
Hyper-Reduced Projective Dynamics

CHRISTOPHER BRANDT, ELMAR EISEMANN, and KLAUS HILDEBRANDT,
Delft University of Technology, The Netherlands

Fig. 1. Our Hyper-Reduced Projective Dynamics method is able to handle different types of constraints simultaneously (volume preservation for tetrahedrons
and strain resistance for boundary triangles) for complex geometries (52k vertices) in real-time. During the simulation we change the target volume of the
tetrahedrons, which causes a balloon-like blowup effect. We resolve ground collisions and allow user interaction by click and drag. The simulation runs at
62 fps including rendering. The total precomputation time of our method is 21 seconds.

We present a method for the real-time simulation of deformable objects that
combines the robustness, generality, and high performance of Projective
Dynamics with the efficiency and scalability offered by model reduction
techniques. The method decouples the cost for time integration from the
mesh resolution and can simulate large meshes in real-time. The proposed
hyper-reduction of Projective Dynamics combines a novel fast approxima-
tion method for constraint projections and a scalable construction of sparse
subspace bases. The resulting system achieves real-time rates for large sub-
spaces enabling rich dynamics and can resolve general user interactions,
collision constraints, external forces and changes to the materials. The con-
struction of the hyper-reduced system does not require user-interaction and
refrains from using training data or modal analysis, which results in a fast
preprocessing stage.

CCS Concepts: • Computing methodologies → Real-time simulation;
Physical simulation;

Additional Key Words and Phrases: Real-time simulation, projective dynam-
ics, model reduction, subspace dynamics, reduced-order model

ACM Reference Format:
Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-
Reduced Projective Dynamics. ACM Trans. Graph. 37, 4, Article 80 (Au-
gust 2018), 13 pages. https://doi.org/10.1145/3197517.3201387

Authors’ address: Christopher Brandt; Elmar Eisemann; Klaus Hildebrandt,
Delft University of Technology, Department of Intelligent Systems, Van Mourik Broek-
manweg 6, Delft, 2628 XE, The Netherlands, {c.brandt,e.eisemann,k.a.hildebrandt}@
tudelft.nl.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3197517.3201387.

1 INTRODUCTION
The simulation of deformable objects is an important factor in vari-
ous entertainment and training applications of computer graphics.
Of particular interest are real-time simulations since these allow the
user to interact with the simulation and thereby greatly enrich the
experience in games, virtual reality, artistic applications and medical
training. The combination of the nonlinear nature of deformable
objects and the geometric complexity of objects in these scenarios
make real-time simulation a challenging problem. In addition to
efficiency, robustness is important for real-time simulation since
interactivity leads to unforeseeable states of the system.

Projective Dynamics, introduced in [Bouaziz et al. 2014; Liu et al.
2013], is a simulation framework that is general, since it allows
for the simulation of different types of deformable objects (solids,
shells and rods) and materials. It is robust, as it capable of adequately
handling large time steps, large deformations and degenerate geome-
tries, and it is fast. On the technical level, a variational implicit time
integration scheme is used and the resulting optimization problem
is solved by an alternating local/global approach. The local steps
in the optimization can be executed in parallel, and for constraint-
based potentials, the system matrix of the linear system to be solved
in the global steps is constant, allowing for the re-use of a sparse
factorization of the matrix. While this makes Projective Dynamics
highly efficient for real-time simulation, it is still limited to objects
that can be represented by coarse geometric models.
Model reduction is concerned with the design of fast approxi-

mation algorithms for simulation, control, and design problems.
Reduced-order models divide the computation into an offline and
an online stage. In the offline stage, a reduced system is constructed
that approximates the original system and is fast to evaluate. In the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 80. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201387
https://doi.org/10.1145/3197517.3201387

80:2 • C. Brandt, E. Eisemann, & K. Hildebrandt

online stage, only the reduced system is evaluated. Reduced-order
models can drastically reduce the computational cost while approx-
imating the original system. This makes model reduction attractive
for real-time applications.
We propose a hyper-reduction of Projective Dynamics that en-

ables the real-time simulation of deformable objects with complex
geometry. The scheme is designed such that the computational cost
for time integration is independent of the complexity of the mesh
representing the object. It proceeds in two stages. First, a subspace
to which the simulation is restricted is constructed. While this step
reduces the degrees of freedom of the simulation, it does not neces-
sarily lower the cost for integrating the system since the complexity
for evaluating the constraint projections, which describe the acting
forces, is not reduced. Therefore, a second level of approximation,
a hyper-reduction, is needed. We introduce a novel approach, the
constraint projections fitting method, for this second stage. The idea
is to construct a second subspace during the preprocessing stage—
not for vertex positions—but for the constraint projections. Then, in
the online stage, only a limited number of constraints are evaluated
and a fitting problem in the second subspace is solved to obtain ap-
proximations of the constraint projections. This scheme is inspired
by the empirical interpolation method from applied mathematics
and continuum mechanics [Barrault et al. 2004; Chaturantabut and
Sorensen 2010] (though our scheme is neither empirical nor interpo-
lating) and is the first application of this type of method for reduced
simulation in graphics.

To implement the hyper-reduced Projective Dynamics framework,
constructions for the two subspaces are needed. We propose two
subspace constructions that refrain from using prior knowledge
about the nature of the simulation (types of user interaction, external
forces, collision constraints, etc.). Only the mesh and the types
of materials to be simulated are known. While this setting does
not allow our method to profit from specialization to a specific
scenario, the resulting benefits are an automatic and accelerated
preprocessing stage, which avoids costly probing of the simulation
or modal analysis.

Our position subspace construction follows constructions of skin-
ning spaces [Jacobson et al. 2011;Wang et al. 2015]. However, instead
of solving a systems for each basis function, we use compactly sup-
ported radial basis functions for the weights. As a result, subspaces
of large scale (up to the original size of the mesh) can be constructed
efficiently and the resulting basis vectors are sparse. We general-
ize the construction to obtain subspaces of constraint projections.
Since the subspace constructions are based on sampling, our sub-
space constructions make the assumption that the deformations
vary smoothly along the object. Note, however, that this is not a
general limitation of the proposed hyper-reduction. For example,
subspaces constructed from snapshots (taken from a full simulation)
could add high-frequency deformations, like sharp bends, to the sub-
spaces. The general assumption for the hyper-reduced simulation is
that the object remains close to a low-dimensional submanifold in
configuration space.
The resulting hyper-reduced system is highly efficient: In our

experiments, we achieve real-time rates of 60 fps for simulations in
4k-dimensional subspaces, which is an order of magnitude higher
than what is reported for recent hyper-reduced schemes like [von

Tycowicz et al. 2013; Wu et al. 2015]. Precomputation time for a
mesh with 19k vertices is 6.8 seconds and one minute for a complex
geometry with 200k vertices. The examples shown in the supple-
mentary video demonstrate that our hyper-reduced system enables
rich dynamics and can plausibly resolve unexpected events, such
as collisions, drastic user interactions and online changes of the
material stiffness and the geometry (e.g. the volume).

2 RELATED WORK
Our method combines the benefits of Position-Based and Projective
Dynamics methods with the efficiency offered by model reduction
techniques. In the following, we provide an brief overview of litera-
ture in these fields and embed our method into prior work.

Position-Based Dynamics. Position-Based Dynamics [Müller et al.
2007; Stam 2009] were introduced as general and efficient methods
to enable the simulation of deformable objects in real-time. They
can be seen as extensions of Shape Matching Methods [Müller et al.
2005; Rivers and James 2007]. Position-Based Dynamics omits the
velocity layer and instead works directly on the positions. Inner
forces are expressed as equality or inequality constraints, which
are being enforced in a Gauss-Seidel-type fashion. This constraint
projection step can be carried out in parallel and heavily sped up via
GPU implementations. Since then the method has been extended in
terms of robustness, convergence and generality [Kim et al. 2012;
Müller 2008; Müller and Chentanez 2011]. Most recently the problem
of controlling stiffness parameters independently of the iteration
count has been addressed [Macklin et al. 2016]. The method has
been extended to fluids [Macklin and Müller 2013] and continuum
based materials [Bender et al. 2014; Müller et al. 2014]. For a recent
survey on Position-Based simulation techniques we refer to [Bender
et al. 2017].

Projective Dynamics. Projective Dynamics [Bouaziz et al. 2014; Liu
et al. 2013] is a method for implicit time integration of physical sys-
tems, which combines a variational integration scheme [Martin et al.
2011] with a specific class of potentials modeling the inner forces,
resulting in a highly flexible and fast technique that is capable of
simulating strings, cloth, elastic deformable objects and recently flu-
ids [Weiler et al. 2016]. Narain et al. [2016] and Overby et al. [2017]
apply the Alternating Direction Method of Multipliers (ADMM)
optimization algorithm to the variational integration scheme and
show that the resulting method closely relates to Projective Dy-
namics. From this point of view, it can be extended to nonlinear
constitutive materials and hard constraints. Liu et al. [2017] show
that Projective Dynamics can be seen as a quasi-Newton method for
implicit variational time integration for certain types of potentials.
This also allows for a generalization of the method to handle a large
class of materials, such as Neo-Hookean or spline-based materials.
While both generalizations give rise to similar reduced methods
for nonlinear materials, our method is a hyper-reduction for the
original Projective Dynamics method, and we make use of specific
properties of the system to gain the efficiency shown in our results.
Wang [2015] presents a GPU implementation of the Projective Dy-
namics method, where Chebychev iterations are combined with
Jacobi or Gauss-Seidel iterations to approximate the system in the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 80. Publication date: August 2018.

Hyper-Reduced Projective Dynamics • 80:3

global step. This enhances convergence and reduces computation
times for the Projective Dynamics time steps. It allows, for example,
the simulation of a complex 20k vertex mesh at 38 fps. However,
being an unreduced method, the computation time for each iteration
still depends on the mesh resolution, such that real-time frame rates
are only possible up to a certain number of vertices. In contrast, our
Hyper-Reduced Projective Dynamics method achieves computation
times that are independent of the mesh resolution. For example, we
are able to simulate a mesh with 200k vertices in 60 fps, including
collision handling and rendering, using a CPU implementation on a
consumer desktop computer.

Model reduction for deformables. An early application of model
reduction to the simulation of deformable objects in graphics is
[Pentland and Williams 1989], in which a linearized simulation is
restricted to a subspace spanned by the low-frequency linear vibra-
tion modes. Since the linear modes do not capture non-linearities
well, techniques for augmenting linear modal bases for nonlinear de-
formable object simulation have been developed: Choi and Ko [2005]
proposed modal warping, Barbič and James [2005] basis augmenta-
tion withmodal derivatives, Huang et al. [2011] and Pan et al. [2015]
rotation strain coordinates, Tycowicz et al. [2013] basis enrichment
via linear space transformations, and Yang et al. [2015; 2013] a
linear inertia mode technique. Since vibration modes are globally
supported, modal bases consist of dense vectors. Brandt and Hilde-
brandt [2017] introduced a scheme for the compression of vibration
modes resulting in sparse basis vectors. An alternative to using
modal analysis are empirical eigenmodes [Barbič and James 2005;
Krysl et al. 2001], which collect snapshots of the systems to be re-
duced and use principal component analysis for the construction
of a reduced basis. Neumann et al. [2013] proposed a sparse PCA
approach to get sparse empirical deformation bases. A third type
of subspaces are skinning spaces. Skinning spaces constructed by
sampling the geometry were used for fast simulation, for example,
by Gilles et al. [2011] and Jacobson et al. [2012].
Hyper-reduced systems combine dimensional reduction with

a scheme for fast reduced force approximation. For St. Venant–
Kirchhoff materials, the elastic potential is a quartic polynomial
in the vertex displacements. Barbič and James [2005] suggest the
precomputation of the coefficients of this polynomial in the reduced
space, which enables exact evaluation of potential, forces, and the
Hessian at a cost depending only on the dimension of the subspace.
For general materials, one needs to resort to approximation. The
optimized cubature, introduced by An et al. [2008], approximates the
subspace forces by a linear combination of projections of a selection
of local force vectors. Theweights and sample locations of local force
vectors are determined by cubature training, in which the approxi-
mation error against a set of snapshots of force vectors is minimized.
Tycowicz et al. [2013] introduced a non-negative hard thresholding
pursuit solver that significantly speeds-up cubature training. Yang
et al. [2015] further reduce the training time by an effective strategy
for training data generation, which generates only the data required
to reach a given error margin. Kim and Delaney [2013] and Harmon
and Zorin [2013] use importance-based sampling to determine cuba-
ture point locations and optimize only the weights. Wu et al. [2015]
propose a domain decomposition approach to improve performance

of cubature training and evaluation. Since for our hyper-reduction
of Projective Dynamics, approximations of constraint projections
as opposed to force vectors are needed, polynomial reduction and
cubature cannot be applied. Conversely, the proposed fitting method
holds potential for other model reduction problems in graphics.

In addition to simulation, model reduction has been used for con-
trolling and editing the motion of deformable objects [Barbič et al.
2012; Hildebrandt et al. 2012; Li et al. 2014; Schulz et al. 2014], inter-
active material design [Xu et al. 2015], sound synthesis [Chadwick
et al. 2009], clothing simulation [Hahn et al. 2014], deformation-
based shape modeling [Hildebrandt et al. 2011; Huang et al. 2006;
Jacobson et al. 2012; Wang et al. 2015], elasticity-based shape in-
terpolation [von Radziewsky et al. 2016; von Tycowicz et al. 2015],
curve processing in shape space [Brandt et al. 2016], and shape
optimization [Chen et al. 2017; Musialski et al. 2015].

Coarse simulation. An alternative to the methods considered in
this work is to simulate a coarse mesh and couple the coarse mesh to
the high-resolution geometry such that deformations of the coarse
mesh can be propagated to deformations of the fine mesh [Capell
et al. 2002; Debunne et al. 2001; Kharevych et al. 2009; Nesme et al.
2009; Rémillard and Kry 2013; Wojtan and Turk 2008]. To put these
approaches in context with our model reduction scheme, one can
observe that the coupling of the coarse and fine mesh results in
a specific subspace for the fine mesh, where the reduced coordi-
nates are the vertex positions of the coarse mesh. The simulations
in the subspaces, however, differ significantly. Instead of computing
a coarse simulation, our hyper-reduced scheme aims at approximat-
ing the dynamics of the high-resolution mesh. In a supplementary
document and video, we present a comparison of our method and a
coarse simulation.

3 BACKGROUND: PROJECTIVE DYNAMICS
For a mesh with time-dependent vertex positions q ∈ Rn×3, the goal
is to find trajectories of the laws of motion

MÜq = fint(q) + fext (1)

with initial conditions q(0) = q0 and Ûq(0) = v0. Here fext are (possi-
bly time-dependent) external forces, such as gravity, and fint(q) =
−

∑
i ∇Wi (q) are internal forces acting on the mesh, such as elastic

forces acting on deformable objects. Equation (1) can be solved via
implicit Euler integration in a variational manner by solving the
following optimization problem

q(t + h) = argmin
q

1
2h2

M 1
2 (q − s)

2
F
+

∑
i
Wi (q) (2)

v(t + h) =
1
h
(q(t + h) − q(t)) (3)

where s = q(t)+hv(t)+h2M−1fext. The functional that is optimized
in Equation (2) can be read as a trade-off between the momentum
potential, which expresses that the object should follow its cur-
rent trajectory (possibly altered by external forces), and the elastic
potential, which maintains the shape of the object.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 80. Publication date: August 2018.

80:4 • C. Brandt, E. Eisemann, & K. Hildebrandt

Projective Dynamics is particularly efficient for potentialsWi that
have the following form:

Wi (q) =
∑
j

λj

2
Sjq − pj(q)

2 (4)

where pj (q) = argmin
p∈Ω

Sjq − p
2 (5)

where the triplets {λj , Sj , pj} are called constraints and
• λj is a scalar weight denoting the stiffness of the constraint
(and contains the area or volume associated to the constraint).

• Sj is a p × n matrix, which usually is a linear discrete differ-
ential operator computing deformation gradients, Laplacians,
or other quantities for a certain element of the mesh.

• pj , the constraint projection, is a, typically nonlinear, function
from Rn×3 to Rp×3 that projects the differential property Sjq
onto a constraint manifold Ω.

With these types of potentials, one can model a variety of materials,
e.g. they can be used as bending and strain energies for thin shells,
elastic energies for tetrahedral meshes, spring energies, and uncon-
ventional energies such as example-based materials [Martin et al.
2011]. The derivation and implementation of specific constraints
can be found in the original Projective Dynamics paper [Bouaziz
et al. 2014]. Most importantly, these constraints admit a robust min-
imization scheme for solving the optimization problem stated in
Equation (2), which is a local/global approach. In the local step, the
constraint projections can be evaluated independently in parallel,
while in the global step, a system is solved that minimizes the ob-
jective for fixed constraints. This system decouples into the spatial
dimensions x , y, and z, such that it can be solved by three linear
solves of dimension n in parallel. The resulting method is listed in
Algorithm 1.

Algorithm 1 Unreduced Projective Dynamics

Input: Current vertex positions q(t) and current velocities v(t)
Let s = q(t) + hv(t) + h2M−1fext
Let q̂ = s
for i = 1 to numIterations do
Local step: Evaluate all constraint projections pi = pi (q̂)
Global step: Solve(

M
h2 +

∑
i λiSTi Si

)
q = M

h2 s +
∑
i λiSTi pi

Let q̂ = q
end for
Output: Updated vertex positions q(t + h) = q̂ and velocities
v(t + h) = (q(t + h) − q(t)) /h

4 VERTEX POSITIONS SUBSPACE CONSTRUCTION
In order to reduce the degrees of freedom in the optimization prob-
lem stated in Equation (2), we opt for a linear subspace U ∈ Rn×4k ,
such that vertex positions q ∈ Rn×3 can be approximated as q ≈ Uq̃,
where q̃ ∈ R4k×3 and 4k ≪ n. Such linear subspaces have been em-
ployed for many problems in computer graphics and specifically for
the reduction of simulation and modeling applications, see Section 2.

Subspace construction. We opt for creating a subspace from skin-
ning weights (see Appendix B), similar to the subspaces used in [Ja-
cobson et al. 2011; Wang et al. 2015]. However, we define the re-
quired weights in a way that produces compactly supported basis
functions, is well suited for scaling the trade-off between accuracy
and performance, requires no user input, and can be computed in a
few seconds at most. On a conceptual level we want to introduce
degrees of freedom from affine transformations acting on equidis-
tantly distributed handles (or areas) on the mesh, with smoothly
varying, localized influence on the nearby vertices.

To this end, we first choose k sample vertices sj which are dis-
tributed approximately equidistant over the mesh, using furthest
point sampling. That is, the first vertex sample is chosen randomly
and then we iteratively add the vertex which has furthest distance
from all previously chosen samples on the mesh as the next sample.
To ensure that the sampling is fair, even in presence of complex
details, it is important that distances are measured as the lengths of
geodesics on (or, in case of volumetric meshes, through) the mesh.
To quickly evaluate geodesic distances to all of the sample points,
we use the Short Term Vector Dijkstra (STVD) method proposed by
Campen et al. [2013], which is a modification of the original Dijkstra
algorithm that replaces the distance update with a method that uses
a stack of predecessor edges to compute good approximations of
the actual geodesic distances.
Preliminary weights for each vertex i and each of the k sam-

ples are then acquired from radial basis functions around the han-
dles. Specifically they are defined as w̃i =

(
Bs1,r (qi), ...,Bsk ,r (qi)

)
,

where r is a radius whose choice we detail below and By,r (x) =
br (d(x, y)) is a scalar function on the mesh vertices. On [0, r], we
choose br as the unique cubic polynomial with br (r) = b ′r (0) =
b ′r (r) = 0 and br (0) = 1 and define br (t) to be 0 for t > r . Other
choices are possible, as long as they are smooth, monotone and
interpolate between 1 and 0 on [0, r]. The final weights wi are then
normalized as wi = w̃i · (1./

∑
j w̃

j
i) in order to ensure reproducibil-

ity of the rest shape. To be able to evaluate the functions Bsj ,r we
need to evaluate the geodesic distances d(sj , qi) for all vertex po-
sitions qi . For this, we also employ the STVD method, where the
search can be terminated early, since vertices with distance greater
than r do not need to enter the queue (at the end unvisited vertices
receive the value Bsj ,r (qi) = 0). This setup enables the computation
of smooth and locally supported weight functions, while not relying
on solving box-constraint quadratic problems [Jacobson et al. 2011]
or linear systems [Wang et al. 2015] on the mesh for every basis
function, which becomes costly for high resolution meshes.
The choice of the parameter r is crucial for two reasons: on the

one hand, the sparsity of the subspace matrix, which depends on
this parameter, influences the performance of the Hyper-Reduced
Projective Dynamics algorithm, since the cost of updating sampled
vertex positions is tied to the sparsity pattern. On the other hand, r
should be chosen large enough to ensure that each vertex is within
the support of at least one weight function. In practice we found
that r = 2 ·maxi minj d(sj , qi), offers a good compromise between
sparsity of the basematrix and coverage of the vertices by a sufficient
number of non-zero weights. Note that the quantities minj d(sj , qi)

ACM Transactions on Graphics, Vol. 37, No. 4, Article 80. Publication date: August 2018.

Hyper-Reduced Projective Dynamics • 80:5

can be evaluated cheaply by performing a last update to the available
distances, adding the last source sk .
After the weights have been computed, we construct the sub-

space basis matrix U such that it contains the degrees of freedom
from the skinning transformations according to these weights. This
construction is detailed in Appendix B. The result is a sparse matrix
of size n × (4 · k) which offers 12 · k degrees of freedom for the
simulated mesh, (k is the number of sample points chosen in the
construction of the weight functions above). Restricting the system
to the degrees of freedom offered by the subspace matrix U, the
global step of the Projective Dynamics method is replaced by

UT
(
M
h2
+

∑
i
λiSTi Si

)
Uq̃ = UT

M
h2

Us̃ + UT
∑
i
λiSTi pi , (6)

where ũ and s̃ are the current subspace coordinates for positions
and the momentum term s.

In Section 7, we investigate how well we can approximate states
q of a full simulation by their projections q̃ into subspaces obtained
from our construction, using different values of k , see Table 2.

5 CONSTRAINT PROJECTIONS FITTING METHOD
In the previous section we constructed a subspace for the vertex
positions in order to reduce the dimensionality of the problem. This
reduces the cost for the linear solve in the global step and leads
to faster convergence to a subspace optimum. However, the cost
of evaluating the constraint projections in the local step remains
unchanged. In particular, it still depends on the resolution of the
mesh instead of the desired detail of the dynamics.

Overview. We propose a novel way of directly approximating the
term UT

∑
i λiSTi pi on the right hand side of the reduced system (6)

for the global step. The approach consists of a precomputation step
and several steps in the online phase.

• Precomputation: We construct a subspace for constraint
projections V and select s constraint samples to evaluate.

• Online Phase:
(1) Evaluate the positions of all vertices that appear in any of

the sampled constraints.
(2) Evaluate the sampled constraint projections.
(3) Solve a fitting problem to find a best approximating vector

p̃ in the space spanned by V.
(4) Evaluate r := UT STVp̃. (S will be defined in (7) below.)

Also note that both the precomputation and the online steps are
separated for each type of constraint. For example, if both bending
and strain constraints for a triangular mesh are present, different
subspacesV are constructed, separate fitting problems are solved and
their contributions to the right hand side are evaluated individually
and then summed.

Subspace for constraint projections. When approximating the term
UT

∑
i λiSTi pi , one would like to skip the costly evaluation of all

pi (q), as well as prevent the large vector matrix multiplication with
UT . To address the first goal, we design a basis V that spans a sub-
space of constraint projections, such that (p0(q), p1(q), ...) ≈ Vp̃.
The space needs to be general enough that it contains good ap-
proximations of any such vectors that are encountered during a

simulation, but concise enough that solving a least-squares fitting
problem using a few constraint projections into this subspace yields
these approximations. V can be constructed by using snapshots of
forces (or, in our case, constraint projections) from full simulations
(see e.g. the Discrete Empirical InterpolationMethod [Chaturantabut
and Sorensen 2010]). Specifically for high-resolution meshes, con-
ducting full simulations in which enough interesting states can be
observed to construct a sufficiently rich space is a complicated and
time-consuming endeavor. Additionally, it requires knowledge about
the type of interaction, collision constraints and external forces that
will be encountered during the reduced simulation, which we do
not want to assume in order to stay as general as possible. Note
that in the reduced dynamics, the contribution of the constraint
projections to the right hand side will always be filtered by UT . This
suggests that one might want to use the columns of U directly to
obtain vectors of constraint projections from these. However, this
can only yield a meaningful subspace if the columns of U directly
correspond to meaningful shapes or deformations, which is not
the case for our construction, and is an assumption we want to
avoid. Thus, we propose a construction that is similar to that of the
positions subspace described in Section 4.
Again, we choose k ′ approximately equidistant sample vertices

on the mesh and construct weight functions wj with a limited
support around each of the samples. For efficiency reasons, we use
the first k ′ vertices of the k vertex samples from the construction
of U (in all our examples we have k ′ < k). Thus, the corresponding
weight functions can be also be reused, given that the radius was
chosen large enough such that this subset of weight functions still
covers all vertices with sufficiently many non-zero weights. The
weight functions are then interpolated at the relevant elements for
the current constraint type (i.e. at the triangles for surface strain
constraints, tetrahedrons for volume preservation constraints, etc.)
and then normalized to sum to one at each element.
We then evaluate all constraint projections pi = pi (q0) of the

rest shape q0 of the mesh. Note that usually we have pi (q0) =
Siq0 for the rest-shape (such that no inner forces act on it). Note
that for all types of constraints that have been introduced so far,
these projections are geometric quantities such as mean curvature
vectors (for bending energies), transformation matrices (for strain
or volume preservation energies) or simply edges of the mesh (for
spring energies). We can now think of these quantities as being
attached to the corresponding elements of the mesh. By replacing
the role of the vertex positions qi with the constraint projections pi ,
we can construct a subspace V from the degrees of freedom offered
by theweighted affine transformations of the quantities pi according
to transformations chosen at each of the k ′ handles and weights
defined at the elements. The implicit assumption in this construction
is that the transformations of the rest-shape’s constraint projections
vary smoothly across the mesh when considering deformations of
the shape (note that we do not assume that the constraint projections
themselves vary smoothly, which is not the case). The explicit
construction of this space is explained in Appendix C. As a linear
subspace, we are unable to guarantee that all constraint projections
of the approximated vectors will be on the constraint manifold, but

ACM Transactions on Graphics, Vol. 37, No. 4, Article 80. Publication date: August 2018.

80:6 • C. Brandt, E. Eisemann, & K. Hildebrandt

Fig. 2. Compilation of frames from three of the simulations shown in the supplementary video. The squid simulation (440k vertices, 1.6 million tetrahedrons)
runs at 37 fps (including rendering and ground collision handling), the rest of the examples run at least at 60 fps.

by solving a fitting problem into this space (see next paragraph) we
invoke this property in a least squares sense.

To avoid redundancy in the fitting problem and take into account
the geometry of the mesh, we perform a weighted PCA on the space
constructed above and only use the most significant half of the
principal component vectors as the final basis V. As weights we
use the length, area or volume associated to the elements of this
constraint type.

Constraint projections fitting. Since V is not built from snapshots
of constraint projections vectors, but as a general purpose space,
it is unsuited to compute a direct interpolation from a very small
number of carefully selected elements as suggested by the DEIM
method [Chaturantabut and Sorensen 2010]. Instead, we solve a
least-squares fitting problem from considerably more entries in the
vector of constraint projections than there are basis vectors in V.
Therefore we choose s ≫ k ′ approximately equidistant constraints
via the furthest point sampling method, starting with k ′ constraints
next to the k ′ vertex samples used in the construction of V. In
our examples we choose between 800 to 1000 constraint samples,
contributing 9 entries in the constraint projections vector each,
whereas the dimension of the constructed constraint projections
subspace is between 300 and 420, see Table 1.
Let J ∈ Rp ·s×p ·e be the matrix that maps a vector containing all

constraint projections to a vector containing only the s sampled
constraints’ projections (e is the total number of constraints, and p
denotes the number of rows of each constraint projection pi), and
let

ST =
(
λiST1 λiST2 · · ·

)
(7)

be the summation matrix, which maps vectors p ∈ Rpe×3 of stacked
constraint projections pi to the term

∑
i λiSTi pi .

During precomputation a list of all vertices that appear in the
evaluation of the constraint projections of the s sampled constraints
is assembled. In the local phase, the first step is to evaluate these
vertices via qi = Ui q̃ for the current subspace coordinates q̃ of the
system. This can be done in parallel and the vector-vector product
above is sparse (due to our specific subspace construction). Then, for

each sampled constraint i , we evaluate the corresponding constraint
projection pi (q) for the current deformation q. We stack these in
vectors ppartial∈ Rps×3. Thereafter, the least-squares fitting problem
is solved by minimizing the residualJVp̃ − ppartial

2
F (8)

which amounts to solving the three uncoupled linear systems

VT JT JVp̃ = VT JTppartial (9)

for each coordinate in parallel. Finally, p̃ is directly mapped to the
approximation of the term UT

∑
i λiSTi pi (q) via r = UT STVp̃, The

matrix UT STV can be precomputed and is small (compared to the
original dimension of the system).

6 HYPER-REDUCED PROJECTIVE DYNAMICS
After the subspaces U and V for vertex positions and constraint
projections have been constructed, the sampled constraints have
been selected and the fitting problem has been set up, we are able
to use the hyper-reduced variant of Projective Dynamics listed in
Algorithm 2. There we use the notation ·̃ for quantities projected
into the subspace, such as f̃ext being the external forces projected
into the space spanned by U.
The important differences to the original Projective Dynamics

method are the modifications to the local and global steps: instead
of evaluating all constraint projections, we evaluate a small subset
and solve a least-squares fitting problem. Also, instead of solving
a global system in the size of the number of vertices, we solve the
reduced system to obtain subspace coordinates.

For brevity, Algorihtm 2 does not include the possibility of adding
additional, fully evaluated constraint projections to the system. This
is entirely possible and was used in our experiments, for example
when ‘hanging’ objects using a few position constraints. These are
all evaluated in the local step and added to the right hand side of
the global step individually, as in the unreduced method.

If the mesh needs to be displayed at the end of the time step, the
updated subspace coordinates need to be mapped to full coordinates.
For complex geometries (>15k vertices), we perform this step on the
GPU. Additionally, partial position updates are performed using the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 80. Publication date: August 2018.

Hyper-Reduced Projective Dynamics • 80:7

Table 1. Data for the experiments shown in the figures and the supplementary video. See Section 7 for further details.

Name Glove Armadillo Armadillo Elephant Dragon Squid
(Fig. 2) (Fig. 5 & 6) (large subspace) (Fig. 1) (Fig. 2) (Fig. 2)

Constraints type Bending & Tri. strain Tet. strain Tet. strain Tri. & Tet. strain Tet. strain Tet. strain
vertices n 24370 19064 19064 52812 196577 439061
iterations per frame 10 10 10 10 10 10
Position Subspace Dimension 540 1440 3960 1200 1200 2160
Constraint Projections Subspace Dimension 300 360 360 360 420 360
constraints 73106 71289 71289 277363 733649 1664908
s = # evaluated constraint projections 2 · 1000 970 970 2 · 800 1000 1000
(# of evaluated vertices) 5771 3688 3688 3789 2741 3931
Precomputation (in seconds) 8.23 6.20 16.23 21.19 63.10 189.54
Local step (in microseconds) 546 337 660 612 643 483
Global step (in microseconds) 48 40 256 148 35 74
Partial update v. pos. (in microseconds) 435 412 678 468 394 524
fps (fps incl. display) 94 (89) 120 (112) 63 (60) 81 (62) 89 (60) 116 (37)
Precomputation unreduced (in seconds) 0.56 0.29 0.29 1.368 11.83 12.57
fps unreduced 2.39 3.7 3.7 0.68 0.20 0.08

GPU, i.e. mapping the subspace coordinates to the positions of only
those vertices that appear in sampled constraint projections. Other
than that we implemented this method using only CPU operations.
More details on our implementation can be found in Appendix A.
There, we also specify how we perform the collision handling and
user interaction mentioned in Algorithm 2.

Relation to reduced finite element methods. For the presented
hyper-reduction of Projective Dynamics, we focused on a specific
class of potentials, for which the method is particularly efficient.
This limits the type of material response our method can achieve.
For example, we can simulate elastic solids with material parame-
ters controlled by Lamé parameters, such as the materials presented
in [Chao et al. 2010], but we cannot handle general nonlinear ma-
terials. Reduced finite element schemes like [An et al. 2008; von

Algorithm 2 Hyper-Reduced Projective Dynamics

Input: Current subspace coordinates q̃(t) and subspace velocities
ṽ(t)
Let s̃ = q̃(t) + hṽ(t) + h2UTM−1Uf̃ext
Modify s̃ according to user interaction and collision constraints.
Let ˆ̃q = s̃
for i = 1 to numIterations do
Local step:
Evaluate required vertex positions q̂partial = Upartial ˆ̃q
Evaluate sampled constraint projections ppartial
Solve the fitting problem
VT JT JVp̃ = VT JT ppartial

Build the right hand side term r := UT STVp̃
Global step: Solve
UT

(
M
h2 +

∑
i λiSTi Si

)
Uq̃ = UT M

h2Us̃ + r

Let ˆ̃q = q̃
end for
Output: Updated subspace coordinates q̃(t+h) = ˆ̃q and velocities
ṽ(t + h) = (q̃(t + h) − q̃(t)) /h

Tycowicz et al. 2013; Wu et al. 2015] can deal with various types of
materials. Nevertheless, the benefits that we gain from our hyper-
reduction scheme for Projective Dynamics are:

• The matrix for the global step is sparse and constant, hence
a sparse factorization can be computed once and re-used
throughout the whole simulation.

• The iterations for time-stepping do not involve a line search.
• For both linear solves appearing in our algorithm (constraint
projections fitting and global step), the x ,y, and z-coordinates
are decoupled; hence systems of smaller size are solved in
parallel.

As a result, we observe that our approach can achieve real-time rates
of 60 fps in subspaces that are roughly one order of magnitude larger
thanwhat is reported for recent reduced finite element schemes [von
Tycowicz et al. 2013; Wu et al. 2015]. The larger subspaces allow us
to gracefully handle features like user interaction, ground collisions,
and drastic changes of material stiffness and volume to the real-
time simulation. Another feature of the proposed scheme is the fast
precomputation stage, see Table 1. In addition, the method profits
from the robustness and generality of Projective Dynamics.

7 RESULTS
We implemented our Hyper-Reduced Projective Dynamics method
for the simulation of triangle and tetrahedral meshes, supporting
spring, strain (triangle and tetrahedron), bending, and position con-
straints, as well as collision handling and user interaction. Details
on the implementation can be found in Appendix A.

Many examples, comparisons and evaluations of real time simu-
lations using our hyper-reduced Projective Dynamics method can
be found in the supplementary video. There we demonstrate that
our method is capable of simulating highly detailed meshes with
more than 400k vertices in real-time, while handling collisions and
user interactions.
For a general impression of the quality of the hyper-reduced

simulations, we show a comparison of simulating the armadillo
dropping on the floor using the full method and our hyper-reduced

ACM Transactions on Graphics, Vol. 37, No. 4, Article 80. Publication date: August 2018.

80:8 • C. Brandt, E. Eisemann, & K. Hildebrandt

Fig. 3. Progress plots displaying the evolution of the objective (2) during minimization using the local/global solver for the full and the reduced problem. Large
time steps are taken and the resulting frames are shown on the left. For the first time step, the objective value versus iterations and time are shown. For the
second timestep, objective value versus time are shown.

method (the reduction parameters are listed in Table 1). Three frames
of each simulation are shown in Figure 5, the full sequences are
shown in the supplementary video.We choose a very small time step
to highlight differences in both simulations: in the full simulation
(left), individual fingers and ears show richer dynamics, but we
found that these differences are hard to spot once we choose a
more realistic time step (shown in the video). While the full method
offers higher detail in the finer dynamics, it results in 3.7 fps and is
unsuited for real-time applications.
In the supplementary video we additionally show the dropping

armadillo sequence when we restrict the simulation to the sub-
space, but do not approximate the forces. The resulting dynamics
are coarser than in the full simulation, but finer than in the hyper-
reduced simulation. This shows that our subspace offers enough
degrees of freedom to enable rich dynamics. However, not employ-
ing a force approximation scheme results in the same FPS as the
full simulation: while the computation time of the global step is
significantly reduced (in this example from 3100 microseconds to
70 microseconds), the cost of the evaluation of the right hand side
term dominates the iteration times for both approaches. Moreover,
evaluating the term in the subspace-only-reduction requires eval-
uating the current positions q = Uq̃ in every iteration as well as
multiplying the vector

∑
i λiSTi pi by UT . This means that the cost

for the local step is larger in the subspace-only-reduction, than in
the full simulation. This shows the importance of employing a force
approximation along with a dimension reduction.
Table 1 contains data for the experiments shown in Figures 1, 2

and 6 (these experiments are all shown as sequences in the supple-
mentary video as well). A full explanation for each line of the table is
given in the next paragraph. Thereafter, we discuss precomputation
and online timings and the tradeoff between computation timings
and approximation errors when comparing simulations using our
reduced method to full Projective Dynamics simulations.

Table details. In Table 1we show, for the experiments illustrated in
the figures and the supplementary video, the type(s) of constraints
used, the number of vertices of the mesh, the position subspace
dimension (i.e. the degrees of freedom for the vertex positions),
the original number of constraints, the number s of constraints
that we evaluate for the constraint projections fitting method and
the number of vertices whose position needs to be available when

computing these constraint projections. We then list the resulting
precomputation times in seconds, both for our method as well as for
the unreduced method (factorization of the l.h.s. matrix), followed
by the computation times (in microseconds) of the local and global
step of one iteration of the hyper-reduced method, as well as the
time it takes to evaluate the vertex positions of the vertices required
to evaluate the sampled constraints. The resulting fps for our hyper-
reduced method (using ten iterations per frame) are shown with
and without taking into account that all vertex positions have to
be evaluated once per frame if the mesh is rendered each frame.
Finally, we show the fps of the unreduced method. In the following
two paragraphs, we discuss the precomputation and online timings
in more detail.

Precomputation times. The setup of the Hyper-Reduced Projective
Dynamics method encompasses

• the construction of the positions subspace, which includes
– sampling k approximately equidistant vertex samples
– constructing the k weight functions centered at those ver-
tices

• the preparation of the constraint projections fitting method,
which includes
– constructing the subspace of unassembled constraint pro-
jections from k ′ approximately equidistant vertex samples

– a PCA of that space
– choosing s sampled constraints
– the evaluation of all constraint projections of the rest shape
– the construction and factorization of the left hand side
matrix of the constraint projections fitting problem

• the construction and factorization of the left hand side matrix
for the global step.

Table 2. Normalized L2 errors when projecting the frames of the full simula-
tion shown in Figure 5, left, to subspaces of three different sizes constructed
with our method.

Subspace dimension Mean Error Max. Error

360 0.0269 0.0513
1440 0.0106 0.0228
3960 0.0057 0.0112

ACM Transactions on Graphics, Vol. 37, No. 4, Article 80. Publication date: August 2018.

Hyper-Reduced Projective Dynamics • 80:9

Fig. 4. The dragon mesh is dropped, slides along a sphere and lands on the floor in a heavily deformed state from which it slowly recovers. For each frame of
the simulation we plot the relative error of our approximation of the right hand side term from 1000 sampled constraint projections to the fully evaluated term
from all 766k constraint projections.

The precomputation timings listed in Table 1 include all of the above
steps. The timing depends on the number of verticesn of the original
mesh, and the reduction parameters k , k ′ and s . As the vertex count
increases, performing the weighted PCA in the construction of the
constraint projections subspace becomes the most time consuming
task. The precomputation times measured for the meshes in our
experiments (ranging from 19k to 440k vertices) admit most types
of applications and would rarely pose severe limitations. Note that
all precomputed quantities are suited for arbitrary user interaction,
collision constraints and external forces and the precomputation (for
a specific mesh) only has to be performed again, when the material
type changes, or stiffness weights change in a non-uniform way
(i.e. by more than a constant factor).

Simulation times. The online phase of our Hyper-Reduced Pro-
jective Dynamics method is made up of three steps:

• The first step (not present in the unreduced method), in which
we evaluate the positions of the vertices that are required
to evaluate the sampled constraint projections in the next
iteration, since only subspace coordinates are available at that
point.

• The local step, which encompasses evaluating the sampled
constraint projections, solving a fitting problem and mapping
it to the approximation of the right hand side term required
for the global step.

• The global step, in which we solve the reduced linear system.
When the mesh is being displayed after each time integration step,
the full vertex positions need to be evaluated once per frame via
q = Uq̃, which we perform on the GPU for meshes with more
than 15k vertices, and on the CPU, in parallel, otherwise. This step
becomes the most time-consuming part of the simulation when the
mesh resolution is high: for the Squid mesh (Figure 2, left) with
440k vertices, we can compute 116 time steps of the simulation per
second (when using ten iterations per time step), but additionally
evaluating the full positions q to render the current state results
in 37 fps. For all other examples, including the Dragon mesh with
almost 200k vertices, we achieve 60 fps or more, including rendering,
collision detection and user interaction. Our hyper-reduced method
is able to handle large subspaces while still maintaining high frame
rates: for the armadillo mesh we can use a subspace that offers 3960
degrees of freedom and still achieve 60 fps including rendering and
collision detection, see Table 1.

Convergence. In order to compare the convergence of both the full
and our Hyper-Reduced Projective Dynamics methods, we simulate
a volumetric elastic bar whose rest shape is an undeformed block, but
is initially set to a heavily bended position, as seen in Figure 3, left.
The internal forces lead to an unfolding of the bar and we choose a
large time step such that the optimization problem (2) is sufficiently
hard. Throughout the minimization we record the energy levels
over time of both methods, see Figure 3, right. Both methods show
similar behavior, in that they heavily reduce the energy in the first
few iterations and then slowly converge to a lower optimum (for
the second frame, the energy before the first iteration is out of range
of the plot). While our method usually requires more iterations to
converge to a lower energy level, it takes less time to do so since
the iterations are about 30 times faster. With higher resolutions of
the mesh, this speed up factor becomes larger, e.g. for the Squid
mesh we get a factor of 1440, using the reduction parameters listed
in Table 1.
In all examples, we use 10 local/global iterations per time inte-

gration step. We find that for our hyper-reduced method the differ-
ences between a simulation running with 10 iterations and a fully
converged solution are very small since the coupling of material
stiffness and iteration count can only be observed at very low it-
eration counts. In the supplementary video, we provide a visual
comparison between a simulation running with 10 iterations and
the same simulation running with 1000 iterations.

Approximation errors. When comparing the results of our hyper-
reduced method to those of the full Projective Dynamics method,
there are two main sources of approximation errors:

(1) Errors due to the reduced degrees of freedom offered by our
subspace for vertex positions.

(2) Errors when approximating the constraint projections via our
fitting method.

To measure the first type of approximation errors mentioned above,
that is, to evaluate the degrees of freedom offered by our subspace,
we want to quantify how well deformations of a mesh that is sim-
ulated in full detail can be approximated by our vertex position
subspace. Therefore, we project each frame of the full simulation of
a dropping armadillo (Figure 5, left) into subspaces constructed via
the method described in Section 4. In Table 2 we list the mean and
maximal L2 differences between the full and the projected shapes
of all frames of the simulation for three different subspace sizes (the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 80. Publication date: August 2018.

80:10 • C. Brandt, E. Eisemann, & K. Hildebrandt

original shape was normalized to have L2 norm 1). The mean error
does not include the first few frames of the simulation where the
armadillo is still in its rest shape, which results in an approximation
error of zero. Note, that even when running the simulation using
our hyper-reduced method with the largest of the three subspaces,
we still achieve 60 fps including rendering and collision detection
(see Table 1).

The second type of approximation errors (approximated con-
straint projections) is measured as the relative errors between the
right hand side term

∑
i λiSipi (q) to its approximation SVp̃, acquired

from our constraint projections fitting method (see Section 5). We
plot these errors for the dropping dragon simulation in Figure 4,
where we evaluate only 1000 of the 733649 constraints to approxi-
mate the right hand side term.

Generality. One of the reasons that we chose to reduce the Projec-
tive Dynamics method is its generality. It is able to handle thin shells,
volumetric deformables, spring-based materials, example-based ma-
terials, and more. In the supplementary video we show examples
for various volumetric deformables (the armadillo, the dragon and
the squid), a thin shell mesh (the glove) and a combination of sur-
face strain and volumetric strain (the elephant). Frames of these
simulations are shown in Figures 1 and 2. We show that we can
handle different types of constraints simultaneously and change the
target volume of the tetrahedrons, while limiting the strain on the
outer triangles of the mesh during simulation, as seen in Figure 1.
This demonstrates the range of flexibility that our hyper-reduced
method is able to carry over from the Projective Dynamics method.

Moreover, we obtain additional flexibility via our subspace reduc-
tion: the system matrix for the global step is small (in comparison
to the size of the full system) but still sparse (because of our specific
subspace construction). This enables us to change constraint weights
or add and remove constraints in the online phase of the simula-
tion without dropping below 60 frames per second. This is shown

Fig. 5. Visual comparison of simulation results from full Projective Dynamics
(left column) and our method using 1440 degrees of freedom (right column)
both starting with the same initialization.

Fig. 6. We are able to interactively change stiffness parameters in a running
simulation. From left to right we scale the predefined weights by 1, 0.1, 0
and again 1. This also demonstrates that our method is able to recover from
a fully flattened state.

in various examples in the supplementary video and in Figure 6,
where we change the stiffness parameter in running simulations.
For the unreduced method on the armadillo mesh, refactorizing the
system matrix takes 108 milliseconds, which prohibits changes to
the constraints amid simulation.

Robustness. Our hyper-reduced method inherits the robustness
properties of Projective Dynamics, which is, as an implicit vari-
ational integration scheme, unconditionally stable, and has been
demonstrated to gracefully handle highly deformed states. In Fig-
ure 6 we show that our hyper-reduced method is able to restore
a tetrahedral mesh from a completely flattened state. Throughout
the experiments shown in the supplementary video we subject the
meshes to large external forces, rapid user interaction and collision
constraints, and the simulations show stable behavior throughout.

8 CONCLUSION
We presented a method for real-time simulation of deformables that
combines the benefits of Projective Dynamics and hyper-reduction
techniques in one framework. The resulting scheme is robust, gen-
eral and efficient. It enables real-time simulation of high-resolution
meshes in specifically designed subspaces with up to 4k degrees
of freedom while keeping precomputation times low. We provide
examples that include deformable solids and shells, user interaction,
collision constraints, external forces, varying material stiffness, and
recovery from degenerate configurations.

Limitations and challenges. While we handle collisions with rigid
objects, one limitation of our current implementation is that self-
collisions and collisions between multiple deforming meshes of
the deformable object are not handled. It would be interesting to
integrate techniques like collision certificates [Barbič and James
2010], bounded-normal trees [Schvartzman et al. 2009] and pose-
space cubature [Teng et al. 2014] to the proposed approach.
The subspaces used for positions and constraint projections are

not directly suited for simulating cloth, since the assumption of
deformations that vary continuously across the mesh is no longer
valid: When bending resistance is very low or not simulated at all,
sharp creases and noisy features start appearing, which can not
be faithfully reconstructed using the presented subspaces. Here,
performing full simulations and creating subspaces for positions

ACM Transactions on Graphics, Vol. 37, No. 4, Article 80. Publication date: August 2018.

Hyper-Reduced Projective Dynamics • 80:11

and constraint projections from snapshots might prove beneficial.
Initial tests showed that such subspaces are very specific to the task
that was performed in the full simulation (i.e., how the cloth was
grabbed and deformed and what collision constraints and external
forces were present) and do not enjoy the generality of our method.

The Projective Dynamics method has been generalized to handle
fluids byWeiler et al. [2016], but the loss of any connectivity renders
our reduction method unable to handle particles. It is an interesting
question whether the reduction can be adjusted such that it can be
applied to Projective Fluids.

Lastly, the recent generalizations of Projective Dynamics to non-
linear constitutive materials in [Liu et al. 2017] and [Narain et al.
2016; Overby et al. 2017] offer a direction to extend our hyper-
reduced method in a similar fashion.

ACKNOWLEDGMENTS
We would like to thank Christoph von Tycowicz for constructive
discussions and his feedback, Leonardo Scandolo for helping with
the real-time rendering, and the anonymous reviewers for helpful
comments and suggestions.

REFERENCES
Steven S. An, Theodore Kim, and Doug L. James. 2008. Optimizing cubature for efficient

integration of subspace deformations. ACM Trans. Graph. 27, 5 (2008), 1–10.
Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-

Kirchhoff Deformable Models. ACM Trans. Graph. 24, 3 (2005), 982–990.
Jernej Barbič and Doug L. James. 2010. Subspace Self-collision Culling. ACM Trans.

Graph. 29, 4 (2010), 81:1–81:9.
Jernej Barbič, Funshing Sin, and Eitan Grinspun. 2012. Interactive Editing of Deformable

Simulations. ACM Trans. Graph. 31, 4 (2012), 70:1–70:8.
Maxime Barrault, Yvon Maday, Ngoc Cuong Nguyen, and Anthony T. Patera. 2004. An

’empirical interpolation’ method: application to efficient reduced-basis discretization
of partial differential equations. Comptes Rendus Mathematique 339, 9 (2004), 667–
672.

Jan Bender, Dan Koschier, Patrick Charrier, and Daniel Weber. 2014. Position-based
simulation of continuous materials. Computers & Graphics 44 (2014), 1 – 10.

Jan Bender, Matthias Müller, and Miles Macklin. 2017. Position-Based Simulation
Methods in Computer Graphics. In EUROGRAPHICS 2017 Tutorials.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. 33, 4 (2014), 154:1–154:11.

Christopher Brandt and Klaus Hildebrandt. 2017. Compressed Vibration Modes of
Deformable Bodies. Computer Aided Geometric Design 52–53 (2017), 297–312.

Christopher Brandt, Christoph von Tycowicz, and Klaus Hildebrandt. 2016. Geometric
Flows of Curves in Shape Space for Processing Motion of Deformable Objects.
Computer Graphics Forum 35, 2 (2016).

Marcel Campen, Martin Heistermann, and Leif Kobbelt. 2013. Practical Anisotropic
Geodesy. Computer Graphics Forum 32, 5 (2013), 63–71.

Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002.
A Multiresolution Framework for Dynamic Deformations. In Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 41–47.

Jeffrey N. Chadwick, Steven S. An, and Doug L. James. 2009. Harmonic shells: a practical
nonlinear sound model for near-rigid thin shells. ACM Trans. Graph. 28, 5 (2009),
119:1–119:10.

Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A simple geometric
model for elastic deformations. ACM Trans. Graph. 29 (2010), 38:1–38:6.

Saifon Chaturantabut and Danny C Sorensen. 2010. Nonlinear model reduction via
discrete empirical interpolation. SIAM Journal on Scientific Computing 32, 5 (2010),
2737–2764.

Xiang Chen, Changxi Zheng, and Kun Zhou. 2017. Example-Based Subspace Stress
Analysis for Interactive Shape Design. IEEE Trans. Vis. and Comp. Graph. 23, 10
(2017), 2314–2327.

Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal Warping: Real-Time Simulation of
Large Rotational Deformation and Manipulation. IEEE Trans. Vis. Comput. Graphics
11, 1 (2005), 91–101.

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard API for
Shared-Memory Programming. IEEE Comput. Sci. Eng. 5, 1 (1998), 46–55.

Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. 2001. Dynamic
Real-time Deformations Using Space &Amp; Time Adaptive Sampling. In Proc. ACM
SIGGRAPH. 31–36.

Benjamin Gilles, Guillaume Bousquet, Francois Faure, and Dinesh K. Pai. 2011. Frame-
based Elastic Models. ACM Trans. Graph. 30, 2 (2011), 15:1–15:12.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org. (2010).
Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W. Sumner, Forrester

Cole, Mark Meyer, Tony DeRose, and Markus H. Gross. 2014. Subspace clothing
simulation using adaptive bases. ACM Trans. Graph. 33, 4 (2014), 105:1–105:9.

David Harmon and Denis Zorin. 2013. Subspace integration with local deformations.
ACM Trans. Graph. 32, 4 (2013), 107:1–107:10.

Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier.
2011. Interactive surface modeling using modal analysis. ACM Trans. Graph. 30, 5
(2011), 119:1–119:11.

Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier.
2012. Interactive spacetime control of deformable objects. ACM Trans. Graph. 31, 4
(2012), 71:1–71:8.

Jin Huang, Xiaohan Shi, Xinguo Liu, Kun Zhou, Li-Yi Wei, Shang-Hua Teng, Hujun
Bao, Baining Guo, and Heung-Yeung Shum. 2006. Subspace gradient domain mesh
deformation. ACM Trans. Graph. 25, 3 (2006).

Jin Huang, Yiying Tong, Kun Zhou, Hujun Bao, and Mathieu Desbrun. 2011. Interactive
Shape Interpolation through Controllable Dynamic Deformation. IEEE Trans. Vis.
Comput. Graph. 17, 7 (2011), 983–992.

Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. 2012. Fast
Automatic Skinning Transformations. ACM Trans. Graph. 31, 4 (2012), 77:1–77:10.

Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. 2011. Bounded biharmonic
weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78:1–78:8.

Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Nu-
merical Coarsening of Inhomogeneous Elastic Materials. ACM Trans. Graph. 28, 3
(2009), 51:1–51:8.

Theodore Kim and John Delaney. 2013. Subspace Fluid Re-simulation. ACM Trans.
Graph. 32, 4 (2013), 62:1–62:9.

Tae-Yong Kim, Nuttapong Chentanez, and Matthias Müller-Fischer. 2012. Long Range
Attachments - a Method to Simulate Inextensible Clothing in Computer Games. In
Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 305–310.

Petr Krysl, Sanjay Lall, and Jerrold E. Marsden. 2001. Dimensional Model Reduction in
Non-linear Finite Element Dynamics of Solids and Structures. Int. J. Numer. Meth.
Eng. 51 (2001), 479–504.

Siwang Li, Jin Huang, Fernando de Goes, Xiaogang Jin, Hujun Bao, and Mathieu
Desbrun. 2014. Space-time Editing of Elastic Motion Through Material Optimization
and Reduction. ACM Trans. Graph. 33, 4 (2014), 108:1–108:10.

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast
Simulation of Mass-spring Systems. ACM Trans. Graph. 32, 6 (2013), 214:1–214:7.

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for
Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 3 (2017),
23:1–23:16.

Miles Macklin and Matthias Müller. 2013. Position Based Fluids. ACM Trans. Graph. 32,
4 (2013), 104:1–104:12.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: Position-based
Simulation of Compliant Constrained Dynamics. In Proc. ACM Motion in Games.
49–54.

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011.
Example-based Elastic Materials. ACM Trans. Graph. 30, 4 (2011), 72:1–72:8.

Matthias Müller. 2008. Hierarchical Position Based Dynamics. In Proc. Workshop on
Virtual Reality Interaction and Physical Simulation (VRIPHYS).

Matthias Müller and Nuttapong Chentanez. 2011. Solid Simulation with Oriented
Particles. ACM Trans. Graph. 30, 4 (2011), 92:1–92:10.

Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2014. Strain
Based Dynamics. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 149–157.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
Based Dynamics. J. Vis. Comun. Image Represent. 18, 2 (2007), 109–118.

Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005.
Meshless Deformations Based on Shape Matching. In Proc. ACM SIGGRAPH. 471–
478.

Przemyslaw Musialski, Thomas Auzinger, Michael Birsak, Michael Wimmer, and Leif
Kobbelt. 2015. Reduced-order Shape Optimization Using Offset Surfaces. ACM
Trans. Graph. 34, 4 (2015), 102:1–102:9.

Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM ⊇ Projective
Dynamics: Fast Simulation of General Constitutive Models. In Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 21–28.

Matthieu Nesme, Paul G. Kry, Lenka Jeřábková, and François Faure. 2009. Preserving
Topology and Elasticity for Embedded Deformable Models. ACM Trans. Graph. 28,
3 (2009), 52:1–52:9.

Thomas Neumann, Kiran Varanasi, Stephan Wenger, Markus Wacker, Marcus Magnor,
and Christian Theobalt. 2013. Sparse Localized Deformation Components. ACM

ACM Transactions on Graphics, Vol. 37, No. 4, Article 80. Publication date: August 2018.

80:12 • C. Brandt, E. Eisemann, & K. Hildebrandt

Trans. Graph. 32, 6 (2013), 179:1–179:10.
John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable Parallel

Programming with CUDA. Queue 6, 2 (2008), 40–53.
Matthew Overby, George E. Brown, Jie Li, and Rahul Narain. 2017. ADMM ⊇ Projective

Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints. IEEE
Trans. Vis. and Comp. Graph. 23, 10 (2017), 2222–2234.

Zherong Pan, Hujun Bao, and Jin Huang. 2015. Subspace Dynamic Simulation Using
Rotation-strain Coordinates. ACM Trans. Graph. 34, 6 (2015), 242:1–242:12.

Alex Pentland and John Williams. 1989. Good vibrations: modal dynamics for graphics
and animation. In Proc. of ACM SIGGRAPH. 215–222.

Olivier Rémillard and Paul G. Kry. 2013. Embedded Thin Shells for Wrinkle Simulation.
ACM Trans. Graph. 32, 4 (2013), 50:1–50:8.

Alec R. Rivers and Doug L. James. 2007. FastLSM: Fast Lattice Shape Matching for
Robust Real-time Deformation. ACM Trans. Graph. 26, 3 (2007).

Christian Schulz, Christoph von Tycowicz, Hans-Peter Seidel, and Klaus Hildebrandt.
2014. Animating Deformable Objects using Sparse Spacetime Constraints. ACM
Trans. Graph. 33, 4 (2014), 109:1–109:10.

Sara C. Schvartzman, Jorge Gascón, and Miguel A. Otaduy. 2009. Bounded Nor-
mal Trees for Reduced Deformations of Triangulated Surfaces. In Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 75–82.

Jos Stam. 2009. Nucleus: Towards a unified dynamics solver for computer graphics.
In Proc. IEEE International Conference on Computer-Aided Design and Computer
Graphics. 1–11.

Yun Teng, Miguel A. Otaduy, and Theodore Kim. 2014. Simulating Articulated Subspace
Self-contact. ACM Trans. Graph. 33, 4 (2014), 106:1–106:9.

Philipp von Radziewsky, Elmar Eisemann, Hans-Peter Seidel, and Klaus Hildebrandt.
2016. Optimized subspaces for deformation-based modeling and shape interpolation.
Computers & Graphics 58 (2016), 128 – 138.

Christoph von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt.
2013. An Efficient Construction of Reduced Deformable Objects. ACM Trans. Graph.
32, 6 (2013), 213:1–213:10.

Christoph von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt.
2015. Real-time Nonlinear Shape Interpolation. ACM Trans. Graph. 34, 3 (2015),
34:1–34:10.

Huamin Wang. 2015. A Chebyshev Semi-iterative Approach for Accelerating Projective
and Position-based Dynamics. ACM Trans. Graph. 34, 6 (2015), 246:1–246:9.

Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear Subspace
Design for Real-time Shape Deformation. ACMTrans. Graph. 34, 4 (2015), 57:1–57:11.

Marcel Weiler, Dan Koschier, and Jan Bender. 2016. Projective Fluids. In Proc. ACM
Motion in Games. 79–84.

Chris Wojtan and Greg Turk. 2008. Fast Viscoelastic Behavior with Thin Features. ACM
Trans. Graph. 27, 3 (2008), 47:1–47:8.

Xiaofeng Wu, Rajaditya Mukherjee, and Huamin Wang. 2015. A Unified Approach
for Subspace Simulation of Deformable Bodies in Multiple Domains. ACM Trans.
Graph. 34, 6 (2015), 241:1–241:9.

Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbic. 2015. Interactive Material Design
Using Model Reduction. ACM Trans. Graph. 34, 2 (2015), 18:1–18:14.

Yin Yang, Dingzeyu Li, Weiwei Xu, Yuan Tian, and Changxi Zheng. 2015. Expediting
Precomputation for Reduced Deformable Simulation. ACM Trans. Graph. 34, 6 (2015),
243:1–243:13.

Y. Yang, W. Xu, X. Guo, K. Zhou, and B. Guo. 2013. Boundary-Aware Multidomain
Subspace Deformation. IEEE Trans. Vis. and Comp. Graph. 19, 10 (2013), 1633–1645.

A IMPLEMENTATION DETAILS
We implemented our Hyper-Reduced Projective Dynamics method
using C++, specifically the Eigen library [Guennebaud et al. 2010] to
handle all linear algebra operations, OpenMP [Dagum and Menon
1998] to handle the parallel execution of constraint projections and
CUDA [Nickolls et al. 2008] when mapping reduced coordinates
directly to vertex positions in OpenGL buffers (this is only done for
meshes with more than 100k vertices). Constraint projections were
implemented as detailed in [Bouaziz et al. 2014], with the exception
of the bending projection, where we additionally ensure that the
dot product between the outer normal of a fixed adjacent triangle
and the mean curvature vector keeps the same sign throughout
the simulation (this prevents the mesh from permanently inverting
along edges where heavy buckling occurs).

User interaction. Instead of using position constraints to handle
user interactions, we simply modify the vector s (which can be in-
terpreted as the desired positions in the next time step, disregarding
inner forces), by moving vertices close to the mouse parallel to the
camera’s viewing plane when click and drag actions are performed.
We ignore vertices whose positions are not being evaluated (i.e. are
not part of the sampled constraints), such that this operation re-
mains independent of the full resolution as well. We then obtain
the subspace vector s̃ by interpolating the positions of all vertices
on sampled constraints into the subspace. This method of handling
user interaction also prevents us from having to introduce inac-
tive position constraints which unnaturally change the system’s
behavior.

Collision handling. In presence of collision constraints, one tries
to minimize the energy stated in equation (2) subject to inequality
constraints on the vertex positions, which come from anticipated
collisions of the mesh with static objects. To circumvent both the de-
tection of collisions for every vertex of themesh in every local/global
iteration, as well as adding temporary inequality constraints to the
global step solve, we employ the following approximation of this
optimization: In every frame of the simulation, once the reduced
coordinates of the desired vertex positions s̃ have been evaluated,
we check, for one vertex at each sampled constraint, if there are
violated collisions for this vertex and if so, compute the projection of
this vertex to a collision free position. Note that the actual positions
of these vertices needed to be evaluated anyway, since they are
located at sampled constraints. In our reference implementation we
used a simple projection method to obtain collision free positions
for the vertices and to introduce repulsion and friction, we scale the
tangential velocities and normal velocities to the collision plane of
vertices that were not collision free by constant factors. This keeps
the complexity all computation steps independent of the mesh res-
olution and offers an efficient and visually convincing way to let
the mesh interact with static objects. Examples for meshes being
dropped on a floor or colliding with static spheres can be found in
the supplementary video. Collisions with thin features and sharp
edges cannot be captured well by our approach, since the subset
of vertices for which we check and resolve collisions is too coarse
to support them. More involved collision resolving strategies and
models for friction and repulsion can of course be applied, and, if
desired, they can exploit the benefit of handling these for only a
subset of the vertices and interpolating the effect via a projection to
the subspace.

B BLEND-SKINNING SUBSPACE CONSTRUCTION
Here we detail the construction of a subspace that mimics the
degrees of freedom available in linear blend-skinning techniques.
Given k handles with associated weightsw j

i per vertex and handle,
a skinning transformation of a rest shape q0 ∈ Rn×3 is obtained via

©«
q̂xi
q̂
y
i
q̂zi

ª®¬ =
∑
j
w
j
iAj

©«
qxi
q
y
i
qzi
1

ª®®®¬ , (10)

ACM Transactions on Graphics, Vol. 37, No. 4, Article 80. Publication date: August 2018.

Hyper-Reduced Projective Dynamics • 80:13

where theAj are the k chosen affine transformations (3×4matrices)
for each handle and (qxi ,q

y
i ,q

z
i) is the i-th row of q. From this, one

can deduce the subspace matrix

Uj =
©«
w
j
0 qx0 ·w

j
0 q

y
0 ·w

j
0 qz0 ·w

j
0

w
j
1 qx1 ·w

j
1 q

y
1 ·w

j
1 qz1 ·w

j
1

· · ·

ª®®¬ (11)

U = (U1 | · · · | Uk) (12)

and interpret the entries of the affine transformations as subspace
coordinates

q̃ = ©«
AT0
· · ·

ATk−1

ª®¬ (13)

Then, the transformations (10) can be concisely written as q̂ = Uq̃.
In effect this means that for each handle, or set of weights, we
get 4 subspace vectors and 12 degrees of freedom, as the subspace
naturally decouples x , y and z coordinates, which goes along well
with the decoupled system of the global step of Projective Dynamics.

C SUBSPACE FOR CONSTRAINT PROJECTIONS
The construction above can be extended to subspaces for vectors of
unassembled constraint projections. Here we assume the weightsw j

i
are defined at the elements associated to the constraints for which
this construction is used (e.g. at the tetrahedrons for volume preser-
vation constraints). In addition, we have the evaluated constraint
projections pi (q0) ∈ Rp×3 of the rest shape at each element, which
now replace the role of the vertex positions. That is, the subspace
coordinates are given by the entries of k ′ transformations matrices
Aj ∈ R

3×4, from which we get new constraint projections via the
transformations

p̂i =
∑
j
w
j
iAj

(
pi
1

)
, (14)

where
(
pi
1

)
is simply the (p + 1) × 3 matrix formed by attaching a

row of ones to pi . Let

pi =
©«
px,0i p

y,0
i pz,0i

· · ·

p
x,p−1
i p

y,p−1
i p

z,p−1
i

ª®®¬ (15)

Then the subspace matrix V is defined as follows:

Vj =

©«

w
j
0 px,00 ·w

j
0 p

y,0
0 ·w

j
0 pz,00 ·w

j
0

· · ·

w
j
0 p

x,p−1
0 ·w

j
0 p

y,p−1
0 ·w

j
0 p

z,p−1
0 ·w

j
0

w
j
1 px,01 ·w

j
1 p

y,0
1 ·w

j
1 pz,01 ·w

j
1

· · ·

ª®®®®®®¬
(16)

V =
(
V1 | · · · | V′

k

)
(17)

That is, V ∈ Rep×4k
′

, where e is the number of elements associ-
ated to the constraint projections, p is the size of the constraints
and k ′ was the chosen number of handles. Then, we can write the

transformations (14) as

©«
p̂0
· · ·

p̂e

ª®¬ = V ©«
AT0
· · ·

ATk ′−1

ª®¬ (18)

ACM Transactions on Graphics, Vol. 37, No. 4, Article 80. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Background: Projective Dynamics
	4 Vertex Positions Subspace Construction
	5 Constraint Projections Fitting Method
	6 Hyper-Reduced Projective Dynamics
	7 Results
	8 Conclusion
	Acknowledgments
	References
	A Implementation Details
	B Blend-Skinning Subspace Construction
	C Subspace for Constraint Projections

