the footprint is large, the intersection test is costly. We229

can reduce it by computing the minimum and maximum depth value230

of the layer (e.g., via mipmapping). As intersections can only happen231

within this depth range, we can clamp the original ray to these232

extents. The resulting 3D segment has a smaller footprint (see Fig.4)233

and less pixels need consideration. Similarly, given the min/max234

depth underneath the new footprint, we can repeat the process to235

further narrow down the search region. After a few iterations, the236

remaining pixels are tested one by one to find the intersection.237

Reducing the search region per ray is costly. Instead, we treat all lens238

rays in parallel. This implies two challenges, addressed hereafter:239

Deriving a bounding footprint for all lens rays in a depth interval240

and computing the min/max values in a footprint region.241

Bounding the Footprint For a thin-lens model [Potmesil and242

Chakravarty 1981], the footprint of all rays for a given depth d is243

the circle of confusion (COC). To bound the footprint for a depth244

interval [d1, d2], it is enough to take the maximum of the COCs at245

d1 and d2. Simple closed-form solutions [Potmesil and Chakravarty246

1981] make the computation efficient.247

For a geometric lens, apart for particular cases, closed form solutions248

are complex. Nevertheless, we deal with a finite number of lens249

rays and each ray can easily be clamped to a given depth range.250

Thus, to bound the footprint of all rays for a depth interval [d1, d2],251

we intersect each lens ray with planes at distance d1 and d2. We252

collect the intersection points and compute a bounding quad in253

image space that we use as an approximate footprint. Given this254

bounding quad, we compute the underlying min/max depth values255

(as detailed hereafter) and repeat the process: we clamp all rays256

and compute a new bounding quad. Three iterations are a good257

trade-off between gain and cost of this step. Although it might258

sound expensive, our ray tracing is data-bound, leaving room for259

such arithmetic computations. The shown examples evaluate all lens260

rays, but, in practice, 1/4 th is usually sufficiently accurate.261

Computing Min/Max Values Given a fooprint, we use N-262

buffers [Décoret 2005] to determine the minimum and maximum of263

the covered values. N-Buffers are a set of textures {Ti} of identical264

resolution. T0 is the original image and a pixel P in Ti contains265

the minimum and maximum value of T0 inside a square of size266

2i × 2i around P . We cover the footprint rectangle using four tex-267

ture lookups, corresponding to overlapping squares [Décoret 2005].268

The hierarchical N-Buffer construction (Ti+1 uses Ti) is fast, but269

N-Buffers are memory intensive. Our solution is to use a mipmap270

texture and an N-Buffer applied to a downsampled version (1/8th271

resolution) of the original layer. The memory gain and construction272

speedup correspond to a factor of eight, while small regions can be273

sampled efficiently using the mipmap texture or the original image.274

There is one catch: Some pixels, especially in later layers, can be275

empty and do not capture any information and need to be excluded276

during the min/max N-Buffer construction. To mark missing data,277

we use the depth value zero: Before depth peeling, we clear the278

z-buffer to zero and, during the peeling step, we exclude the output279

depth zero. Consequently, it indicates that no data was output.280

Multi-Layer Packing We accelerate multiple layer treatment by281

packing four depth values into a single RGBA texture directly after282

the peeling step. It allows us to scan four layers in parallel. These283

layers share one N-Buffer, where T0 is set to the per-pixel minimum284

and maximum of these layers. The intervals are still narrowed down285

quickly because lens rays are almost perpendicular to the image286

plane. Finally, we test all four depth values (recovered by a single287
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BK47:
B1= 1.039. B2=0.232, 
B3=1.010, C1= 0.006 , 
C2=$ 0.020, C3=103.56

Figure 5: Examples of lens aberrations - Chromatic aberration
(left) for BK7 and Curvature of Field combined with a tilt shift lens
focussing on the text on the table (right).

lookup) simultaneously while stepping along the segment. Once the288

closest intersection is found, the corresponding color is retrieved.289

No layer can be skipped because depth peeling does not order primi-290

tives globally. But, it gives a local order in each pixel. Hence, once291

a pixel is empty, it remains empty for all following layers leading292

to large empty zones which are detected efficiently by the N-Buffer293

(zero meaning missing data).294

4 Optical Aberrations295

Our geometric lens model captures many optical aberrations, which296

are present in any real camera and particularly visible when the297

aperture is fully opened. Although, some manufacturers try to coun-298

terbalance aberrations by employing lens sets, their simulation is299

crucial for realistic rendering and artistic effects (some lenses, like300

LensBabyTM have exaggerated aberrations to provoke a certain ap-301

pearance). We will review three cases (for more examples, we refer302

to [Smith 2004]) that we consider of interest due to their strong303

effect and relatively common usage in artistic shots.304

Spherical Aberration In contrast to a theoretical thin lens, spher-305

ical lenses do not perfectly focus all sensor rays in a single focal306

point. Usually, rays are more strongly bend on the border than the307

lens’ interior (Prentice’s Rule). Biconvex and Aspheric lenses (like308

the cornea in our eye) can reduce the effect. Visually, spherical aber-309

ration manifests in a general blur and discrepancy of sharpness and310

brightness of the image’s center in comparison to the boundary. This311

allows us to derive a softer appearance and make the observer focus312

on central elements. Further, halos appear around strong highlights,313

visible for Bokeh, can be used to drive attention, as well as to define314

a general mood (Fig. 5).315

Curvature of Field Curvature of field projects a focal plane to a316

curved (nonplanar) image. Rays at a large angle see the lens as if it317

had a smaller diameter but higher power. The image of the off axis318

points moves closer to the lens. This type of curved lens surfaces319

is very common in many real lenses, especially telescopes. The320

effect is that images are clearly focused in the center, but lose focus321

towards the boundary. Compared to spherical aberration, the blur is322

more anisotropic and is often used to suggest the past, dreams, or323

(for stills) velocity (Fig. 5).324

Chromatic Aberration The refraction index of a lens usually de-325

pends on the wavelength of the incoming light. Often invisible, it326

can result in colored halos around objects (Fig. 5).327

We use an empirical equation proposed by Sellmeier [1871]:

n(λ) =

√
1 +

B1λ2

λ2 − C1
+

B2λ2

λ2 − C2
+

B3λ2

λ2 − C3
, (1)

where Bi, Ci are material coefficients, λ the wavelength, and n the328

refractive index. The benefit of this model, originally for a thin329

lens, is that we can benefit from large material data bases. Physi-330

cal (e.g., Borosilicate crown glass (BK7) - a typical lens material)331

or non-physical results are possible (Fig. 5). For real-time perfor-332

mance, we compute the RGB color channels separately, assuming333

the wavelengths 650 (R), 510 (G), and 475 nm (B).334

5 Focus Control335

This section presents our algorithm to intuitively control lens blur.336

We present algorithms for physically-based lenses, but also extend337

DOF beyond the physical definition by allowing varying lens param-338

eters for each image point. In this context, we also allow control339

over the previously presented aberrations for abstraction purposes.340

The values are temporally adapting to a sparse user input.341

User Interface As previously mentioned, controlled focus allows342

us to guide an observer to certain locations, emphasize objects, or343

create a special mood. For example, it might be of interest to al-344

ways keep an object defocused in order to not reveal any details,345

while other elements of the scene stay constantly in focus. Chang-346

ing the focal distance manually for each frame is a tedious process.347

In our interface, a user controls DOF at a high level by attaching348

attributes, like focused or defocused, directly to the scene and by349

keyframing them over time. A click on the screen defines a focus350

point. Internally, we store its barycentric coordinates and triangle351

to support animated geometry. For each focus point one can spec-352

ify DOF parameters (most prominently the amount of blur) and353

influence weights. Based on this input, the camera parameters are354

optimized to reflect the intended definitions for the current view.355

Per default, we exclude constraints outside the view frustum, but356

allow an artist to specify otherwise. We also increase the influ-357

ence of nearer constraints to avoid ambiguities and use temporal358

interpolation to achieve temporal coherence.359

5.1 Defining Focus for Standard Lens Models360

We will first describe how to optimize several common lenses, before361

addressing non-photorealistic rendering.362

Thin-Lens Model Given the focal length F , the focal distance363

d is defined by the distance between image plane and lens u via:364

u = Fd/(d − F ) for d > F . A single defined focal distance365

directly defines u a real camera. A weighted least-square fit is used366

for several constraints.367

Spherical Lens Spherical lenses can be processed similarly, by368

computing the focal length via the lensmaker’s equation: 1
F
≈369

(n−1)
(

1
R1
− 1

R2
+ n−1d

nR1R2

)
, whereR1 andR2 are the lens radii,370

d the thickness, and n the refractive index.371

Tilt-Shift Photography For Tilt-shift photography the camera’s372

image plane is tilted with respect to the lens, hereby tilting the focal373

plane. The effects are very interesting (Fig.1), but the nonintuitive374

relation between tilt and focus can make it difficult to operate the375

device, especially for animated scenes. On the contrary, we derive376

a least-square focal plane from the focus points. The focal plane is377

then automatically transformed into an image plane tilt [Merklinger378

1996], making the process simple to control. Care is needed when379

the focal plane aligns with the view vector. We avoid this physical380

impossibility by limiting the plane normal.381
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5.2 Expressive Depth of Field Control382

Our system also allows for non-physically-based local parameter383

definitions, while standard lens models are restricted to global defini-384

tions. For artistic purposes, this is particularly interesting to enhance385

certain regions. For example, locality is important when different386

emphasis is to be put on objects residing at the same distance. The387

depth-of-field itself is controlled via a focal surface that continuously388

interpolates the focal-depth constraints in screen space, as well as389

the depth-of-field extent in form of a single size value. Temporal390

continuity is achieved again by smoothing the surface and depth of391

field over time.392

Focal Surface and DOF Interpolation The focal surface defini-393

tion is based on a moving-least squares (MLS) solution. For this,394

around each focal point kernel functions are defined. In practice395

we use weights of α1/dβ , where d is defined in terms of screen396

space distance for each focal point. For a given pixel we minimize397

the error functions by weighting the desired parameters at focus398

points according to these weight functions. The parameters α, β399

give control over the strength and extent of the influence region of400

each focus point. The importance weight, alpha, is used for finer401

control, since the best-fit surface is not necessarily identical to the402

designer’s intention. β controls the range affected by the nearby403

control points. As β increases, local behavior becomes narrow. In404

the limit, discontinuities could be reintroduced, but in practice values405

of β = 2–4 work well. We experimented with different kernels and406

got comparable results. Nevertheless, we found that it is important407

to work with singularities at d = 0 to ensure a perfect interpolation408

of the control point itself. The surface evaluation is executed entirely409

on the GPU and allows us to define the parameters in in each pixel.410

Our system also supports focus points that indicate out-of-focus re-411

gions. The user simply specifies the offset with respect to a potential412

focal plane. In such a way we can achieve a controlled defocus. In413

practice, this performs very intuitively, but problems occur when414

such constraints overlap. In order to avoid this effect, we reduce415

the influence of the corresponding kernel functions according to416

the distance and slowly fade out their contribution, when they be-417

come invisible. As before, this can be counteracted by the artist418

and because our system delivers efficient feedback, it is possible to419

keyframe the behavior differently and have immediate feedback. In420

order to avoid always ensure a smooth behavior, all elements are421

smoothly interpolated over time.422

5.3 Expressive Lens Effects423

We further add the effects of aberrations in a non-physical way with424

simple parameters. Originally the lens shape would influence these425

effects, but in practice, this process would involve much expertise426

and is far from an intuitive framework. Instead, we decided to427

simulate the aberrations with more intuitive parameters.428

Spherical aberration is caused by varying distances that light travels429

inside of the lens. Often we observe that rays on the periphery of430

the lens are bend more strongly than those in the center. In other431

words, we can approximate this effect by increasing the refractive432

power of the lens which we allow via a simple spline definition. In433

practice, this effect is most valuable for Bokeh effects and we further434

provide the possibility to directly assign weights to the rays in order435

to achieve a certain shape of Bokeh.436

Curvature of field is an effect, that arises because the focal plane is437

associated to a curved image plane. In other words, if the sensors438

were on this image plane, the resulting rendering of an object on the439

focal plane would be sharp. To simulate this effect, we can let the440

user define an offset surface for the image plane. Again, we use a441

smooth MLS interpolation and write the resulting deformation in a442

buffer. As all points on this surface share the same focal distance,443

it implies that the lens appears to have a different focal length. We444

adapt rays traversing this surface accordingly to take this effect into445

account.446

Finally, chromatic aberration can be controlled directly via different447

refraction coefficients for the different color channels. Hence, it448

remains basically unchanged.449

We found that these definitions allow a very intuitive interaction450

with lens effects and the video demonstrates how easily parameters451

can be adjusted to achieve complex appearances.452

6 Results and Discussion453

Our test system is a Pentium Core2Quad 2.83GHz with a GeForce454

285 GTX graphics card. We evaluated the performance of our system455

with various test scenes (Table ??). We compared our results to a456

recent state-of-the-art algorithm [Lee et al. 2009a] with two different457

settings. In these scenes, the method our competitor needed 16 layers458

to be artifact free. Nevertheless, we added timings for 8 layers to459

achieve a fairer comparison. In the latter case, artifacts were readily460

visible. Our method produced artifact-free images using only 4461

layers. The quality is similar to reference renderings which we show462

by reporting signal-to-noise ratios (PSNR) and structural similarity463

(SSIM) [Wang et al. 2004]. Please realize that the scenes are of464

high complexity (the smallest example has 98K triangles, the largest465

935K). In all cases, our method resulted in real-time performance466

between 100 and 30 Hz.

Pre RT our comp.8/16 ref. error

Town (98K) 4 6 10 15.3(1.5)/26(2.6) 125(12.5)
Angels (407K) 7 17 24 75.2(3.1)/122(5.1) 213 (8.9) 36.94db/0.97
Table (935K) 16 15 31 81.3(2.6)/125(4.0) 641(20.7) 34.97db/0.95

Table 1: Comparison (100 lens rays, 800x600): We give timings in
ms for reprocessing (Pre) -NBuffer + DepthPeeling-, raytracing (RT),
and total pipeline of our algorithm (our) using 4 layers. Further,
we indicate timings of a competitor [Lee et al. 09] (comp.), using
8 and 16 layers (with acceleration factors given in parentheses).
Finally, we give a quality measure (Error) with respect to a reference
rendering by evaluating PSNR and SSIM [Wang et al. 2004].

467

For us, four layers, is usually enough for a reference-like result.468

This is an interesting feature and not valid for uniform decompo-469

sitions [Lee et al. 2009a]. Our depth peeling can be slower than a470

single-pass decomposition [Lee et al. 2009a], but our rendering471

method is more cache efficient, treats multiple layer simultane-472

ously, uses less and more-predictable arithmetic operations. In473

consequence, we achieve equivalent or better quality with a strong474

speedup. We also do not miss hidden fragments within layers and475

avoid temporal popping for geometry crossing many layers. Our476

memory consumption is generally lower than in [Lee et al. 2009a]477

because, in practice, our modified peeling resulted at most in seven478

layers (less than half of standard depth peeling) for realistic scenes.479

The use of N-Buffers for skipping and intersection tests gives sub-480

linear performance due to the sparsity of higher layers. For 8 layers,481

the second four only cost 50− 25%.482

To illustrate the expressive spectrum of our system, we mimicked483

specialized lenses like LensBabyTM or Spiratone Portragon. The484

effectiveness of our interface is best demonstrated in the accompa-485

nying video. In particular, the instant feedback is crucial to judge486

where supplementary constraints are needed. Dramatic effects can487

be achieved in a few clicks and the results look convincing, even488

under animation.489
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7 Conclusion and Future Work490

We presented a novel real-time lens-blur rendering system exceeding491

previous methods in performance and quality. We introduced the first492

real-time system that manages many of the lens aberration effects.493

The latter are an important component for artistic photography and,494

consequently, we presented a simple system to control depth-of-495

field blur. We further extended this control to non-physical results,496

that appear plausible, yet give a larger variety of possibilities to497

designers. We illustrated the flexibility of our system on several498

complex examples.499

In the future, we would like to extend our user interface to further fa-500

cilitate the interaction. One direction is to adopt painting metaphors501

and we would like to investigate new possibilities of temporal in-502

terpolation. In theory this is already possible, but we would like to503

integrate an event-driven control. Such a system could be useful in a504

game to trigger focus elements for particular objects and integrate505

it into a game engine to test how well users can be guided via our506

focus design.507
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