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Illustrative Uncertainty Visualization of DTI Fiber Pathways
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Abstract Diffusion Tensor Imaging (DTI) and fiber track-
ing provide unique insight into the 3D structure of fibrous
tissues in the brain. However, the output of fiber tracking
contains a significant amount of uncertainty accumulated in
the various steps of the processing pipeline. Existing DTI vi-
sualization methods do not present these uncertainties to the
end-user. This creates a false impression of precision and
accuracy that can have serious consequences in applications
that rely heavily on risk assessment and decision-making,
such as neurosurgery. On the other hand, adding uncertainty
to an already complex visualization can easily lead to infor-
mation overload and visual clutter. In this work, we propose
Hllustrative Confidence Intervals to reduce the complexity
of the visualization and present only those aspects of uncer-
tainty that are of interest to the user. We look specifically
at the uncertainty in fiber shape due to noise and modeling
errors. To demonstrate the flexibility of our framework, we
compute this uncertainty in two different ways, based on (1)
fiber distance and (2) the probability of a fiber connection
between two brain regions. We provide the user with interac-
tive tools to define multiple confidence intervals, specify vi-
sual styles and explore the uncertainty with a Focus+Context
approach. Finally, we have conducted a user evaluation with
three neurosurgeons to evaluate the added value of our visu-
alization.
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1 Introduction

Diffusion is the process of random movement of water mole-
cules over time, also called Brownian motion. Diffusion Ten-
sor Imaging (DTI) is an imaging technique based on Mag-
netic Resonance (MR) that can measure diffusion of water
in living tissues. By measuring the amount of diffusion in
many different directions, the 3D shape of the diffusion pro-
file can be approximated at each point in the tissue. In pure
water, diffusion is unrestricted and has equal magnitude in
all directions. This results in a spherical or isotropic diffu-
sion profile. In fibrous tissues however, such as the brain
white matter, the diffusion will be restricted in directions
perpendicular to the fibers. This results in a more elongated
or anisotropic diffusion profile. In DTI, the diffusion profile
is modeled as a 3D Gaussian probability distribution using
a 2nd-order tensor. In this model the tensor’s main eigen-
vector corresponds to the direction of greatest diffusion and
is assumed to be aligned with the underlying fiber structure
[1]. Based on this assumption it is possible to do stream-
line tracing in the main eigenvector field. In the context of
DTI, this is called fiber tracking [20,26,31] and it allows
reconstruction of the fibers in three dimensions. Diffusion-
weighted MRI is the only imaging modality that allows to do
this non-invasively and in-vivo. For this reason, it has great
potential for applications that involve fibrous tissues, such
as the brain white matter and muscle.

Despite its potential, the output of DTI fiber tracking
contains a significant amount of uncertainty. This uncertainty
is accumulated in the various stages of the DTI processing
pipeline. A schematic overview of this pipeline is illustrated
in Figure 1. The data acquisition stage suffers from noise,
image distortion, movement artefacts, partial volume effects
and scan parameters. The modelling stage can introduce ap-
proximation errors depending on the diffusion model that is
used. For example, the 2nd-order tensor model produces un-
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reliable results when fibers are crossing, kissing or diverging
within a voxel. The fiber tracking stage attempts to recon-
struct 3D pathways from the tensor field. However, differ-
ent numerical integration schemes produce different results
and each fiber tracking algorithm has several user-defined
parameters that can significantly affect fiber length and/or
shape [5]. Finally, the visualization stage may introduce un-
certainty due to the use of different illumination models or
simplification of the fiber geometry.

Existing DTI visualizations largely ignore the above men-
tioned sources of uncertainty and their effect on the recon-
structed fiber pathways. This gives an impression of cer-
tainty that can be misleading. This is unacceptable in ap-
plications such as neurosurgery, where fiber tracking may
be used for surgical risk assessment and decision-making. If
false positives or false negatives in the fiber tracking output
are not correctly identified this can result in sub-optimal tu-

Fig. 2 Left: single fiber obtained from original tensor volume. The
yellow silhouette represents fixed safety margin. Right: 100 variations
of same fiber based on wild bootstrap method [13] with same safety
margin. It is clear that it does not cover the possible variations in the
tensor data

ptas

Fig. 1 DTI processing pipeline with sources of uncertainties at each stage

{ Visualization ‘

Fiber Tracking

mor resection or damage to healthy brain tissue. To deal with
risks of healthy tissue damage neurosurgeons may take into
account safety margins around critical brain structures [32].
However, such safety margins are mostly fixed and have no
relation to the uncertainty in the underlying data. Further-
more, safety margins enclose only one out of many possible
fiber configurations. Figure 2 illustrates that, due to noise
and modelling errors, there are many such configurations
possible, each one slightly different. It is clear from this ex-
ample that a fixed safety margin may not adequately cover
the possible variations in fiber shape.

With the visualization framework described in this pa-
per we attempt to visually communicate to the neurosur-
geon that the fiber tracking algorithm they use may produce
a sub-optimal reconstruction of the tracts of interest. We are
specifically focusing on variations in the output due to noise
and modelling errors. Such information can be captured by
different probabilistic algorithms but intuitively showing this
information is not a trivial task. Even without considering
uncertainty, diffusion tensor data presents considerable vi-
sualization challenges. For this reason, each tensor is often
reduced to a single vector describing the principal direction
of diffusion. Streamline visualization can then be used to
show pathways through the tensor field. This gives a good
impression of the global structure of fiber tracts. However,
if there are too many streamlines this approach can lead to
highly cluttered visualizations, such as illustrated in Figure
2 on the right. Probabilistic fiber tracking algorithms gen-
erally sample thousands of potential pathways in order to
compute connection probabilities between different regions
of the brain. In that case, it is no longer feasible, nor infor-
mative, to render each individual streamline.

To deal with this issue, we propose [llustrative Confi-
dence Intervals, a rendering technique based on illustrative
silhouettes and outlines that provides information about the
variation in fiber pathways while at the same time reducing
the visual clutter associated with standard streamline visual-
izations. We define a silhouette to be the interior area of an
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object’s shape when projected to the viewing plane. An out-
line is defined as the border of a silhouette. Our framework
does not depend on a specific algorithm to compute the vari-
ation in fiber pathways. It only requires a set of streamlines,
each associated with a so-called confidence value. A con-
fidence value is a scalar-valued, fiber-specific measure that
can be computed in different ways depending on the appli-
cation. The specific measure used in our framework can be
freely chosen but to demonstrate the flexibility of our ap-
proach we have selected two such measures, (1) based on
fiber distance and (2) based on the connection probability
between different brain regions. Our contributions are the
following:

1. A processing framework that allows different methods
for constructing sets of streamlines with associated con-
fidence values. We implemented two example methods
but other methods can be added easily (see Section 3).

2. A visualization and interaction framework that uses il-
lustrative silhouettes and outlines to analyze variations
in the output of a selected fiber tracking algorithm (see
Section 4). A set of interaction widgets that allows easy
specification of intervals and their visual styles. A Fo-
cus+Context uncertainty lens shows confidence intervals
only within a user-defined region of interest. Outside this
region standard fiber visualization can be used allowing
for easy comparison between the two visualizations (see
Sections 4.3 and 4.4).

3. A quantitative and qualitative user study based on video
demonstrations, questionaires and interviews with three
neurosurgeons.

2 Related Work

Visualization of uncertainty is closely related to and depen-
dent on the method of measuring or computing uncertainty.
As Figure 1 illustrates there are many different sources of
uncertainty present in the DTI processing pipeline. In our
current work, we focus on the uncertainty in the DTT (ten-
sor) data caused by noise and modelling errors. In the next
subsections we discuss related work in the areas of DTI un-
certainty analysis, uncertainty visualization and illustrative
rendering for DTI applications.

2.1 Uncertainty Analysis

Several approaches are possible to characterize the effects
of noise and modelling errors on DTI fiber tracking. They
can be roughly subdivided into two types: empirical meth-
ods and mathematical modelling methods. There also exist
different fiber tracking methods. We divide them into deter-
ministic algorithms, i.e. they give the same result given the

same input (such as streamline tracing), and probabilistic
algorithms that involve a random process. To characterize
the uncertainty, an obvious, empirical approach is to repeat
a diffusion-weighted imaging (DWI) scan multiple times.
Due to random noise each scan will be slightly different.
Repeating this often enough will give a good approxima-
tion of the uncertainty in the data. Of course, this would re-
quire hours or days of scanning. A variation of this method,
called bootstrap, is to generate new datasets, by taking ran-
dom samples with replacement from a much smaller set (4
to 5) of DWI scans [23]. However, this approach is still too
time-consuming for clinical purposes. Wild bootstrap [13,
33,16] is a method that generates random variations based
on a single DWI scan. This method is often combined with
deterministic fiber tracking to obtain information about fiber
shape variations (see Section 3.1). The second type of ap-
proach to characterize uncertainty is based on mathemat-
ical modelling [14,10,2]. Klein et al. [14] generate varia-
tions of a single DWI dataset by adding increasing levels
of complex Gaussian noise. A drawback of such methods
is that they assume a noise model (e.g., Gaussian) which
generally is a simplification of the real noise characteristics.
Others take a predictive model, such as the 2nd-order ten-
sor, and use Bayesian statistics to estimate a posterior PDF
for the model parameters, including fiber orientation [10,
2]. These methods generally do not use deterministic fiber
tracking but instead apply probabilistic algorithms to recon-
struct fiber pathways (e.g. based on Monte Carlo simula-
tions). Still, these methods assume a noise model and have
to deal with the complexity of having to propagate this noise
model through the many, often non-linear, transformations
in the DTT processing pipeline. On the other hand, the ex-
plicit mathematical representation of assumptions allows a
more formal way to compute uncertainty and can be applied
to a wide range of diffusion models. Some authors use a
combination of mathematical modelling and empirical tech-
niques to characterize uncertainty in the data [28, 3].

In this paper we make no statements about which approach
for computing uncertainty is superior. Our main focus is to
visualize variations in fiber pathways due to noise and mod-
elling errors. To demonstrate our approach we have cho-
sen the Wild Bootstrap method by Jones et al. [13] and the
ConTrack algorithm by Sherbondy et al. [28]. However, our
method does not depend in any way on the particular choice
of algorithm used to characterize uncertainty.

2.2 Uncertainty and Illustrative Fiber Visualization

The last decade has shown a slow but growing interest in the
visualization of uncertainty, especially for scalar and vec-
tor fields. Pang et al. [25] provide an extensive overview of
techniques, as well as a classification scheme for describing
data together with its associated uncertainty. Lodha et al.
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[17] present a method for visualizing variations in stream-
line tracing due to different integration schemes. They pro-
vide different options for representing the uncertainty, e.g.
glyphs, ribbons and motion-blurred animation. Pang [24]
and Wittenbrink et al. [34] use different types of glyphs to
display the effect of data uncertainty on height field mea-
surements and the direction and magnitude of 2D vector
fields.

The literature concerning uncertainty visualization for ten-
sor fields is very limited. Variations in the tensor main eigen-
vector were visualized by Jones et al. [13] using cone glyphs
and a modification of hyperstreamlines [7]. They compute
these variations using the Wild Boostrap method. However,
they render all fibers in the same way (as in Figure 2) with-
out giving an impression of which fibers are more reliable or
reproducible than others. Furthermore, their method cannot
easily be adapted to more complex fiber shapes.

Enders et al. [8] compute a “'mean’ fiber to create a closed
surface hull wrapped around the fiber bundle. However, sim-
ilar to Jones et al., their method cannot deal with complex
fiber shapes and concave bundle cross-sections without sig-
nificant simplification of the hull geometry. The wrapped
hull geometry described by Chen et al. [6] suffers from sim-
ilar problems. Merhof et al. [18] propose a hull generation
algorithm based on smoothed isosurfaces that does not suf-
fer from these limitations.

The visualization methods discussed so far primarily deal
with noise and modelling errors. The effect of user-defined
parameters on the output of DTI fiber tracking was addressed
by Brecheisen et al. [5] who use a combination of color-
coding, linked views and interactive parameter space ex-
ploration to visualize the threshold sensitivity of streamline
tracing. To improve the visualization of fiber structures, ei-
ther to reduce visual clutter or provide surrounding context,
a number of researchers have used illustrative techniques [9,
29,4,11,27]. Weiler et al. [32] attempt to highlight fiber tract
uncertainty by means of a fixed, user-defined safety margin.
However, this safety margin does not take data uncertainty
into account.

In this paper we propose a method that uses the output of
probabilistic fiber tracking methods to generate lllustrative
Confidence Intervals that do take uncertainty of the data into
account. Each fiber is assigned a confidence value based on
a chosen confidence measure (to be explained in the next
section). A confidence interval [C;,Ciy1] contains a subset
of all fibers with a confidence between C; and Cjy;. An il-
lustrative confidence interval is the visual representation of
these fibers and shows the variation in fiber pathways due
to noise and modelling error. The rendering algorithm uses
a silhouette and outline representation that is based on the
work of Otten et al. [22] but we extend it with additional
visual styles, interaction features, Focus+Context views and
anatomical context. Furthermore, we apply and evaluate our

approach in the context of neurosurgical risk assessment and
decision-making.

3 Computing Fiber Confidence

The visualization framework we propose requires a set of
fibers (represented by streamlines) where each fiber is asso-
ciated with a confidence value. Figure 3 gives an overview
of the processing pipeline to compute fiber confidence from
a set of diffusion-weighted images. Confidence values are
stored in a table, normalized and sorted from high (1.0) to
low (0.0) confidence. How we use the table to visualize fiber
confidence intervals is described in the next section. As de-
scribed in the related work section, there are different ways
to obtain a confidence value for each streamline. Each ap-
proach has its advantages and disadvantages. Our frame-
work is general and does not depend on a specific approach
for computing fiber confidence. To demonstrate this flexi-
bility we have chosen two methods, (1) the Wild Bootstrap
algorithm [13] combined with a fiber distance measure and
(2) the ConTrack fiber tracking algorithm [28] which assigns
a connection probability to each pathway. Both methods rely
on a random process, either in the fiber tracking itself (Con-
Track) or in the generation of the underlying tensor field
from which the fibers are reconstructed (Wild Bootstrap).
For this reason, we consider both algorithms to be prob-
abilistic in nature. The output of both algorithms is a set
of fiber pathways. Often these pathways are converted to a
probability volume by counting the number of times each
voxel is intersected by a pathway. This approach however is
dependent on the chosen resolution of the data volume. We
prefer to work with the streamlines directly because it pre-
serves the visual continuity of the fiber tract of interest. This
is especially important for the neurosurgeon who expects a
certain correspondence between the visualization of a fiber
tract and his or her knowledge of white matter anatomy.

3.1 Wild Bootstrap and Fiber Distance

The Wild Bootstrap method has been described by different
authors [33, 16] but was first combined with fiber tracking by
Jones et al. [13]. It attempts to simulate repeated diffusion-
weighted imaging (DWI) scans by generating random vari-
ations of the tensor data from a single DWI dataset. For this,
the diffusion tensor model is fit to the data in each voxel. For
more than 6 diffusion directions, this results in a set of model
errors or residuals, one for each measurement direction. The
residuals are randomly flipped (by multiplying them with ei-
ther -1 or 1), after which the tensor model is fit again. By re-
peating this procedure many times a large number of tensor
volumes is generated. For details on the exact procedure to
compute the Wild Bootstrap we refer the reader to Jones et
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Fig. 3 Pipeline for computing fiber confidence using (1) Wild Boot-
strap and (2) ConTrack. The Wild Bootstrap method generates a large
collection of unlabeled fibers which are assigned a confidence value
by means of a fiber distance metric. The fibers produced by ConTrack
already have a confidence value assigned to them.

al. [13]. In each generated tensor volume we perform deter-
ministic streamline tracing [30] starting from a pre-selected
seed region. The same seed region is used for all tensor vol-
umes and tracing is terminated when the anisotropy drops
below a pre-defined anisotropy threshold or the angle of
two consecutive main eigenvectors exceeds a given angular
threshold. For each seed point this results in a set of fibers,
one for each tensor volume. Each fiber describes one pos-
sible result of the streamline tracing algorithm. Because we
keep the seed region fixed, we consider fiber variations for
each seed point separately. To be able to assign a confidence
value to each fiber we assume that the distribution of fibers
in each seed point is uni-modal. In that case, we can choose
a distance measure between pairs of fibers and use it to de-
fine a “'mean’ fiber which is most central, given the distance
measure, in the set of fibers at each seed point. We subse-
quently use each fiber’s distance to the mean fiber as a rep-
resentation of confidence. A confidence interval can then be
expressed as: (1) a percentage (e.g. 50%) of the most confi-
dent fibers or (2) all fibers with a confidence higher than a
given threshold confidence (e.g. 0.95). Which option is most

appropriate depends on the user task and the distribution
of confidence values in the total set of fibers. Our frame-
work supports both options. Fiber distance measures have
been extensively described in earlier work on fiber cluster-
ing [19] and comparison of fiber tracking algorithms [12].
The choice of distance measure is entirely dependent on the
application within which it is used. Each measure has its ad-
vantages and disadvantages. For this reason, our framework
is not dependent on the particular choice of distance measure
in any way. To demonstrate its flexibility in this respect, we
implemented two widely used measures: (1) the Minimum
End-Point Distance and (2) the Mean of Closest-Point Dis-
tances [19]. The minimum end-point distance dr between
two fibers F; and F; is defined as follows,

dg (F;, Fj) = min(dy,d>) (1
where,

di = ||Fi,1 — Fj1|| + ||Fiend — Fjendl| 2
dr, = HFiJ_Fj,end||+||Fi,end_Fj»1H (3)

where F; | and F; ., refer to the first and last points on fiber
F;. The mean of closest-point distances dj, is defined as fol-
lows,

dM(E'ij) :mean(dm(EaFj)vdm(FﬁE')) 4)

where, given that p, and p; are the points on each fiber,

dy(F;, Fj) = mean min ||p, — ps/| 5)

pr<Fipser;

Given the assumptions described previously, we define,
for each seed point, the mean fiber to be the fiber with the
smallest sum of distances to all other fibers at that seed point.
This definition will result in an existing fiber and, given the
chosen distance measure, this will be the most central fiber
of the set. Our approach is similar to O’Donnell et al. [21]
in that they also select an existing fiber instead of trying to
compute an exact center line. The latter approach has been
attempted in previous work [13,8,6], however, this can lead
to ill-defined results when streamlines strongly diverge or
even turn back on themselves. Merhhof et al. [18] circum-
vent this problem by reverting to a smoothed, voxel-based
representation of the fibers which allows them to generate a
tight fitting surface mesh around the tracts. However, their
approach does not take uncertainty into account.

Our definition of fiber distance assumes a uni-modal dis-
tribution of fibers originating from a seed point. Although
this may be a valid assumption for some fiber tracts, it may
be incorrect for others. In that case a different approach to
compute fiber confidence must be chosen. Our framework
allows easy integration of alternative methods. One such
method will be described in the next section.
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3.2 ConTrack

ConTrack is a probabilistic fiber tracking algorithm proposed
by Sherbondy et al. [28]. It is specifically designed to take
into account knowledge that a fiber connection exists be-
tween two regions. For example, in a normally sighted in-
dividual we know that there exists a functional connection
between the lateral geniculate nucleus (LGN) and the pri-
mary visual cortex (V1 and V2). However, most probabilis-
tic FT algorithms would estimate the connection probability
between LGB and V1/V2 to be substantially less than one.
The reason for this is that the probability of a connection be-
tween A and B, that is P(A — B), depends on the probabil-
ity of connections between A and all other points. A conse-
quence of this dependence is that in most cases connections
are not symmetric, that is P(A — B) # P(B — A). In con-
trast, ConTrack ensures both independence and symmetry.
The algorithm outputs a large set of streamlines, each asso-
ciated with a pathway score representing the probability of
connection between the source and target regions. This fits
the requirements of our visualization framework very well
because the pathway score can be used directly as a mea-
sure of confidence. We do not claim that ConTrack is su-
perior to other probabilistic methods such as proposed by
Behrens et al. [2] or Friman et al. [10]. These methods also
sample many pathways but do not always explicitly store
the pathways as streamlines. Instead, the pathways are used
to compute a probability density volume where each voxel
value represents the number of pathways intersecting it.

4 Visualizing Fiber Confidence

In the current work we have chosen to describe the uncer-
tainty in fiber pathways in terms of discrete confidence in-
tervals and represent the fibers in each interval by means
of silhouettes and outlines. Confidence intervals provide a
high-level overview of the distribution of fibers in the set,
similar to confidence intervals used in descriptive statistics.
Detail is lost by aggregating multiple fibers in a single in-
terval but if multiple confidence intervals are shown, which
our framework allows, the user can obtain a good impres-
sion of which parts of the fiber tract are most reliable or
reproducible and which parts are highly variable. Showing
the fibers by means of streamlines, even if each confidence
interval would be colored differently, will result in a large
amount of visual clutter. Also, users are often not interested
in individual fibers but rather in fiber bundles. A silhouette
and outline representation fulfils these requirements by re-
ducing visual clutter while preserving the overall shape of
the fiber bundle. As explained before, we define a silhouette
as the interior area of an object’s shape when projected to
the viewing plane. An outline is defined as the border of a
silhouette. Otten et al. [22] presented an approach to render

Fig. 5 Creating a silhouette and outline. Blue pixels represent the
added silhouette. Black pixels represent the added outline.

silhouettes and outlines for sets of clustered fibers using a
GPU-accelerated algorithm. We extend this approach in the
following ways:

Extending the set of visual styles (e.g. transparency, color

schemes, blurring, etc.)

— Making each visual style adaptive to interval confidence

— Combining an arbitrary number of confidence intervals
in multiple render passes

— Adding anatomical context by means of 3D orthogonal

slices, volume rendering and surface models (e.g. tumor,

brain ventricles and cortical surface) and other types of

streamline visualizations

Figure 4 gives an overview of the different stages in our
visualization pipeline.

4.1 Generating Silhouettes and Outlines

To create a silhouette and outline representation we ren-
der the streamlines directly into an off-screen buffer image.
Next, we apply a dilation operators to each non-empty pixel
of the streamline image. The dilation operator is based on
a circular structuring element with a user-defined silhouette
radius R;. This widens the area covered by the streamlines
and closes holes between neighbouring streamlines. A sec-
ond, larger structuring element with a user-defined outline
radius R, is used to add an outline of a given thickness to
the silhouette. The general mechanism is illustrated in Fig-
ure 5.

4.2 Rendering Confidence Intervals

To visualize the illustrative confidence intervals we trans-
fer the streamlines and associated confidence table to our
rendering pipeline (see Figure 4). We then specify a con-
fidence interval A = [a,b], where [a,b] C [0,1], to control
which streamlines are rendered to screen as silhouettes and
outlines. If the confidence interval is [0,1] we render all
streamlines at once and the resulting silhouette represents
all possible variations of streamlines. If we have N intervals,
then each interval A; where 0 <i < N, can be rendered with
a different visual style. Figure 4 illustrates the different steps
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Fig. 4 Pipeline for visualizing our illustrative confidence intervals

in our visualization pipeline. For each interval A; these steps
are executed as follows:

Step 1: We start with the interval of highest confidence,
that is Ay_; and render the corresponding streamlines to
a color buffer Csrr and depth buffer Dsrg using OpenGL
framebuffer objects. Depth testing is set to GL_LESS.

Step 2: In this step, stencil testing is enabled (function:
(GL_EQUAL,0,1), operation: GL_INCR) to ensure that sub-
sequent intervals (with lower confidence) do not overwrite
the current one (with higher confidence). We could have
solved this by setting the depth test to GL_ALWAYS and ren-
dering the low confidence intervals first. However, reducing
the opacity of a given silhouette would then result in un-
wanted color mixing of the different intervals. If the opacity
is reduced, we wish to see the anatomy lying behind it and
not other confidence intervals. The buffers Cs7g and Dgrg
from the previous step are passed to a GPU shader pro-
gram that creates the silhouette and outline representation
described previously. The output result of the shader pro-
gram is written to the color buffer Cg;zy and depth buffer
Dgjrp. In this step the visual style parameters are applied
(see also sub-section 4.3).

Step 3 (Optional): This step is only performed if silhou-
ette blurring is enabled. This allows the user to show inter-
vals of lower confidence with increased blurring. The sten-
cil test is now performed at this step instead of Step 2. The
buffers Csjry and Dgyp g from Step 2 are passed to a second
GPU shader program that applies Gaussian blurring to the
color buffer. The shader program takes a blurring radius and
brightness offset as parameters (see also sub-section 4.3).
The brightness offset allows the user to adjust brightness in
case it is too low after the blurring operation.

Repeat for all N intervals

| Solid -

Render mode
Active property
[] Enable blurring

.V\ér?ﬁ\ples

Meyers [Loop N \\
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Fig. 6 Left: Confidence Histogram Widget with confidence values in-
crease from left to right. White arrows indicate possible manipulation
direction. Selected active property is *Opacity’. Right: Corresponding
confidence intervals of optic radiation fibers looping around ventricles.

4.3 Confidence Histogram Widget

Depending on the distribution of confidence values within
the fiber set, the user may wish to choose the confidence
intervals differently. To make this possible we introduce the
Confidence Histogram Widget that shows a histogram of con-
fidence values and allows the user to define and manipulate
confidence intervals graphically. Additionally, it is possible
to identify deviations from a uni-modal distribution in the
fibers. In Section 3 we explained how we use distance to
compute fiber confidence. This approach assumes that the
distribution of fibers originating from a seed point is uni-
modal. If this is not the case and the fibers split up into two,
equally-sized bundles, the mean fiber may be assigned ran-
domly to one or the other bundle. All fibers not in the same
bundle as the mean fiber will have a larger distance and are
therefore assigned a lower confidence. In that case, the his-
togram is likely to show two peaks. Figure 6 on the left illus-
trates an example histogram computed from output scores of
the ConTrack algorithm. The confidence intervals are dis-
played as a set of semi-transparent rectangles overlaid on
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Table 1 User-adjustable properties

Property Description

Color Color of inner silhouette area
Outline color Color of silhouette outline
Opacity Opacity of inner silhoutte area

Outline opacity
Outline thickness

Opacity of silhouette outline
Thickness in pixels of silhouette
outline

Half-width in pixels of silhouette
Blurring enabled/disabled
Blurring kernel half-width (twice
Gaussian o)

Scaling factor to adjust brightness
of blurred regions

Dilation
Blurring
Blurring radius

Blurring brightness

top of the histogram. Each rectangle represents an interval.
Rectangle colors map to silhouette or outline colors, depend-
ing on the current selection mode. Rectangle width maps to
interval width. Rectangle height maps to a selected visual
property value, such as opacity or blurring radius. The full
list of visual properties available in our framework is given
in Table 1.

Visual properties can be set for each confidence inter-
val separately or they can be assigned automatically through
a number of pre-sets. For example, the user can assign a
number of standard color scales to the different intervals,
such as warm to cool, light to dark or decreasing saturation.
Scalar properties such as opacity can be assigned in a stair-
case or inverted staircase pattern. Intervals can be automati-
cally subdivided in equal widths, e.g. [0, 3] and [, 1]. Alter-
natively, a subdivision can be selected where each interval
contains the same amount of fibers. These two options re-
flect the two different perspectives we discussed in Section
3.1 where a confidence interval can be expressed as either
(1) a percentage of the most confident fibers or (2) all fibers
with a confidence between a certain range. As explained pre-
viously, which options is most appropriate depends on the
user task.

Finally, the confidence histogram widget allows saving
and loading of visual styles. From a practical point of view
we do not expect the neurosurgeon to set these visual proper-
ties each time he or she uses the tool. The automatic pre-sets,
saving and loading of visual properties are specifically de-
signed to make this process easier and less repetitive. How-
ever to be able to properly evaluate the benefits and draw-
backs of many different visual styles (as described in Section
5.2) we also provide low-level control of these properties.

4.4 Uncertainty Lens

Uncertainty in DTT fiber tracking algorithms is an impor-
tant issue in neurosurgical applications. However, some fiber

tracts can be more reliably reconstructed than others, even
with deterministic approaches. Also, not all regions of the
brain are affected by the surgical approach. In such regions,
showing uncertainty may be unnecessary or even confus-
ing. For this reason, we provide the Uncertainty Lens as a
Focus+Context approach to show uncertainty only within a
user-defined region-of-interest (ROI). Outside the lens stan-
dard streamline visualization can be used. For example, the
surgeon can place the uncertainty lens over the tumor and
its immediate surroundings and see the fiber variations due
to the uncertainty within a relevant context. If necessary, the
user can interactively move and resize the uncertainty lens.
Figure 7(c) gives an example visualization.

5 Results and Discussion

Figure 7 illustrates uncertainty visualizations created with
our framework. Figure 7(a) depicts a transversal view of
the optic radiation (running from the thalamus to the vi-
sual cortex) with brain ventricles rendered using DVR. Fig-
ure 7(b) provides a sagittal view of the corticospinal tract
surrounding a tumor. Figure 7(c) illustrates our Uncertainty
Lens together with a standard streamtube visualization, tu-
mor and semi-transparent cortical surface. Figures 7(d-i) il-
lustrate a close-up of the optic radiation with most of the
visual styles we support (warm-to-cool outlines, warm-to-
cool surfaces, decreasing opacity, light-to-dark, increasing
dilation, increasing blur).

5.1 Datasets and Performance

These visualizations were created with datasets from three
suppliers. Kempenhaeghe Epilepsy Center: DTI (112 X
112 x 60, 2 x 2 x 2mm?>, b-value 1000, 30 grad. dirs.). St.
Elisabeth hospital: DTI (128 x 128 x 60, 1.75 x 1.75 x 2
mm?, b-value 800, 30 grad. dirs.), T1 MRI (288 x 288 x
175, 1 x 1 x Imm?). VisContest 2010: DTI (128 x 128 x 72,
1.8 x 1.8 x 1.8mm?3, b-value 1000, 30 grad. dirs.), T1 MRI
(512 x 512 x 176, 0.488 x 0.488 x 1mm?). We measured
the framerate performance of our rendering pipeline using
a GeForce 8800 GTX graphics card from NVIDIA and a
screensize of 720 x 760 pixels: Figure 7(a) = 6.6 fps, Figure
7(b) = 10.2 fps and Figure 7(c) = 17.5 fps.

5.2 User Evaluation

To evaluate our visualization approach we conducted an in-
formal user study with three neurosurgeons. First, we wanted
to know their general opinion about the need and benefits of
uncertainty visualization for their work. Second, we wanted
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Fig. 7 (a) Optic radiation, (b) pyramidal tract with tumor, (c) uncertainty lens, (d-i) different visual styles applied to optic radiation (warm-to-cool
outlines, warm-to-cool surfaces, decreasing opacity, light-to-dark, increasing dilation, increasing blur).

to evaluate the specific rendering options that our visualiza-
tion framework provides. We presented the neurosurgeons
with a set of screen-shots, videos and live demonstrations.
Furthermore, we asked them to fill out a questionnaire with
respect to the visual material. Three clinical scenarios were
presented: (1) anterior temporal lobe resection (ATLR) for
the treatment of focal epilepsy, (2) resection of a low-grade
glioma close to motor cortex and (3) resection of an intra-
cerebral metastasis with surrounding edema (fluid), also close
to motor cortex. For each scenario we showed a standard
fiber visualization (stream tubes) and our illustrative con-
fidence intervals. We used three intervals each containing
10%, 25% and 100% of the most confident fibers. Table 2
shows the general opinion of the neurosurgeons on the ques-
tions listed below. Table 3 shows the specific ratings for each
question. Ratings are given on a [1 — 5] Likert scale where
1 means either 'not useful at all’ or ’low’ and and 5 means
“highly useful’ or “high’, depending on the context of the
question.

Q1.1 What is the risk of a visual field deficit in anterior tem-
poral lobe resection?

Q1.2 How important is uncertainty visualization for anterior
temporal lobe resections?

Q1.3 What is the risk of resecting this particular low-grade
glioma?

Q1.4 How important is uncertainty visualization for low-
grade glioma resection?

Q1.5 What is the risk of resecting this particular intracere-
bral metastasis?

Q1.6 To what extent would you discuss the uncertainty with
the patient?

Table 2 General opinion about DTI uncertainty visualization. Ranking
of visual styles rating is done on a [1 — 5] Likert scale.

User A UserB UserC
Q11 2 2 2
Q12 4 4 3
Q13 4 1 1
Q14 4 4 5
Q15 2 2 2
Qle6 5 4 4

Q2.1 To what extent does the standard fiber visualization
give you more confidence in assessing risk of anterior tem-
poral lobe resections?

Q2.2 To what extent does the standard visualization give
more confidence in assessing risk of resecting the given low-
grade glioma?

Q2.3 To what extent does the standard visualization give
more confidence in assessing risk of resecting the given in-
tracerebral metastasis?

Q2.4 Which two visual styles do you prefer?

Q2.5 Does our representation of uncertainty give you more
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confidence?

Q2.6 How useful is it to show uncertainty only in a selected
ROI?

Q2.7 What is the overall rating of the potential use of our
visualization?

The standard fiber visualization was considered some-
what helpful for scenario 1 and 2. It gives at least a rough
indication of the location of the fiber tract. For scenario 3 all
users gave a low rating because fibers seemed to be miss-
ing inside the edema that, in their opinion, should have been
present. This is caused by a failure of the fiber tracking al-
gorithm to trace into low anisotropy regions such as ede-
matous fluid. We presented the users with different visual
styles for the illustrative silhouettes and asked them which
style or combination of styles most clearly communicated
the different levels of confidence. Initially, two out of three
users rated decreasing opacity (with decreasing confidence)
to be most intuitive. Light-to-dark, non-gray coloring came
second. After they finished the questionnaire we discussed
this first choice with the users and explained that reduc-
ing opacity actually removes information instead of showing
it. They agreed but indicated that they selected decreasing
opacity mainly because it prevents occlusion of the underly-
ing anatomical slices (which is important for context). After
some discussion, they proposed that a combination of light-
to-dark coloring and a reduced, but fixed, opacity would be a
good alternative for representing fiber confidence. The third
user, interestingly, preferred equal colors for all intervals but
with decreasing outline thickness (going from fat to thin to
zero). All other visual styles (silhouette dilation, blurring
and warm-to-cool colors) were less appealing to the users.
Our Focus+Context uncertainty lens was considered to be
useful. The initial uncertainty visualization (without uncer-
tainty lens) looked rather intimidating to them. The lens re-
duces visual clutter and allows attention to be focused on
the tumor and its immediate surroundings. Also, the fully
opaque visual styles were considered to be much more ac-
ceptable this way.

Table 3 Opinions about the proposed uncertainty visualization. Except
for the ranking of visual styles rating is done on a [1 — 5] Likert scale.
Scores are averages over all the three scenarios.

User A User B User C
Q21 4 2 3
Q22 3 2 2
Q23 1 1 1
Q24  Opacity Outline  Opacity
Lightness - Lightness
Q25 4 4 4
Q2.6 4 4 3
Q2.7 4 4 4

5.3 General Discussion

As noted in the user evaluation, the neurosurgeons were skep-
tical about the fiber tracking results for the intra-cerebral
metastasis. The edematous fluid surrounding the tumor causes
the tracking algorithm to prematurely terminate thereby re-
sulting in false negatives. Our particular implementation of
the Wild Bootstrap method will also suffer from such false
negatives (failing to show something that is actually there)
because it uses the same fiber tracking algorithm with the
same termination criteria. If diffusion in a voxel, because
of edematous fluid, is almost isotropic, the tensor model
will fit the data well and have very small residuals. Random
perturbation of the residuals will not result in large shape
variations, so on average the tensors will remain isotropic.
Because the Wild Bootstrap method uses the same thresh-
olds as standard streamline tracing, none of the generated
streamlines will get past these isotropic tensors. With cross-
ing fibers however, the tensor can become disk-like while the
underlying diffusion profile might actually be cross-shaped.
In this case, the fractional anisotropy of the tensor remains
high which may cause standard algorithms to continue track-
ing even though the model fit is bad (large residuals). The
Wild Bootstrap will expose this problem by showing a large
amount of variation in fiber pathways originating from the
crossing fiber region. This indicates that the standard track-
ing algorithm may be generating random results. In order
to deal with false negatives, alternative methods for proba-
bilistic fiber tracking can be used. These are often based on
Monte Carlo sampling of pathways and less dependent on
stopping criteria [10,2]. Even in regions of low anisotropy
these algorithms can detect the presence of fiber pathways.

In this paper we have applied the Wild Bootstrap ap-
proach using the 2nd-order tensor model and deterministic
streamline tracing. However, these choices are not specific
to the Wild Bootstrap. It is a general technique that can be
applied to any model that tries to fit data and results in non-
zero residuals. Even with higher-order models that are able
to detect crossing fibers, you can still use the Wild Bootstrap
to investigate the sensitivity of these models to noise in the
data. Our choice to use streamline tracing is also not the
only choice. Other fiber tracking algorithms, such as tensor
deflection (TEND) [15], can be used in combination with
the Wild Bootstrap as well.

With respect to the computation of confidence based on
fiber distance we wish to point out that the choice of dis-
tance measure may have a large effect on the confidence
intervals. As Jiao et al. [12] point out distance measures
that are based on averages, such as the mean of closest-
point distances, may over- or under-estimate the true dis-
tance due to streamline discretization problems or complex
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streamline configurations. The closest end-points distance
may surely over-simplify the situation. However, for certain
cases it may provide relevant information. For example, if
apriori knowledge is available that fibers start and end in
the same anatomical regions, they could still be considered
"close’ even though they may take wildly different routes to
get to their destination. In general we regard distance mea-
sures to be application-specific without any particular mea-
sure being the best one for all situations.

The user evaluation, although not conclusive, has pro-
vided us with useful information. Whether DTT fiber track-
ing, and therefore DTI uncertainty, is relevant for neurosur-
gical planning depends on many factors, such as tumor type.
High-grade gliomas have a bad prognosis and are commonly
associated with functional deficits in the patient. If there is
any risk of additional damage due to resection, tumor tis-
sue is simply left in place. Low-grade gliomas, on the other
hand, have a relatively good prognosis. The tumor grows
slowly allowing brain functions to reorganize if they get in-
vaded (brain plasticity). In these cases neurosurgeons are
willing to use all the information available in order to maxi-
mize resection while at the same time minimizing damage to
healthy tissue. DTI fiber tracking and uncertainty visualiza-
tion are especially relevant here. For anterior temporal lobe
resections DTT uncertainty information is important because
part of the optic radiation, Meyer’s Loop, is often damaged
during the procedure, resulting in a partial loss of vision.
The extent of Meyer’s Loop varies significantly between pa-
tients (between 3 and 6 cm’s from the temporal pole). This
makes it difficult to predict in advance whether visual de-
fects will result or not. Meyer’s Loop however is a difficult
fiber tract to reconstruct due to strong curvature and proxim-
ity to other fiber tracts (resulting in partial volume effects at
the tract boundaries). Uncertainty visualization can provide
helpful information in this case.

6 Conclusions and Future Work

In this paper, we have presented a framework for visual-
izing uncertainties in DTTI fiber tracking due to noise and
modelling errors. Our contribution consists of a processing
pipeline for computing fiber confidence and an algorithm for
visualizing fiber confidence intervals based on illustrative
silhouettes and outlines. We also provide an interactive his-
togram widget to view the distribution of confidence values
within a fiber set and adjust the visual parameters of each in-
terval. Our uncertainty lens allows a Focus+Context view of
both illustrative silhouettes and tumor (focus) and standard
fiber visualization techniques with anatomical information
(context). Finally, we have evaluated the added value of our
uncertainty visualization for surgical risk assessment with

three neurosurgeons. We concluded that our illustrative con-
fidence intervals are a potentially useful approach to display
uncertainty. Furthermore, we confirmed that uncertainty vi-
sualization is of great value for surgical risk assessment and
may play an important role in patient counselling.

For future work, we would like to experiment with more
visual styles and test these in a larger group of users. In
this paper we have focused our user evaluation on neuro-
surgeons who are actually involved in diagnosis and sur-
gical risk assessment. We would like continue and expand
our collaboration with these medical experts to find ways
to apply DTI uncertainty visualization in a clinical context
for specific surgical procedures, such as tumor resection or
epilepsy surgery. This requires dedicated visualization and
specialized interaction paradigms that are fast, intuitive and
easy to use without requiring a detailed understanding of the
underlying algorithms.
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