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Editing Compact Voxel Representations on the GPU
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Figure 1: The Citadel scene at a voxel resolution of 128K3 in which we place several large spheres in real-time using our editing framework.
The radius of the spheres varies between 1140 and 1820 voxels. Each voxel stores a 4-bit material ID which is textured accordingly.

Abstract
A Sparse Voxel Directed Acyclic Graph (SVDAG) is an efficient representation to display and store a highly-detailed voxel
representation in a very compact data structure. Yet, editing such a high-resolution scene in real-time is challenging. Existing
solutions are hybrid, involving the CPU, and are restricted to small local modifications. In this work, we address this bottleneck
and propose a solution to perform edits fully on the graphics card, enabled by dynamic GPU hash tables. Our framework
makes large editing operations possible, such as 3D painting, at real-time frame rates.

CCS Concepts
• Computing methodologies → Volumetric models; Ray tracing; Graphics processors; Concurrent algorithms;

1. Introduction

Three-dimensional data can be represented in various forms, but in
this work we focus exclusively on voxels. Voxels are (cubic) cells
of a regular 3-dimensional grid; the 3D equivalent of pixels. Since
voxels represent volume, and not surfaces, they are a good fit for
representing volumetric data.

Voxels have many uses besides object representations. They
find applications in physics simulations [LHN∗05, Hoe16], ren-
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dering [CNS∗11], 3D painting [DGPR02, LHN∗05, KKK18], and
3D printing [Kuž21]. In these latter cases, voxel data is not static
and requires updates. Supporting these operations for very high-
resolution voxel scenes requires a compact, yet easy-to-modify and
fast-to-render structure.

A voxel representation that has received a lot of attention in re-
cent years is Sparse Voxel Directed Acyclic Graphs (SVDAGs).
This representation involves a sparse compressed voxel encoding,
where repeating information is only stored once. Thus, the typi-
cally high memory consumption of voxel representations could be
significantly reduced. One major downside of this representation is
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that being compressed means that editing is not as straightforward,
precluding the use of this representation in many voxel contexts.

In this paper, we present a method for storing, editing, and ren-
dering high resolution voxel models using SVDAGs. Our work is
closely related to (and builds on top of) the HashDAG [CBE20].
Yet, while HashDAG implements editing on the CPU and achieves
only interactive, not real-time frame rates, we present a fully GPU-
based method to make full use of the highly parallel hardware. Our
contributions include a novel GPU hash-table structure to encode
the DAG, an efficient implementation for graphics hardware, and
an extensive evaluation of various implementation variants.

2. Related Work

A regular grid is the simplest method of storing voxel data and
indexing is a constant time operation. However, memory usage
quickly becomes a problem due to the cubic memory consump-
tion. Further, in most use cases, voxel models are sparse, contain-
ing large regions of either empty or homogeneous space. Examples
include voxelization of 3D models, as used in video games, or 3D
painting in VR. Here, memory usage can be significantly reduced
by introducing one, or multiple, levels of indirection.

2.1. Spatial Hashing

Spatial hashing [GG98, ASA∗09] attempts to reduce memory us-
age by inserting only non-empty voxels into a hash table using 3D
positions as keys. This changes the memory usage to scale linearly
with the number of non-empty voxels. Accessing voxels becomes
slightly more computationally-expensive but remains at constant
expected time. However, in GPU processing, worst-case computa-
tion time is typically more relevant than expected time as all threads
(in a wave) have to wait for the slowest thread. A slow look-up is
caused by hash collisions. When a bucket in the table is already oc-
cupied, a new key needs to be inserted into another location. When
performing a look-up with a key, the searching thread may, thus,
need to visit multiple locations in the hash table. Perfect Spatial
Hashing [LH06] aims to alleviate this issue. A perfect hash func-
tion guarantees that two voxels never map to the same hash-table
bucket. Computing such a hash function is very costly, making this
extension ill-suited for real-time editing.

2.2. Sparse Voxel Octrees

Another popular representation for voxel data is the Sparse Voxel
Octree (SVO). The voxel space is recursively divided into 2x2x2
non-overlapping regions of equal size. Empty regions are omitted
from the data structure and not subdivided any further. This ensures
that sparse regions of the scene occupy little space. SVOs not only
improve memory usage but can also act as an acceleration structure
for ray tracing.

Since empty regions are likely to occur, it is expected that most
nodes will have empty children. It has thus become standard prac-
tice to store these nodes using a variable-rate encoding scheme
[LK10, KSA13]. In the most simple case, each node stores a bit-
mask indicating which child regions are occupied, followed by
the pointers to these children. More advanced pointer compression

schemes exist [DKB∗16,VMG16] but are not suitable for real-time
editing.

Sparse Voxel Octrees can be constructed in various ways. The
parallel approach of [Kar12] utilizes the fact that the octree struc-
ture follows a Morton space filling curve. Tree construction is a
trivial O(N) process given a set of sorted voxels. Sorting can be ef-
ficiently parallelized using radix sort. Similar techniques are used
in Bounding Volume Hierarchy construction [PL10,Kar12]. Modi-
fying an existing octree, while conceptually simple, becomes chal-
lenging in practice due to memory management and thread safety.

2.3. Sparse Voxel Directed Acyclic Graphs

Aligned repeating voxel patterns cause duplicate subtrees in an
SVO. By merging the subtrees, we turn an SVO into a Sparse Voxel
Directed Acyclic Graph [KSA13] (SVDAG). Depending on the ge-
ometric complexity of the scene, this can lead to large memory
savings. Additional re-use can be achieved by considering sym-
metry relations [VMG16] (i.e., mirrored geometry) or by allowing
approximate matches with a controllable level of error [vdLSE20].

Editing of SVDAGs is difficult compared to modifying octrees.
Adding a new subtree requires eliminating redundancy in its inte-
rior and the existing DAG structure. Similar to the construction al-
gorithm in [KSA13], this operation can be implemented efficiently
using a bottom-up approach, which only requires node-node com-
parisons, rather than tree-tree comparisons. A more detailed expla-
nation is provided in Section 3.

Careil et al. [CBE20] use this algorithm to modify high-
resolution SVDAGs at interactive frame rates. Nodes and leaves
of the SVDAG are stored in a hash table to accelerate the search for
duplicates. This hash table, which doubles as a memory allocator, is
replicated across both the CPU and GPU. Editing is performed on
the CPU using multi-threading, after which changes to the hash ta-
ble are uploaded to the GPU for rendering. These memory transfers
do not scale with core count and limit performance.

2.4. SVDAG Materials

One of the most challenging parts in encoding and editing SVDAGs
is maintaining a compact representation of voxel attributes, such as
material descriptions. These values typically require much more
data per voxel than binary occupancy. Various compression algo-
rithms have been proposed [DKB∗16, DSKA17, ME23] to reduce
their memory usage. These algorithms assume that attributes are
stored in a single continuous 1D array by collecting all voxels along
a space-filling curve (e.g., Morton-order [Mor66]).

Updating any of these representations requires inserting values
into a sorted array, which is an expensive operation. The HashDAG
[CBE20] reduces this cost by splitting the single colour array into
smaller sub-arrays. During editing, new (or modified) colours are
not compressed, but rather directly embedded into the initially com-
pressed representation. For very large scenes, we found that this
approach remains a big performance bottleneck due to many tiny
allocations (small sub-arrays) or the large amount of memory band-
width required to maintain contiguous sorted arrays (large sub-
arrays).

submitted to COMPUTER GRAPHICS Forum (10/2024).



M. Molenaar & E. Eisemann / Editing Compact Voxel Representations on the GPU 3 of 12

(a) (b) (c) (d)

Figure 2: 1D example of converting a binary SVO (a) to an SVDAG (d). Duplicate leaves are eliminated and replaced by a single instance
(b), followed by inner nodes at the level above (c). This process is repeated until the root node is reached (d).

Our approach assumes that each scene contains a limited set
of unique attributes, such as a material type. These attributes are
stored in the leaves of the SVDAG, rather than a separate array,
and are compressed alongside the geometry.

2.5. Hash Tables

To perform SVDAG editing on the graphics card, we require an
efficient GPU hash table. Early works on GPU hash tables often
focused on static construction [ASA∗09,AVS∗12,GLHL11]. While
useful for many computer-graphics applications [LH06], they are
unsuitable for our use case.

Various dynamic GPU hash tables have been developed recently,
which differ in their collision handling (two keys mapping to the
same bucket). In open addressing schemes, collisions are handled
by moving a key/value (KV) pair to a different bucket. Searching
then requires iterating over multiple buckets until the item is found
or we can guarantee that the key is not in the hash table.

Stadium Hashing [KBGB15] and WarpDrive [JHS18] use prob-
ing schemes. Starting from the initial bucket, pointed to by the hash
function, they iterate over buckets in a deterministic pattern until an
empty slot is found.

Cuckoo hashing [PR04], as applied in [ZWY∗15, LZL∗21], as-
signs each key/value pair to two buckets, using two different hash
functions. When encountering a collision, the new item is swapped
with any potential item currently residing in that bucket. If an item
was swapped out, it is subsequently inserted into the hash table us-
ing the second hash function, following the same process. Since
items may only reside in either of the two buckets, look-ups have
a constant worst-case time complexity. Insertions can be computa-
tionally expensive due to the potential for unbounded recursion.

In closed addressing hashing schemes, such as SlabHash
[AFCO18], collisions are handled by creating a linked list of
key/value pairs in each bucket. Compared to open-addressing this
can make a table grow indefinitely, although the look-up per-
formance tends towards a linear search as the number of items
grows to infinity. The same concept also applies to the HashDAG
[CBE20], where the virtual memory pages create a list.

Developing hash tables for the GPU introduces additional chal-
lenges, as a lot of performance can be gained by designing memory
layouts that better match the GPU hardware capabilities. A com-
mon approach in most existing work [ZWY∗15, JHS18, AFCO18,
LZL∗21] is to assign insertion or search operations to warps (cur-
rently a group of 32 threads) instead of individual threads. Each
bucket of the table stores multiple slots, typically a multiple of 32.
The threads inside a warp cooperate to check consecutive slots to

either find a search key or an empty slot in the case of insertion.
This results in fast coalesced memory accesses, which maximises
memory bandwidth and, thus, performance.

3. Background

3.1. Duplicate Elimination

Turning a Sparse Voxel Octree (SVO) into a Sparse Voxel Di-
rected Acylcic Graph (SVDAG) requires us to find and eliminate
redundant leaf- and interior nodes. A naive solution would con-
sider comparing all subtrees of equal depth, but this is computa-
tionally expensive. However, the bottom-up approach, popularized
by [KSA13], only requires constant-size comparisons (Figure 2).

Assume an SVO with binary leaves at level l = 0. We can triv-
ially find and eliminate all duplicate leaves (Figure 2a), produc-
ing the SVDAG leaves. Given these SVDAG leaves, we update the
child pointers of inner nodes situated at the parent level l = 1 (Fig-
ure 2b). Now, when processing level l = 1, we know that the sub-
trees represented by two children are equivalent if and only if they
have the same pointer. Thus, comparing inner nodes only requires
us to look at the child pointers, rather than the attached subtrees.
With this knowledge, we eliminate the duplicates and update the
child pointers at the parent level l +1. We can now repeat this pro-
cess for l +1 until we reach the root node.

3.2. HashDAG

Careil et al. [CBE20] propose a HashDAG for displaying and edit-
ing SVDAGs. At the core of this framework lies a hash table, which
stores all SVDAG nodes and leaves. This hash table (created at
start-up) is sized to be large enough to contain any nodes/leaves
that are created during editing. Allocating all of this memory is
likely to exceed the GPU capacity, which is addressed using virtual
memory.

The hash table is replicated in CPU and GPU memory (for edit-
ing and rendering, respectively). Editing is performed by traversing
the SVDAG, and deciding at each node whether to modify it, or
keep it as-is. A recursive algorithm descends into the to-be mod-
ified children until the leaf level is reached. At this point, the up-
dated leaf nodes are constructed and added to the SVDAG hash
table. This returns a pointer to the new leaf, which is used to con-
struct an updated node at the parent level. It is effectively a recur-
sive implementation of the the bottom-up algorithm (Section 3.1).
Multi-threading is achieved by spawning tasks for the first levels of
recursion. To prevent race conditions, each bucket of the hash table
is protected by a mutex.
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Figure 3: Illustration of SlabHash [AFCO18] with four buckets.
For illustrative purposes each slab contains 10 slots, consisting of
a key (green) and a value (blue). Gray indicates an empty slot. The
last slot (red) is used to store a pointer to the next slab.

3.3. Slab Hash

Building on the same concepts as the HashDAG [CBE20], our work
requires a GPU hash table which remains efficient under a highly
parallel workload. The SlabHash [AFCO18] will be the basis of our
hash-table implementation.

SlabHash consists of an array of N buckets. Keys are transformed
into an arbitrary integer H by a hash function and inserted into
bucket B = H mod N. By deterministically assigning items to a
bucket, one reduces the search space from the entire data set to just
a single bucket. Each bucket consists of a linked list of slabs, allow-
ing it to grow arbitrarily (Figure 3). Each slab has 31 slots storing
key/value pairs, and a final slot, which is used to store a pointer to
the next slab. This memory layout ensures that the slabs are aligned
to a GPU cache line (128 bytes).

Searching the hash table is performed by one warp (32 threads)
per item. After computing the hash, the warp collaboratively iter-
ates over the linked list of slabs in the selected bucket. For each
slab, thread i loads keys[i] from memory, and compares it to the
item being searched for. If a match is detected, all threads in the
warp collectively return the value at that slot. Empty slots are indi-
cated by key = 0, making the insertion process similar to searching
for 0 and atomically swapping it with the desired key.

4. Our Method

In this chapter, we provide an overview of our method. We start
with a general overview of the Sparse Voxel Directed Acyclic
Graph (SVDAG), followed by our unique GPU hash table design.
Finally, we describe how editing is implemented in practice using
various different compute kernels.

4.1. SVDAG Representation

Our Sparse Voxel Directed Acyclic Graph is inspired by the
HashDAG [CBE20]. Rendering is performed using ray tracing for
both primary visibility and shadows.

Leaves in our SVDAG encode regions of 43 voxels, using a 64-
bit mask followed by 4-bit material indices for each of the occupied
voxels. The leaves are padded to align to 32 bits, which is the fun-
damental WORD size of our SVDAG. Inner nodes of the DAG are
stored in a similar fashion, starting with a bitmask indicating which
of the 23 child regions are occupied, followed by 32-bit child point-
ers - one for each child that is present. We additionally reserve some
bits to store whether a region is homogeneous (fully filled with a
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Figure 4: Memory layout of SVDAG nodes and leaves. A leaf starts
with a 64 bit mask (single green block for brevity) followed by up to
64 material IDs (blue). A node starts with a 32-bit header (green)
followed by up to 8 child pointers (blue).

single material), and if so, with what material. This information is
used to accelerate some of the editing tools, which benefit from
knowing if a region is fully filled.

Material Representation

There are various real-world scenarios in which a user might want
to store not only occupancy but also a material (or some other nu-
meric value) in each voxel. Previous work stores attributes outside
the SVDAG in a separate array. While this may improve com-
pression ratios, it significantly complicates and slows down edit-
ing. We instead store numeric values inside SVDAG leaves. This
automatically compresses the attributes along with the geometry.
The method’s downside is that the SVDAG compression is nega-
tively affected, since subtrees are merged only if shape and material
match.

In this work, we store a material ID for each occupied voxel us-
ing 4 bits, which allows for 16 unique materials. The number of
bits can easily be adjusted if more precision is required. Further-
more, one may use these values to encode an index into a position-
dependent palette to allow for more variety.

4.2. SVDAG Encoding

We rely on a hash table to encode the SVDAG nodes and leaves,
which allows us to search for duplicates quickly. However, it intro-
duces some additional requirements to the GPU hash-table design:

Pointers must be stable. Inserting new items should not change
the pointers of items that already reside in the hash table. If a
pointer were to change, all SVDAG nodes pointing to that item
would have to be updated. This would modify their respective hash
keys, moving them to a different location in the hash table and, thus,
invalidating their pointers as well. Due to this recursion, moving a
single leaf would require a complete scan over the entire SVDAG.

Large items Since our nodes and leaves are stored in a com-
pressed format, their size may vary. For simplicity, we create sep-
arate hash tables for each possible size. This size typically ex-
ceeds the largest basic data type (8 bytes), eliminating the pos-
sibility of atomically swapping items as in some related works
[GLHL11, AVS∗12, ZWY∗15, JHS18, AFCO18, LZL∗21].

Optimized for SVDAG traversal SVDAG traversal is per-
formed many times during both editing and rendering. We optimize
this operation - even if it comes at a (slight) cost; a lower insertion
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Atomic 64 Acceleration Hash (32-bit)

Acceleration Hash (8-bit)
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Q12 ... next GC
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bitmask next GC A1 A2

H2 ...H3 H4 I1 I2
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next hash(A12) hash(B12) hash(C12) hash(D12) ...
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h(A12)...h(D12) h(E12)...h(H12) ... next GC A1
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Figure 5: The proposed slab memory layouts displayed as 128-byte cache lines, storing items consisting of four WORDs (16 bytes) each. Xi
indicates the i’th WORD of item X. Repeating patterns are indicated by "...". Each method contains a pointer to the next slab (blue), and a
garbage collection bitmask (red). The bottom methods are tightly packed and may not always start at the beginning of a cache line.

or search performance. In practical terms, this means that we try to
avoid splitting items into different memory locations.

Based on these requirements, we conclude that open address-
ing schemes are unsuitable for our use case. Probing insertion re-
quires low load factors (thus high memory usage) and replacement
strategies, such as Robin Hood and Cuckoo hashing, do not provide
pointer stability. Furthermore, open addressing requires rehashing
when the table becomes full. A closed addressing scheme, such as
the SlabHash [AFCO18] is more suitable, even though it may per-
form slightly worse than open addressing [LZL∗21].

SlabHash [AFCO18] stores a linked list of slabs. A slab is an ar-
ray of 31 4-byte items plus a 4-byte pointer to the next slab. Empty
slots are indicated by a sentinel value of zero, which is atomically
swapped with the desired key when inserting. Combining multiple
items in a single slab reduces stress on the memory allocator and
allows for efficient processing on the GPU.

Extending SlabHash to support larger keys is challenging as
GPU hardware does not provide atomic operations for values larger
than 8 bytes. The size of our SVDAG nodes and leaves range from
2 to 10 WORDs, making atomic swapping of entire items impos-
sible. However, if we do not support simultaneous insertions and
look-ups, the first 8 bytes are enough to indicate an empty slot.
Since a node will always have at least one child, the children bit-
mask is non-zero. Similarly, the bitmask of a leaf must contain at
least one filled voxel. Therefore, in both cases, the first 8 bytes are
never zero. Consequently, it is safe to use an 8-byte value of zero
to indicate empty slots.

Hash-Table Variants

Here, we will discuss different variations for the hash table, which
we tested for our application case; Atomic64, Ticket Board and two
Acceleration Hash variants.

Atomic 64 is a straightforward extension of SlabHash storing
the first 8 bytes (64 bits) of all items in a contiguous array at the
start of the slab (Figure 5). These slots are followed by the remain-
der of the items (in case the items are larger than 8 bytes). They are
stored in an Array-Of-Structures (AoS) layout, such that accessing
an item typically requires loading two cache lines. Like SlabHash,
the 32nd slot is reserved for the next pointer and a garbage collec-
tion bitmask. This way we can ensure that slabs are always aligned
to a cache line (128 bytes on our hardware) for optimal memory
throughput.

In line with previous work, insertion and search operations are
performed at a warp level using 32 threads at a time (Algorithms
1 and 2). Each thread reads the first 8 bytes of its corresponding
slot and compares it to the desired value. Subsequent insertion or
comparison of the remainder of the item is also performed by the
entire warp.

This memory layout is compact, but it does split nodes and leaves
into multiple cache lines (first 8 bytes and the rest). This causes the
most common operation, traversing the SVDAG, to be more expen-
sive. While we found this to have little impact on primary visibil-
ity rays, where traversal is coherent, it does reduces path-tracing
performance. Placing the camera inside a voxelization of the wa-
tertight Stanford bunny, we found that rendering performance de-
creased by 9% at 1 indirect bounce and over 16% at 6 indirect
bounces.

Ticket Board, inspired by Stadium hashing [KBGB15], stores
items contiguously in memory, making traversal more efficient. A
bitmask at the start of the slab indicates whether each of the 32 slots
is occupied. A design downside is that the search becomes less effi-
cient; the entire slab needs to be loaded from memory, independent
of whether it contains the item being searched for. Thus, there is no
reason to strive for cache-line alignment, and we forgo padding.

Acceleration Hash is a novel variant, aiming to address the
search performance of ticket board. Instead of a single bit, we store
an array with a second hash of the item at each corresponding slot.
The hash-value range starts at 1 such that a value of 0 indicates an
empty slot. The 32 threads in a warp load their corresponding hash
values, which are contiguous in memory, and compare them to the
hash of the item being searched for. This allows warps to efficiently
skip slabs with no matching items.

We consider two acceleration-hash versions. The first optimizes
memory throughput by storing 32-bit (1 WORD) hash values. We
again only use 31 slots in order to store the next pointer, while
padding the slabs to the size of a cache line. The second version
stores the hash in only 8-bits, reducing memory overhead from 4
bytes to just a single byte per slot. For compactness, we do not
perform any memory padding and use 32 slots per slab (Figure 5).

Memory Allocation

When all slabs in a bucket are filled, we need to efficiently link a
new slab. We use the SlabHash’s SlabAlloc [AFCO18], to allocate
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these (fixed-size) slabs. Here, we give a brief overview. Details are
in the supplemental material (or the original work [AFCO18]).

The allocator maintains memory blocks, which contiguously
store 1024 slabs, along with a bitmask to indicate the allocated
slabs. Allocating from a memory block is performed by a warp of
32 threads. The bitmask is loaded in a single memory transaction;
with each thread searching 32-bits of the mask for zero bits.

To efficiently allocate memory blocks, we do so in groups of 16,
called super blocks. The amount of super-block allocations is de-
termined by comparing the currently available memory to a con-
servative estimate during the edit operation. We then allocate su-
per blocks if needed to ensure that memory is available for the ed-
its. When adding nodes/leaves to the SVDAG, we track the actual
amount of used slab entries through an atomic counter. Hereby, we
can know the still available empty slabs for future edits.

To find an empty slab, when needed, a warp selects a super block
based on its warp index. To distribute warps evenly, each warp se-
lects one memory block at random within the chosen super block.
If this selected memory block is full, the warp iterates the process
with the next super block until it finds an empty location.

4.3. Editing

In this section, we discuss the implementation of editing operations.
Our implementation provides a small number of editing tools such
as 3D painting (placing new voxels), recolouring (changing the at-
tributes), and a tool that copies a small region of the scene to a new
location. We chose these operations, as they can be considered rep-
resentative of a variety of operations - additional tools could easily
be added.

4.3.1. SVO Construction

The first step of editing consists of constructing a Sparse Voxel
Octree (SVO) of the scene as it is after the editing operation, which
actually is a graph and not a tree, since unmodified regions of the
scene still refer to the SVDAG (Figure 6a). We reserve a couple of
bits of the node header to indicate for each child pointer, whether it
points into the SVO or the main SVDAG (reserved bits in Figure 4).

The SVO is constructed following a top-down breadth-first
traversal of the SVDAG. At each level, we collect the following in-
formation about the current nodes: their location, size, and whether
they are homogeneous (fully filled with just a single material). This
information is sent to the editing tool, which decides whether to
either subdivide a region, fill it, or keep it as-is.

Simple editing tools like the 3D paint brush do not interact with
the existing scene; they simply overwrite it. The copy tool however
must traverse source and target regions. To do so efficiently, each
editing tool can maintain a state during traversal, which was not
supported by the original HashDAG framework. In the case of the
copy tool, it can perform a dual traversal of the source- and target
copy regions.

The traversal process is implemented using two GPU kernels:
one for inner nodes and one for the leaves. Inner nodes are pro-
cessed by groups of 8 threads, each determining whether one of

the 8 child regions needs to be visited. These are appended to a
work-queue using a combination of warp intrinsics and an atomic
counter. After each level the counter is copied to the CPU in or-
der to determine how many items the next level may at most pro-
duce. Since leaves represent regions of 43 = 64 voxels, we spawn
64 thread workgroups. Hence, each thread processes a single voxel.
The leaves are then constructed in shared memory before being
copied to global memory.

4.3.2. Merging into the existing SVDAG

After the intermediate SVO is constructed, it needs to be merged
into the existing SVDAG. This process is performed level by level,
starting from the bottom, which allows for efficient detecting of
duplicate subtrees (Section 3.1).

We split the process of duplicate elimination into two parts:
duplicates within the SVO, and duplicates between the SVO and
the existing SVDAG (Figures 6b and 6c, respectively). In a sin-
gle threaded application, one could simply iterate over the SVO
nodes/leaves, trying to find them in the SVDAG, and inserting them
if they are not present yet. Running the same algorithm in a multi-
threaded environment requires that search and subsequent insertion
are a single atomic operation. This requires locking, which is ex-
pensive, especially with many duplicate items (which map to the
same hash table buckets).

We work around this problem by eliminating duplicates before
we search and insert them into the SVDAG. We have experimented
with duplicate detection through sorting, but the performance cost
dominated the editing time. Instead, we construct a second hash
table into which all nodes/leaves at the current level are inserted,
along with a pointer to their location in the SVO. Note that, in this
case, we intentionally allow for occasional duplicate inserting. A
subsequent search of all items identifies, for each group of dupli-
cates, a single "leader". This is achieved by ensuring that the search
operation always returns the first matching instance in a bucket.

After performing the previous operations, we are left with two
SVDAGs (Figure 6b). To merge them, we check whether each
node/leaf in the new SVDAG was already present in the original
SVDAG. If this was not the case, then they are inserted into the
original SVDAG.

Finally, child pointers of the parent SVO nodes are updated
to represent these changes. During this step, we also check
whether regions now represented by the updated parents are fully-
empty or fully-filled regions. The former information may be used
to accelerate the editing tools and is stored inside the node’s
header(Figure 4). The entire process is repeated for the parent lev-
els until we reach the root node.

5. Implementation

In this section, we will discuss some of the implementation details
regarding the hash tables and the SVDAG.

5.1. Hash Tables

The implementation of our SVDAG consists of multiple hash ta-
bles, each storing items of one specific size. Nodes and leaves share
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Figure 6: Constructing an SVDAG while editing. Starting with the original SVDAG (a, left), we construct an SVO according to the editing
tool (a, right). This tree points into the SVDAG for regions with no change (blue line). The SVO is converted into a SVDAG (b) using the
bottom-up algorithm (Figure 2). The two are merged into a single DAG with multiple root nodes (d).

the same hash table, which means that a single piece of memory
may store both a node and a leaf at the same time when their bit
pattern matches.

In line with existing research, all of the proposed hash tables per-
form insertions and searches using one warp per item. After com-
puting to which bucket the item belongs, a warp iterates through
the linked list of slabs, with each thread i checking the i’th slot. De-
pending on the hash table method (Section 4.2), this means either
comparing the first 8 bytes, or a secondary hash. If one or more
threads find a potential match, the remaining bytes of the item are
checked to confirm. The pseudo-code for both operations can be
found in the Appendix. For a line-by-line explanation of the algo-
rithm, we refer the interested reader to the supplemental material.

5.2. Finding Duplicates in the SVO

As discussed in Section 4.3.2, we separate the process of eliminat-
ing duplicates within the intermediate SVO from eliminating dupli-
cates in the SVDAG. All nodes and leaves in the SVO are padded,
such that they are the same size in memory, and stored in a sin-
gle contiguous array per level. To eliminate duplicates within these
arrays, we initially experimented with sorting, but we found that
using a specialized hash table provides better performance.

The requirements for this duplicate-detection hash table are more
relaxed compared to the SVDAG hash tables (Section 4.2). While
this does open the door for open addressing schemes, we stick with
the slab approach for simplicity. We use a very similar memory
layout to the 64-bit atomic scheme (Figure 5) with some notable
change. Since the hash table needs to store both keys and values
(SVO pointers), we store an additional 32-bit value for each slot at
the end of the slab rather than just the keys.

With many duplicates, we run the risk of creating very long slab
lists for some buckets. To reduce this issue, we check, when an item
is inserted, whether it is already present in the first slab. If the first

Figure 7: Vegetation in the San Miguel scene.

slab already contains the key, then the insertion is canceled. If not,
we insert it anyways. This is not optimal but delivers a better trade-
off between insertion and search performance in practice. We use
the value (of the key/value pair) of a slot as a spinlock, to prevent
threads from reading partially written items.

5.3. Garbage Collection

Since nodes and leaves may have multiple parents, releasing them
from memory requires either reference counting or garbage collec-
tion. Reference counting adds an additional memory overhead, so
we opted for garbage collection. Each slab of the hash table con-
tains a 32-bit mask, which indicates for each slot, whether it is
still being referenced. When the garbage collector is invoked, these
masks are initialized to zero. We then traverse the SVDAG from
top to bottom, using one kernel invocation per level, to activate the
respective bits. Finally, we iterate over the slabs in the hash table,
and set the inactive slots to empty. If an entire slab is empty, it is
removed from the bucket and returned to the memory allocator.

Our garbage collection is a proof-of-concept implementation. It
is triggered by a button in the user interface. Currently, the im-
plementation has not been optimized, thus causing a momentary
pause. However, this could be alleviated by running the garbage
collection asynchronously. Both SVDAG traversal and hash-table
iteration can be split into smaller steps, which can be interleaved
with rendering. For example, one may traverse only a part of the
SVDAG each frame, or iterate over a subset of the hash-table buck-
ets. Alternatively, reference counting may deliver more consistent
performance at the cost of increased memory usage.

6. Results

To evaluate our solution, we tested the proposed hash-table
schemes separately, comparing also to existing work on GPU hash
tables.We then test our entire SVDAG editing solution. All tests
were performed on a machine containing an AMD 7950X3D (16
cores / 32 threads), 64GB RAM and an NVIDIA RTX4080 graph-
ics card (PCIe4 x8) running PopOS 22.04 LTS.

6.1. Hash Tables

We evaluate four different hash-table schemes: SlabHash extended
using 64-bit atomics and support for larger items, ticket board, and
acceleration hash using 32- or 8 bits (Section 4.2). To test these
hash tables, we create a simple test scenario that simulates editing
behaviour. We initially fill each hash table with 225 ≈ 33M items.
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Figure 8: Search and insertion performance as well as memory
usage for different load factors. We search and insert 8M items into
a table initially filled with 33M items of 6 WORDs (24 bytes) each.
Memory usage is measured in slabs and thus includes unused slots.
The black line indicates the size of the input data.

We perform both a search- and insertion operation which mimics
finding and subsequently inserting SVDAG nodes and leaves. Both
operations are performed with 223 ≈ 8M million items.

Figure 8 shows the results of the benchmark at different load
factors for an item size of 6 WORDs (24 bytes). Looking at in-
sertion performance, we find that high load factors (lower number
of buckets) result in improved performance despite an increase in
thread contention. This is explained by an increase in the L1 and L2
cache hit rate. The opposite is true for search performance, which
decreases, as it needs to iterate over a longer list of buckets. Note
that this is not the case for insertions, as there we typically find an
empty slot in the first slab.

We notice that both insertion and search performance are corre-
lated with the number of bytes that need to be loaded from mem-
ory. This explains why the 64-bit method trails in search perfor-
mance as it checks more bytes before deciding whether an item
might match. The 32-bit acceleration hash leads to the best search
performance as it initially loads only half the amount of memory.
Reducing the size of the acceleration hash did not improve per-
formance, which we can attribute to various factors. For example,
the slabs are not aligned anymore, resulting in reduced memory
bandwidth (due to memory coalescing). Additionally, by allowing
only 255 unique hash codes, we increase the chance of hash colli-
sions. We found that in practice, we check up to an additional 0.21
slots for each query. An interesting observation is that the search
performance may increase as the hit rate (percentage of successful
searches) goes down. When an item is not present, then the search

Scene Method Memory

San Miguel 64K Nodes/Leaves Only 2929 MiB
4-bit Materials Atomic U64 3509 MiB

Ticket Board 3461 MiB
Acceleration Hash (32 bits) 4269 MiB
Acceleration Hash (8 bits) 3622 MiB

Citadel 128K Nodes/Leaves Only 980 MiB
No Materials Atomic U64 1199 MiB

Ticket Board 1155 MiB
Acceleration Hash (32 bits) 1400 MiB
Acceleration Hash (8 bits) 1203 MiB

Citadel 128K Nodes/Leaves Only 5997 MiB
4-bit Materials Atomic U64 7164 MiB

Ticket Board 7082 MiB
Acceleration Hash (32 bits) 8685 MiB
Acceleration Hash (8 bits) 7404 MiB

Table 1: Memory usage of the tested scenes both with (4-bit) and
without (N/A) materials. This includes memory that is allocated but
not currently used (partially filled slabs).

operation needs to visit all slabs and cannot "early out" (when an
item is found). However, comparing an item after a potential match
is expensive due to non-coalesced memory access and branching.
Especially for larger items, traversing all slabs during an unsuc-
cessful search can be faster than having to compare an item.

Considering memory usage, we see that the additional 32-bits of
acceleration hash cause significant overhead compared to the other
three methods. The 64-bit atomic method uses additional memory
for padding, whereas the other methods (additionally) spend some
memory on acceleration hashes/ticket boards. Note that the results
in Figure 8 include memory used by empty slots, i.e., the hash ta-
bles could potentially fit more items without growing in size.

Table 2 shows the results of the same benchmark for different
item sizes. We include both SlabHash [AFCO18] and DyCuckoo
[LZL∗21] for comparison. As expected, insertion and search per-
formance both scale with item size. Interestingly, we found that
item sizes consisting of an even number of WORDs typically per-
form slightly better than item sizes with an odd number. We sus-
pect that this is due to those items straddling cache lines more of-
ten. Comparing our methods to SlabHash, on which they are based,
we see that insertion performance is comparable, while search per-
formance is reduced. One of the reasons for this deficit is that,
in order to support dynamic memory growth, we require an extra
level of pointer indirection to access a slab. Although this is men-
tioned in the SlabHash paper, it is not implemented in the published
code. Our methods also require more memory bandwidth (64-bit
atomics) or additional computation (acceleration hash), which in-
troduces some overhead.

6.2. SVDAG Editing

We will now evaluate the performance of our SVDAG editing sys-
tem and compare it to the CPU-based HashDAG [CBE20]. For
both methods, we target a load factor of 96 directly after the scene
has been loaded. We use the same test scenes as in [CBE20], but
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Figure 9: Breaking down editing performance in San Miguel 64K3 and Epic Citadel 128K3, as measured on the CPU, into the most costly
GPU kernels. The remaining time is spent on smaller GPU kernels, memory allocation, synchronisation and other CUDA related overhead.

we convert the colors into a palette of 16 unique materials with
similarly colored textures, mimicking popular voxel-based games.
The used test scenes are Citadel (Figure 1) and San Miguel (Fig-
ure 7), which are voxelizations of textured triangle meshes. Citadel
is stored at a voxel resolution of 128K3, whereas San Miguel uses a
resolution of 64K3. The reason for this difference is the elongated
shape of the Citadel scene, which results in a higher level of spar-
sity.

Table 1 shows the memory usage of the tested scenes. Includ-
ing materials in the SVDAG significantly increases memory us-
age due to a combination of larger leaves and a reduction in rep-
etition (as subtrees only match if shape and material are identi-
cal). Materials are assigned based on the diffuse textures of the
original triangle mesh. This creates a high level of local material
detail, which may not be present in other datasets. Despite this,
storing the same scenes in a Sparse Voxel Octree (SVO) would
have required roughly 4x more memory (22GiB Citadel, 14GiB
San Miguel) compared to our SVDAG. When only storing voxel
occupancy, without materials, the SVDAG uses only 6.5% of the
memory compared to an SVO.

We test our method using two different tools. We start with a
sphere tool, which acts as a three-dimensional paint brush, placing
voxels inside the spherical brush radius (Figure 1). This creates a
stress-test for duplicate detection, as the surface of the sphere has
many repeating patterns. Note that filling the inside of the spheres
is cheap, as filling large homogeneous regions of space is a special
case, well supported by our solution. For the second test, we use
the copy tool to gradually make a copy of some of the vegetation
in the San Miguel scene. This tool copies a cubic region around the
mouse cursor. To copy a large object the user drags the cursor along
the surface as it progressively copies.

The results of both tests are shown in Figure 9. Placing spheres
in the Citadel scene takes between 15ms and 18ms depending on
whether materials are enabled. The radii of the spheres vary be-
tween 1140 and 1820 voxels per frame, which is reflected in the
frame times. The largest ones occupy roughly 25 billion voxels,
which creates an intermediate Sparse Voxel Octree of 114MiB
when materials are enabled. Please note that this octree does not
subdivide the inside of the spheres. SVDAG compression reduces
this to 23MiB for the first sphere and merely 15MiB for subsequent
spheres as geometric repetition increases. Copying is distributed
over many frames and operates within a couple of milliseconds,
which is well within the realm of real-time frame rates.

Figure 9 breaks down the total editing time (CPU wall clock)
into the most costly GPU kernels (GPU time) (please see the sup-

plementary material for a more detailed break down). Consider-
ing the Citadel scene without materials; traversing the editing re-
gion and constructing the temporary Sparse Voxel Octree takes
1.7ms on average. Removing duplicate nodes and leaves within
this octree (Section 5.2) is a relatively costly operation at just over
2.5ms. Finally, finding duplicates between the SVO and SVDAG
and inserting the unique items takes between 1.3ms and 3.2ms de-
pending on the hash table. These timings increase by around 30%
when enabling materials due to an increase in SVDAG leaf sizes.
The remaining time is spent on various other GPU kernels (up-
dating parent pointers, detecting homogeneous regions, etc.) and
some CPU/GPU synchronisation. We found that this synchroni-
sation is negatively influenced by memory allocation calls, such
as cudaMalloc or cudaMallocAsync, which is why we replace all
memory allocations by the Vulkan Memory Allocator [AMD23].

From the four proposed hash-table implementations, the two ac-
celeration hash methods perform best, followed by the 64-bit atom-
ics method. This is exclusively due to a difference in search per-
formance with 0.94ms for the atomics method versus 0.87ms and
0.70ms for the 8-bit and 32-bit acceleration hash methods, re-
spectively. The ticket board method performs significantly worse
at 2.51ms. The cost of inserting new nodes and leaves into the hash
tables is comparable for all four methods at roughly 0.6ms. Based
on both run-time performance and memory usage we conclude that
the atomics and the 8-bit acceleration hash methods are most suit-
able for our use case.

To compare against existing work, we perform the same editing
operations using the HashDAG [CBE20]. Some of the improve-
ments we made, such as faster GPU memory allocation, were inte-
grated in the HashDAG. To ensure a fair comparison, we disable
voxel colours, as they are not directly comparable to our mate-
rial system. It takes the HashDAG 52.6ms to place the spheres in
the Citadel scene using 32 CPU threads, which is roughly 5 times
slower than our GPU-based method. Additionally, the HashDAG
requires 192.8ms to copy these changes to the GPU, which is nec-
essary to render the updated scene. CPU editing performance has
improved with the availability of high core-count processors, yet
the cost of CPU-to-GPU memory transfer remains a bottleneck.

7. Conclusion

Sparse Voxel Directed Acylcic Graphs (SVDAG) have proven to be
a memory efficient data structure for storing dynamic sparse voxel
data. In this work, we have shown that it is possible to edit SVDAGs
entirely on the graphics card, improving vastly the editing perfor-
mance compared to previous CPU methods and circumventing the
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expensive CPU/GPU memory copies. The main building block is
a GPU-based dynamic hash table, which can store large items and
provides pointer stability. We propose four different implementa-
tions inspired by SlabHash [AFCO18]. Despite our additional re-
quirements, stemming from the SVDAG support, the performance
of our solution remains close to the state-of-the-art.

Our GPU-driven SVDAG editing pipeline consists of almost a
dozen compute kernels and an additional hash table optimized to
deal with duplicate removal. We enable large SVDAG modifica-
tions in real-time, while reducing memory usage by several factors
compared to an octree.

Our application supports simple voxel attributes stored inside the
SVDAG. While this works well for small and coherent attributes,
additional memory savings may be achieved by separating geome-
try from attributes and compressing them separately. Current meth-
ods [DKB∗16, DSKA17, ME23] are not optimized for many frag-
mented modifications however. We believe this to be an interesting
avenue for future work.
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Item Size (U32) Method Insert Search (25%) Search (50%) Search (75%) Memory Used (Initial)

1 SlabHash 5.8 ms 3.1 ms 2.8 ms 2.4 ms -
DyCuckoo 4.7 ms 3.1 ms 2.8 ms 2.4 ms -

2 DyCuckoo 5.5 ms 3.5 ms 3.1 ms 2.7 ms -
Atomic U64 6.9 ms 7.6 ms 6.9 ms 6.2 ms 318.7 MiB
Ticket Board 5.4 ms 11.0 ms 9.9 ms 8.9 ms 328.4 MiB
Acceleration Hash (32 bits) 5.8 ms 4.0 ms 4.1 ms 4.3 ms 478.1 MiB
Acceleration Hash (8 bits) 5.9 ms 5.6 ms 5.6 ms 5.4 ms 362.7 MiB

3 Atomic U64 9.6 ms 7.9 ms 7.6 ms 7.3 ms 478.1 MiB
Ticket Board 5.7 ms 13.3 ms 13.4 ms 11.0 ms 485.1 MiB
Acceleration Hash (32 bits) 6.2 ms 4.1 ms 4.4 ms 4.8 ms 637.3 MiB
Acceleration Hash (8 bits) 6.4 ms 5.9 ms 5.9 ms 5.9 ms 519.4 MiB

4 Atomic U64 9.5 ms 7.9 ms 7.5 ms 7.1 ms 637.4 MiB
Ticket Board 6.0 ms 15.8 ms 14.5 ms 13.2 ms 642.0 MiB
Acceleration Hash (32 bits) 6.2 ms 4.0 ms 4.3 ms 4.5 ms 796.7 MiB
Acceleration Hash (8 bits) 6.6 ms 5.9 ms 6.0 ms 6.0 ms 676.3 MiB

5 Atomic U64 10.0 ms 8.2 ms 7.9 ms 7.7 ms 796.2 MiB
Ticket Board 6.2 ms 18.8 ms 17.3 ms 15.8 ms 798.6 MiB
Acceleration Hash (32 bits) 6.6 ms 4.3 ms 4.8 ms 5.2 ms 955.6 MiB
Acceleration Hash (8 bits) 6.9 ms 6.1 ms 6.3 ms 6.4 ms 832.9 MiB

6 Atomic U64 9.8 ms 8.1 ms 7.7 ms 7.3 ms 956.1 MiB
Ticket Board 6.4 ms 22.7 ms 20.4 ms 19.2 ms 955.7 MiB
Acceleration Hash (32 bits) 6.8 ms 4.4 ms 4.9 ms 5.4 ms 1115.4 MiB
Acceleration Hash (8 bits) 7.1 ms 6.2 ms 6.4 ms 6.6 ms 990.1 MiB

7 Atomic U64 10.4 ms 8.4 ms 8.3 ms 8.2 ms 1115.1 MiB
Ticket Board 6.6 ms 25.9 ms 23.7 ms 21.5 ms 1112.4 MiB
Acceleration Hash (32 bits) 7.0 ms 4.6 ms 5.2 ms 5.7 ms 1274.6 MiB
Acceleration Hash (8 bits) 7.3 ms 6.4 ms 6.7 ms 7.0 ms 1146.7 MiB

8 Atomic U64 10.3 ms 8.3 ms 8.1 ms 8.0 ms 1274.3 MiB
Ticket Board 6.8 ms 29.2 ms 26.8 ms 24.7 ms 1269.2 MiB
Acceleration Hash (32 bits) 6.7 ms 4.3 ms 4.5 ms 4.8 ms 1433.9 MiB
Acceleration Hash (8 bits) 7.5 ms 6.4 ms 6.7 ms 7.0 ms 1303.8 MiB

9 Atomic U64 10.7 ms 8.6 ms 8.6 ms 8.7 ms 1433.5 MiB
Ticket Board 7.0 ms 29.3 ms 27.3 ms 24.9 ms 1425.8 MiB
Acceleration Hash (32 bits) 7.5 ms 4.8 ms 5.5 ms 6.1 ms 1592.6 MiB
Acceleration Hash (8 bits) 7.7 ms 6.6 ms 7.0 ms 7.4 ms 1459.9 MiB

10 Atomic U64 10.3 ms 8.4 ms 8.0 ms 7.6 ms 1593.2 MiB
Ticket Board 7.2 ms 30.3 ms 27.4 ms 25.6 ms 1582.6 MiB
Acceleration Hash (32 bits) 7.5 ms 4.9 ms 5.5 ms 6.2 ms 1752.2 MiB
Acceleration Hash (8 bits) 7.8 ms 6.7 ms 7.1 ms 7.5 ms 1616.6 MiB

Table 2: Results for searching 8M Items and subsequently inserting 8M Items into a hash table initially storing 33M Items targeting a load
factor (after insertion) of 96. Search performance is evaulated for various hit rates (number of search operations that succeed).
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Appendix A: Search and insertion algorithms

Algorithm 1 Warp-centric search operation

1: threadMask← 0x7FFFFFFF
2: hash← HashFunction(needle)
3: search64←U64(needle)
4:
5: slab← table[hash % numBuckets]
6: while slab ̸= end do
7: comp64←U64(slab[2∗ threadIdx])
8: match← comp64 = search64
9: if warp.ballot(match) & threadMask ̸= 0 then

10: if match then
11: for i = 0 to itemSize−2 do
12: comp32← slab[64+ threadIdx× (itemSize−

2)+ i]
13: if needle[2+ i] ̸= comp32 then
14: match← 0
15: break
16: end if
17: end for
18: end if
19:
20: activeMask← warp.ballot(match) & threadMask
21: if activeMask ̸= 0 then
22: outT hreadIdx← bitscan(activeMask)
23: return encodePointer(slab,outT hreadIdx)
24: end if
25: end if
26: slab = slab[62]
27: end while

Algorithm 2 Pseudocode to insert an item into the atomic64 hash
table. Both the item to be inserted (needle) and the slabs are point-
ers to 32-bit WORDs. We have omitted memory fences for brievity.

1: threadMask← 0x7FFFFFFF
2: hash← HashFunction(needle)
3: insert64←U64(needle)
4:
5: slab← table[hash % numBuckets]
6: loop
7: slab = warp.sh f l(slab)
8: if slab = end then ▷ Add new slab to bucket
9: newSlab← allocateAsWarp()

10: newSlab[threadIdx]← 0
11: newSlab[32+ threadIdx]← 0
12: if threadIdx = 30 then
13: newSlab[62]← table[bucket]
14: h← atomicCAS(table[bucket],slab[62],newSlab)
15: if h = slab[62] then
16: slab← newSlab
17: else
18: f ree(newSlab)
19: slab← h
20: end if
21: end if
22: end if
23: ▷ Attempt inserting first 64 bits
24: comp64← slab[threadIdx]
25: activeMask← warp.ballot(comp64 = 0) & threadMask
26: if activeMask ̸= 0 then
27: outT hreadIdx← bitscan(activeMask)
28: if threadIdx = outT hreadIdx then
29: prev ← atomicCAS(slab[2 ∗

threadIdx],0, insert64)
30: if prev = 0 then
31: inserted← 1
32: end if
33: end if
34: ▷ Insert remaining bytes
35: if warp.sh f l(inserted,outT hreadIdx) then
36: if threadIdx≤ itemSize−2 then
37: slab[64 + outT hreadIdx ∗ (itemSize − 2) +

threadIdx]← needle[2+ threadIdx]
38: end if
39: return encodePointer(slab,outT hreadIdx)
40: end if
41: else
42: slab← slab[62]
43: end if
44: end loop
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