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Abstract

This paper describes the construction of a statistical
shape model based on the iterative closest point algorithm.
The method does not require manual nor automatic identi-
fication of explicit landmarks on example shapes. Corre-
sponding features are found by retrieving the nearest
points via interpolation along the surface. The application
to analyse carpal bone shape renders evidence that the
lunate bone occurs in distinct types.

1. Introduction

Statistical shape models have proven to be useful tools
to study variation in anatomical shapes. A popular method
captures shape by a sampled 3D point distribution model
(PDM) [1]. These models are often created by manually
indicating characteristic points on example shapes. How-
ever, indicating features by hand is tedious and prone to
error. Moreover, many objects have only a few landmarks
or have features that are not easily identifiable.

The carpal bones serve as a good example (see Figure
1). Physicians are interested in the shape of carpal bones,
because a relation is expected to exist between bone shape
and pathological wrist kinematics. Although the shape of
each carpal bone is highly characteristic, it is not easy to
identify characteristic points.

Preliminary medical studies report on shape features of
the carpals in conventional X-ray images [2][3]. The
results indicate that there may be distinct types of the
lunate bone. Although it confirms observations from clini-
cal practice, the analysis is limited due to the projective
nature of the X-ray images.

Recently, several papers describe methods to analyze
such shapes via 3D statistical shape models (see e.g.
[1][4][5][6][7]). Although the outcomes are very promis-

ing, there is not yet a generally accepted framework.
The objective of this work is to construct a non-land-

mark based statistical shape model. Inspired by [4], an
alternative way to find correspondences on multiple shapes
is proposed (see 2.2). The method is applicable to any
problem in which explicit shape features are not easily
identifiable. The novelty is the adaptation of an iterative
closest point algorithm and the application to analyse car-
pal bone shape.

2. Methods

We initially follow the procedure first described by
Cootes and Taylor [1]. Shape vectors xi are constructed of
n characteristic points in each training image i. Thus, a d-
dimensional image results in an nd-element shape vector.
Translation, rotation and scale invariance is imposed by
aligning the centers of gravity and minimizing the Euclid-
ean distance between the shape vectors under rotation and
scaling (Procrustes analysis).

Figure 1. X-ray image showing the left hand wrist
in dorsal view. The carpal bones constitute the
joint between the metacarpals and the ulna and
radius.
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The main shape variations are found by principal com-
ponent analysis, under the assumption of Gaussian distrib-
uted data:

1. The mean vector x and covariance matrix X are calcu-
lated by

(1)

in which m indicates the number of training shapes.

2. The eigenvectors φi and corresponding eigenvalues λi

are computed and sorted so that λi λi+1.

Let Φ = (φ1, φ2, ..., φk) be the matrix of eigenvectors cor-
responding to the k largest eigenvalues (e.g. summing to
95% of total variance). Shape (x) is modelled by:

(2)

in which b = (b1, b2, ..., bk) is a vector containing the shape
parameters. Clearly, b = 0 yields the average shape. The
shape variation along axis i is generated by varying bi. Suit-
able limits are: (σi indicates the
variance along axis i).

At the basis of the analysis are corresponding points. A
technique to find correspondences on two point sets is
introduced next (2.1). How to convey this method to a
whole set of samples is described in (2.2).

2.1 Correspondence method

The iterative closest point (ICP) algorithm maps one
point set (A) onto another (B) [8][4] as follows:

1. Find the closest points to A on B: B’

2.  Find the closest points to B on A: A’

3. Find the transformation Q that matches A with B’ and
B with A’

4. Transform all points via Q

5. Loop until converged

The transformation Q of a point p is defined by Q(p) =
sRp + t, in which s is a scale factor (scalar), R is a rotation
matrix and t is a translation vector. An initial estimate for
Q is obtained by registering the centers of gravity of the

pointsets, aligning the first order moment vectors and
equalizing the average distance of the points to the center.

The best match is found in step 3) by minimizing a sym-
metric distance measure on the point sets:

(3)

Notice that the shapes are transformed into an interme-
diate frame, rather than transforming one shape onto the
other. This way, preferential treatment of one of the shapes
is avoided.

At last, points are mapped from one set on the other by
finding the closest points.

2.2 Model construction

The previous method needs to be adjusted to find corre-
sponding points in a whole set of examples. We assume the
existence of segmented sample shapes represented by tri-
angle meshes. An accurate surface representation is
asserted, but the vertices may not correspond with land-
marks. Additionally, mesh size and topology may vary. The
meshes are to be “resampled” on corresponding positions
to perform shape analysis (2, introduction). We imple-
mented an iterative procedure based on the closest point
algorithm (2.1) to do so.

Initially, the mesh with the largest number of vertices
(nmax) is selected (the pivot mesh). Next, the other meshes
are matched to the selected one. At that stage all meshes
are resampled to have the same number of corresponding
points (nmax). Also, the resampled meshes inherit the topol-
ogy of the pivot mesh. The mean shape is computed by
averaging the resampled vertex positions and the whole
procedure is repeated by matching the original meshes to
this average shape. Thus, a preferential treatment of the
mesh with the most vertices is avoided.

One should notice that the Procrustes analysis is embed-
ded in the correspondence method (via Q). Consequently,
systematic errors due to an initial misallignment are
avoided.

3. Results

All 3D-CT images of the wrist over a period of exactly
two years were collected from the Academic Medical Cen-
ter Amsterdam. This resulted in wrist images from 134
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patients, containing 103 right wrists and 107 left wrists.
From this set only those wrists were included that did not
show signs of pathology according to a radiologist. Among
the exclusion criteria were: fractures, arthritis, presence of
bone fragments, and bone fusions.

Our focus was on the shape of the lunate and capitate
bones since these are typically involved in pathologic wrist
kinematics. Unfortunately, the entire wrist was not con-
tained in each scan. Applying the exclusion criteria and
considering only completely scanned carpal bones left us
with 41 examples of the left lunate, 31 right lunates, 36 left
capitate bones and 25 right capitates.

3.1 Model construction

A specially developed software tool [9] was employed
to segment the sample shapes from the images. The output
of the tool was a triangulated surface description. Both
picking the closest points (point-to-point) and interpolating
to the nearest position on the triangles (point-to-surface)
were considered to find the correspondences (2.1).

Figure 2 illustrates the effect of both approaches on the
cumulative relative variance for the left lunate bone (the
other carpals had similar outcome). For instance, 80% of
the total variance is explained by 23 eigenmodes using
point-to-point correspondence and by only 10 eigenmodes
via the point-to-surface method.

The flat profile indicates that the shape analysis via a
point-to-point correspondence is hampered by noise (Fig-
ure 2, left). This must be due to the irregular positioning of
the vertices. The point-to-surface graph signifies an
improvement on correspondence. Consequently, true shape
description dominates over position errors (Figure 2,
right). This is confirmed by the smaller mean distance
between corresponding points over all shapes (mean E2,
c.f. Equation 3, see Table 1). Our further analysis employs
point-to-surface correspondence.

The stability of the eigenvectors was assessed by their
orientation and size as the sample size increased. The first
10, 20 and 30 shapes were selected from the complete set

of (41) left lunate bones. Table 2 shows the angles between
the 4 largest eigenvectors calculated from the subsets and
the ones determined from the full set. The table illustrates
that the two largest eigenvectors tend to stablize with 30
samples. Higher order eigenvectors seem not to correspond
which is indicated by the angles that approximate 0.5 π
radians.

Figure 3 illustrates the effect of sample size on the
cumulative relative variance.

From Table 2 and Figure 3 we concluded that the point -
surface method yields proper estimates of the first 2 eigen-
vectors.

3.2 Analysis

Earlier work indicates that the lunate bone appears in
distinct types, implying multimodally distributed data. Our
shape analysis, however, assumes Gaussian distributed
data. The validity of this assumption was assessed by the
projections of each lunate shape (xi) on the first eigenvector
φ1: Figure 4.

Clearly, the right lunate yields a bimodal distribution
which confirms the existence of distinct shapes. Accord-

Figure 2. Cumulative relative variance of the left
lunate.
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Table 1: Mean distance between corresponding points

Correspondence
method

Mean E2

(mm)

Point-point 1.9

Point-surface 0.9

Table 2: Angle between eigenvectors from smaller
subsets and full set of samples (radians)

#sample
shapes

eigenvector

1 2 3 4

10 .72 .68 1.2 1.6

20 .35 .38 1.6 1.8

30 .27 .28 .53 2.1
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Figure 3. Cumulative relative variance for 10, 20,
30 and the full set of samples.
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ingly, our further analysis considered the two lunate types
separately. The left lunate histogram does not justify the
distinction. One might attribute this to small sample size.
The outliers correspond to bones that have sharp protru-
sions. The other eigenmodes and the other bones did not
deviate significantly from a Gaussian distribution.

The mean right carpal shapes (Figure 5) are realistic

representations that agree with how the bones are perceived
by clinicians. The left drawing corresponds to the left
group in the histogram of Figure 4, the right shape with the
right group. The two types of the lunate bone conform to
the description of type I and type II lunates [2][3].

The relation between different shapes was explored by
way of the shape parameters (b, c.f. Equation (2)). The
graphs in Figure 6 plot |b| for the left versus the right lunate

and capitate bones, respectively. The shaded area is the
95% prediction interval for the data computed from linear
regression. The dashed lines represent the 95% confidence
interval for the solid red regression line. Both graphs indi-

cate that a deviation from the average shape in one hand
correlates with a deviation in the other. Other relations (e.g.
left lunate vs. left capitate, left lunate vs. age etc.) did not
yield significant correlations.

4. Conclusion

We described a statistical shape model using an iterative
closest point algorithm. The algorithm does not require
manual identification of landmarks. A correspondence of
features was established by retrieving nearest points on
surfaces via interpolation. Such correspondence facilitated
the construction of a precise shape model. The shape anal-
ysis of the carpal bones rendered further evidence that
there are distinct lunate bone shapes. However, a final
proof will require more example shapes. For further
research, it would be interesting to correlate bone shape
with left or right hand dominance as well as pathological
kinematics.

We conclude that the method provides a powerful tool,
for statistical shape analysis in the absence of natural land-
marks.
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Figure 4. Histograms of lunate shapes projected
on the first eigenvector.
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Figure 5. Two distinct right lunate shapes.

Figure 6. Comparison of carpal shapes in left and
right wrist.
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