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Abstract

The quality of volume visualization depends strongly on the qual-
ity of the underlying data. In virtual colonoscopy, CT data should
be acquired at a low radiation dose that results in a low signal-to-
noise ratio. Alternatively, MRI data is acquired without ionizing
radiation, but suffers from noise and bias (global signal fluctua-
tions). Current volurme visualization techniques often do not pro-
duce good results with noisy or biased data.

This paper describes methods for volume visualization that deal
with these imperfections. The techniques are based on specially
adapted edge detectors using first and second order derivative fil-
ters. The filtering is integrated into the the visualization process.

The first order derivative method results in good quality images but
suffers from localization bias. The second order method has better
surface localization, especially in highly curved areas. It
guarantees minimal detail smoothing resulting in a better
visualization of polyps.

CR Categories and Subject Descriptors: 1.3.3 [Computer
Graphics]: Picture/Image Generation - Viewing Algorithms; 1.3.7
[Computer Graphics] Three-Dimensional Graphics and Realism

Additional Keywords: virtual celonoscopy, bias field, medical
imaging, surface extraction, direct volume rendering.

1. Introduction

In recent years volume visualization has become increasingly
accepted and used for many applications. Examples are
microscopy, industrial inspection, simulation, games, and
animations. Progress in research has resulted in increased
rendering speed and high image quality.
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Figure 1: Virtual colonoscopic images. a) Rendering of high dose
CT data. b) Rendering of simulated low dose CT data.

Obviously, the quality of visualization strongly depends on the
quality of the underlying data. Noise and bias {global signal
fluctuations) can significantly disturb the results. Unfortunately,
high quality input data is not always available.

Virtual colonoscopy is a method to inspect the colon using a CT
volume of the abdominal region (instead of physically inserting an
colonoscope). As the data is acquired by CT scanning, which
conventionally involves a significant radiation dose. The health
risk incurred by ionizing radiation prompted researchers to try low
dose CT data acquisition. In CT the image quality depends on the
product of X-ray tube current (mA) and exposure time (s), usually
expressed in mAs. A conventional dose is about 40 mAs, a low
dose is iz the order of 1.5 mAs. Alternatively, MRI could be used,
which is free of ionizing radiation. This is specifically important
for large-scale screening of patients.

Unfertunately, low dose CT acquisition yields noisy data. The
increased noise prohibits polyp detection in images generated by
direct volume rendering methods [Levoy 1988], and also by
isosurface volume rendering (see Fig. 1), In addition to increased
noise, MRI suffers from signal fluctuations, generaily referred to
as bias. Iso-surface volume rendering fails to visualize true object
surfaces in such data (see Fig. 2).

Figure 2: a) MR1I image, with a typical, global signal fluctuation,
from the top to the bottom of the image. b) Iso-surface volume
rendering at a low threshold value and ¢) using a slightly higher
isovalue,



Much research focuses on the removal of noise effects. A solution
to reduce the noise is by low-pass filtering the input data (e.g. viaa
Gaussian filter). However, this also results in loss of significant
detail. A modification to non-linear Gaussian filtering yields
proper visualization of fine details, but still requires a fairly high
dose at 20 mAs [Rust et al. 2002].

Another method is to render the intensity values semi-
transparently using ray casting [Kindlmann and Durkin 1998;
Kniss et al. 2002], which amounts to filtering along the ray. For
semi-transparent volume rendering, complex multi-dimensional
transfer functions can be generated, which are based on higher-
order information to differentiate between tissues and emphasize
material boundaries.

In our approach, we preprocess the data using first and second
order boundary detection techniques, to eliminate noise and bias.
As we are mainly interested in the interior surface of the colon, a
simple iso-surface rendering transfer function can be used to
visualize the surface. As we do not use semi-transparent rendering,
no complex transfer functions are needed.

The removal of bias fields has received much attention in recent
years [Ahmed et al, 2003; Likar et al. 2000]. However, such
methods can not handle noise. Additionally, there is a trade off
between speed and accuracy of such a removal. A proper operation
requires a considerable amount of time. We are unaware of any
methods that incorporate the removal of bias in the rendering
stage.

A method that solves current limitations should fulfill
requirements regarding robustness against noise and a bias.
Unfortunately, no existing solution meets ali requirements.

This paper describes volume rendering techniques that deal with
imperfections like noise and bias. The methods are based on
existng first and second-order derivative filters. The novelty of our
work is in the adaptation and integration of these methods for
volume visualization. The algorithms are tested against the
requirements above, using virtual colonoscopy data. In Section 2
the developed methods are described. Some results are presented
in Section 3. We will finish by summarizing our conclusions and
recommend further research (Section 4).

2. Methods

Many volume rendering techniques act by directly classifying
measurement values (i.e. valoes within a certain range are rendered
translucently, the others opaquely). We propose two methods that
are based on first and second order derivative information
respectively. Henceforth, we will refer to these methods as first-
order and second-order solutions described in sections 2.2 and 2.3.
The first order solution is inspired by the Canny edge detector,
which is introduced in section 2.1,

2.1 Canny Edge Detection

A common first order edge detector was developed by
Canny [1987] (Canny Edge Detection, CED). Initially it was
applied to 2D images. CED is based on the gradient magnitude.
The algorithm comprises three steps:

* Gradient calculation
The gradient vector is calculated at each positicn. A method for
this is to convolve the data with derivative of the Gaussian filters
in all three directions (X,y,z).

* Non-maxima suppression
Positions that are not local maxima in the direction of the
gradient vector are excluded. The operation yields a surface only
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Figure 3: Canny Edge Detection. a) Input image (T1
weighted MRI data). b) Output image.

a

one voxel thick at which the magnitude is preserved [Canny,
1987].

* Hysteresis thresholding

A doubie threshold is used on the gradient magnitude to detect
the true surface and to close holes. Magnitude values above the
‘high’ threshold are immediately assigned the status of surface
voxel. This threshold is set higher than the noise level. Thus,
spurious surface fragments are removed. A voxel above the ‘low’
threshold is assigned the status surface voxel if one of its
neighbors already is one. Iterative application of this rule yields
the surface.

CED is fast and robust against noise. However, global intensity
fluctuations will result in incorrect surfaces. In high intensity areas
spurious edges are detected and in low intensity areas the surface
becomes discontinucus (see Fig. 3).

We have adapted the original Canny edge detector by applying it in
a truly 3D manner, and using a locally normalized edge indicator,
as explained below.

2.2 The first order solution

The volume is visualized by a modified ray casting technique. The
preprocessing consists of three stages (compare with Section 2.1):

* Gradient calculation

The gradient vector is calculated at each position (A) using
Gaussian derivative filters.

The local gradient magnitude (|G| ) is divided by the local
maximum of the gradient magnitude (|G |). which is
determined on the line through A that is parallel to the gradient
vector. The search window around A extends 2.5 min in both
directions which corresponds to the size of the smallest relevant
detail. By definition the values of the normalized gradient
magnitudes vary between zero and one. The responses are raised
to a power p ( p > 1) for sharpening:

e~ (52y)

An example image is shown in Fig. 4.

M

Non-maxima suppression

By definition only the responses exactly equal to one represent
focal maxima in the gradient direction. This is because of the
local normalization. However, such a strict criterion yields a
severely fragmented surface (due to sampling artifacts, see
below). To compensate for such artefacts, the positions eith
sample values that are smaller than a threshold </ are excluded.
Consequently, the method becomes less sensitive to such errors.



¢ Thresholding
A threshold is used on the non-normalized gradient magnitude to
include only true surface positions. This threshoid is set higher
than the noise level to remove spurious surface fragments.

The algorithm renders the included postions on a ray before the
first local maximum with an opacity set to zero and afier it with an
opacity set to one.

We must be careful with the calculation of surface normals.
Consider using Gaussian first derivative filters. The surface to be
visualized is a thin sheet in 3D (one can visualize it as a ridge in
2D, see Fig. 4b). The gradient on the top of the ridge approximates
the zero-vector. Consequently, the derivatives become unstable
near to the top.

|
|
|
|

a. )
Figure 4: a) MRI volume (notice the bias from top to bottom)
b) Normalized Gradient volume.

A more robust estimation of the normals is obtained using the
Structure Tensor (also referred to as the Gradient Square Tensor)
[Kass and Witkin 1987]. The Structure Tensor (F) is defined by the
dyadie product of the gradient vector with its transpose:

(2)

fo 7#, and f; denote the partial derivatives of the data flx,%z), which
we calculate by a convolution with a Gaussian derivative filter,
Another Gaussian is used to regularize the Structure Tensor
(depicted by the overhead bar). Fig. 5 shows a visual interpretation
of the Structure Tensor.

b. [

Figure 5: The Structure Tensor in 2D. a) A ridge with opposite
gradient directions. b) Gradient magnitude vectors are assigned to
one point. The principal axes are found using an eigensystem
analysis of the tensor data. ¢) The largest eigenvector of the tensor
is perpendicular to the ridge.

1t must be emphasized that the Structure Tensor is only used to
determine the orientation of the surface normals, The location of
the surface itself is not affected. Also, the normals must be
calculated from the normalized gradient volume and not from the
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Figure 6; Example renderings at t=0.9 (a), t=0.7 (b), t=0.5 (c¢).

inpat data. Due to the normalization step, the normals in both
spaces may not have the same direction.

The first order solution has four (sets of) critical parameters:
» the sharpening factor p
« the threshold 1

» the width of the Gaussian first derivative filters Ox vz

* the degree of tensor smoothing o,

A larger p sharpens the response and makes details on the surface
appear more jagged. A small p smooths noise, but at the expense of
detail. Example renderings at t=0.9, t=0.7, 1=0.5 are given in Fig. 6
(Oy y,z= 1.0mm, o7 = I.5mm). Clearly, if the isovalue ¢
approximates one {which corresponds to the true edge), the result
suffers from severe sampling artifacts.

Oy y.z 1s used to suppress the effect of spatially uncorrelated noise
on the derivatives. Conventionally, it is chosen small, to
correspond as rnuch as possible to the scale of the smallest relevant
detail (i.¢. the smallest features of interest). Gy is tuned to
minimize the influence of normals from spurious detail.

By using derivatives the method becomes sensitive to noise. This
effect is compensated for by the width of the derivatives. A clear
advantage of the method is that it does not depend on an isovalue
of absolute data values.

The effect of the parameter settings on the rendering will be
explored in Section 3.2

2.3 The Second Order Solution

Another method to identify the edge is via the zero crossing of a
second derivative operator, Commen second order edge detectors
are the Marr-Hildreth detector, defined as the Laplacian of
Gaussians (.oG), and the second derivative component in the
gradient direction (SDGD) [Marr and Hildreth 1980]:

LoG = fo+fyy+ fy
SDGD = f,,

in which fi,, f,, f;. and f,, are second derivatives of the image
function f calculated via ésaussian derivatives; x,y,z are the main
coordinate directions and g is the direction of the gradient vector.
Although these detectors are widely applied in 2D, we use a truly
volumetric 3D generalization.

3

With curved object boundaries there is always a trade-off between
noise suppression and surface displacement . A larger filter size
reduces noise, but at the expense of increased surface
displacement. First order derivative filters, such as the Gaussian



derivative filter of the previous section, cause a surface
displacement that is always in the direction of positive curvature
{as shown in the fig. 7). Unfortunately, it is generally impossible to
compensate for the first derivative surface displacement.

The LoG and SDGD filters have opposite surface displacements.
The operators may be combined |Verbeek and Van Vliet 1994] to
reduce the effect, as the opposite-signed displacements cancel each
other to a certain extent. The combined edge detector is generally
referred to as the Plus operator:

Plus(f) = SDGD(f) + LoG(f)

Figure 7: Filtering a curved object yields a dislocated surface. The
filter neighborhood (depicied by the circle) covers a larger area
outside the object than inside. Consequently, a dislocated edge is
detected in the direction of positive curvature (indicated by the
arrow),

Figure 8: The left image shows the input data, the right image the
result of the Plus operator.

Fig. 8a presents MRI data with contrast fluid injected into the
colon appearing as highly intense. The application of the Plus
operator results in a new volume (Fig. 8b) which is referred to as
the Plus volume. A transition visible is in Fig. 8b from negative
values (black) to positive values (white). In between is the zero
crossing.

The Plus volume is visualized by a modified ray casting algorithm,
Initially, those voxels are selected that have a gradient magnitude
higher than a certain threshold. Thus, a coarse region of interest is
identified. This threshold is applied to reduce noise. We have
found that the value of the threshold is not very critical for the
result. Subsequently, the algorithm renders the samples on a ray
with an opacity set to zero before the first zero crossing and with
an opacity set to one after it.

The surface normals are calculated by Gaussian first derivative
filters in the Plus volume. This is possible because the gradient
vectors around the transition do not have opposite directions.
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The second order solution has two sets of critical parameters:
* the width of the Gaussian second derivative filters, (Equation 4)

* the width of the Gaussian first derivative filters &, (used to
calculate surface normals).

Only the widths of the second derivatives affect the localization of
the surface. The second derivative parameter balances noise
against surface detail. 6, merely affects the shading. So, 6, should
be as small as possible for obtaining stable normals. The effect of
the parameter settings will be explored in Section 3.

3. Results

The first and second order solutions were tested both visually and
quantitatively. The implementation we use preprocesses both the
normalized gradient volume (Fig. 4) and the Plus volume (Fig. 8).
This results in an fully automatic preprocessing step and a near
real-time ray casting.

3.1 Data acquisition

A CT volume was randomly selected from an ongoing virtual
colonoscopy study. The original CT scans were acquired at a level
of 40 mAs. To have a reference, the low dose CT scans were
generated from these normal dose scans.

Low-dose CT scans were reconstructed at 1.5 mAs by modifying
the raw transmission data of each spiral CT scan using a
simulation technique. The raw transmission measurements were
meodified by adding a random number from a normal uncorrelaied
distribution with zero mean and a variance according to the desired
simulated dose setting. A simulated 50 mAs scan, for example,
was obtained from the 100 mAs scan by adding a random number
with the same variance as the raw transmission measurement.
Because noise is added before 3D data reconstruction, the
simulation is valid [Mayo et al. 1997]. Typically, the volume
consisted of 512x512x256 voxels at a resolution of
0.6x0.6x1.2 mm®. Example images are shown in Figure 9 (the
noise is correlated).

a. b,
Figure 9: Slice of CT data. a) Directly from scan. b)

Simulation of low dose.

An MRI volume was randomly selected from an ongoing study.
The data was acquired via a Siemens 1.5 Tesla scanner. A typical
volume consisted of 256x256x 128 voxels sized 1.2x1.2x2.0 mm°.

The first and second order solutions were implemented on an
experimentally enhanced version of the Philips EasyVision
workstation.

3.2 Visual Results

The 3D visualizaiions of low dose CT data (Fig. 1, Fig, 6, Fig. 11-
Fig. 10 and Fig. 16) all show the same scene with the same
viewing parameters,
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Figure 10: a) Iso-surface volume rendering of high dose CT (repeated from Fig. 1a). b) First order method on low dose CT.

¢) Second order method on low dose CT.

An optimum first order rendering (O , ,=1.2 mm, gy = 1.0 mm, p =
8) is shown in Fig. 10 b and the optimum second order rendering is
shown in Fig. 10 ¢ {0y, , = 1.2 mm, ©, = 1.0 mm). The parameter
settings will be dlscussed below., Notlcc that the first and second
order images are rendered with the same filter sizes. Fig. 10 a.
shows an iso-surface volume rendering of the high dose CT
volume. We consider this the reference standard.

The effects of significant parameter adjustments on the first order
rendering are depicted in Fig. 11. Each row shows the result as a
single parameter is varied (from top to bottom: G, v, &, p
respectively). The effect of the parameters in the secound order
solution are depicted in Fig. 12. The optimum parameter setting (cf
Fig. 10b and ¢) was determined based on visnal inspection of these
renderings.

To study the effect of bias fields we selected two camera positions
in an MRI volume, one with and one without visible noise and
signal fluctuations. Fig. 13 shows the result for large signal
fluctuations and noise, Fig. 14 for the other with a small bias. The
parameter settings were again found experimentally. Both images
were rendered with the same parameter settings. As expected, the
iso-surface volume rendering shows holes and surface fragments,
due to the signal fluctuations (Fig. }4).

b,

c.
Figure 13: Result on MRI in area of high contrast and low
fluctuation. a) Iso-surface volume rendering. b) Ray casting of
normalized gradient volume results in smoothing. ¢) Plus operator.

3.3 Localization Accuracy

A reference image for the CT data was defined by iso-surface
volume rendering of the (normal) 40 mAs data. The threshold for
the iso-surface was determined by maximizing the sum of gradient
magmnitudes over all surface positions. The surface displacement
was defined by the distance aJong viewing rays between the
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Figure 11: Parameter influence on first order solution.

(all sigma’s in mm) a) Low 0y y ;. resulting in a noisy surface.
b) High &, , ;. resulting in a smooth surface at the expense of
detail. ¢) Lower o,. d) High o,. ¢) Low p. fy High p.
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Oyyz=13,6,= 1O, p=2

reference image and the first and second order surface respectively.
We have opted for this approach to illustrate the localization
accuracy from a typical view point. A reference image cannot be
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Figure 12: Parameter influence on second order solution.
(all sigma’s in mmy) a) Low &, y,, resulting in a noisy surface. b)
High o, , ;. resulting in a very smooth surface at the expense of
detail. ¢) Lower G,.. d) High .

Figure 14: Result on MRI in area of low contrast and high
tluctuation. a) Lso-surface volume rendering. b) Normalized
Gradient Magnitude. c¢) Plus operator.

easily defined for MRI data due to lack of a proper standard. For
that reasen we have restricted the quantitative analysis to CT data.

A small percentage (approximately 0.5%) of very large errors was
caused by small variations in fold thickness (see Fig. 15). Such
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artifacts were eliminated from the analysis by removing the errors
larger than 10 mm.

-, Viewing ray

First order .
solution

Figure 15: Example of a measurement artifact in the surface
displacement.

The mean first order error was 0.6 mm towards the camera

(averaged over ten randomly selected positions). The errors were

within 3 mm in 95% of the cases. The second order solution had a

mean localization error of 0.19 mm (again averaged over the same

ten positions), the errors were below 1.0 mm in 95% of the cases .
——

2mm

Figure 16: The distribution of the surface displacement shown as a
greyscale image. a} First order solution. b) Second order solution.

Fig. 16 depicts the surface displacement for both solutions.
Obviously, the first order solution has a significantly larger
localization error (Fig. 16a) than the second order solution

(Fig. 16b).

3.4 Performance

The rendering time is divided into preprocessing time and time
needed for ray casting. The preprocessing for the first order
solution took two hours (which includes calculating the Structure
Tensor for the whole volume) and the ray casting only took on the
order of a few seconds per image. The whole data set was
preprocessed for the second order solution in 40 minutes and the
ray casting took about one second. These numbers were obtained
for the CT data using an 2.0 GHz computer with 256 MB of
internal memory. For other data volumes the preprocessing time is
scaled in proportion with volume size.

4, Conclusions

This paper reports on progress in volume visualization of data with
noise and bias fields. We presented methods for volume rendering
based on first and second order derivative information.

First, a modified version of the Canny edge detector was applied,
to suit application in virtual colonoscopy. The medification
included a method for robust surface normal estimation. This first
order technique effectively deals with noise, but introduces a
surface displacement,



Next, a second order visnalization method was presented
incorporating the Plus operator that combines the Marr-Hildreth
operator and the Laplacian of Gaussians. This operator yields
accurate surface localization, and it is insensitive to global signal
fluctuations. The visual results show good surface quality retaining
important shape details.

The methods were tested on simulated low-dose CT data (derived
from regular-dose data). The new techniques were compared to iso-
surface volume renderings from the regular dose daia (low noise, no
global fluctuations). The comparisons showed good agreement in
visualization of significant details, such as polyps diagnosed by
radiologists.

Currently, we work on a more rigorous test. We will develop a more
accurate and view independent measure for the surface localization.
We also will perform extensive clinical tests. At last, we intend to
optimize the metheds for speed.

The results presented suggest that low-dose CT and MRI may
become feasible as technigues for vittual colonoscopy in the future.
This may be a step towards the use of virtual colonoscopy in large-
scale clinical screening for early diagnosis of colonic polyps.
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