This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

On GPU Connected Components and Properties
A Systematic Evaluation of Connected Component Labeling Algorithms and their
Extension for Property Extraction

Pedro Asad, Ricardo Marroquim, and Andréa L. e L. Souza
Computer Graphics Laboratory, Federal University of Rio de Janeiro

Abstract—Connected Component Labeling (CCL) is a fun-
damental image processing problem that has been studied in
many platforms, including GPUs. A common approach to CCL
performance analysis is studying the total processing time as a
function of abstract image features, like the number of connected
components or the fraction of foreground pixels, and input data
usually includes synthetic images and segmented video datasets.
In this work, we develop on these ideas and propose an evaluation
methodology for GPU CCL algorithms based on synthetic image
patterns, addressing the nonexistence of a standard and reliable
benchmark in the literature. Our methodology, applied on two
important algorithms from existing literature, uncovers their
data dependency with great detail, and allows us to model their
processing time in three real-world video datasets as functions of
abstract, high-level, image concepts. We also apply our methodol-
ogy for studying the memory and performance requirements of
two strategies for computing connected component properties:
an existing memory-hungry approach, and a new memory-
preserving strategy.

Index Terms—Parallel processing, region growing, labeling,
image analysis, connected components, Graphics Processors

I. INTRODUCTION

CONNECTED COMPONENT LABELING (CCL) is a

fundamental operation in many image processing and
computer vision pipelines and has been applied in different
scenarios and architectures [5], [9]. It is usually described as
the task of partitioning image pixels into maximal connected
subsets and assigning unique labels to them. Connectivity
depends on a fixed adjacency criterion, such as 4-connectivity
or 8-connectivity and on a prior segmentation phase that
separates pixels into different categories. A common case
is that of binary images, in which pixels are classified as
either foreground or background. A convenient output format
consists in an array (with the same dimensions as the input
image) containing, at each pixel position, a numeric label that
identifies the connected component (CC) the pixel belongs
to. From that format, various other information such as size,
bounding boxes, and object center may also be calculated and
used in tracking algorithms [17], [30], [38].

During the last decade, the advent of the GPU as a general-
purpose, massively parallel programming platform that is able
to deliver considerable speedups over traditional CPUs at
end-consumer prices had a profound impact on real-time
computing research. Many methods in the fields of engi-
neering, physics and simulation received a performance boost
after being adapted (or even completely reinvented) to take
advantage of the GPU’s computation and memory models
[20], [24]. This has naturally led to the invention of some

CCL algorithms designed specifically for GPUs []1], [8], [10]-
[12], [15], 1231, 128]], [33[], [36], [40]. However, despite many
techniques having been proposed, research literature still lacks
a comparative study or standard benchmark. Some of these
works do present comparisons with others, but the emphasis
is usually on measuring GPU vs. CPU speed-ups using specific
image datasets.

Our contributions are:

e An evaluation methodology for GPU CCL algorithms
based on synthetic image patterns that allows for pre-
dicting processing times in real-world videos.

o The extension of an existing strategy that computes
connected component sizes [[11]] for the computation of
centroids and co-variance matrices in the Label Equiva-
lence (LE) [8] and Tile Merging (TM) [33] algorithms.

o A new strategy for computing CC properties that may be
combined with Inclusive Scans [7] to drastically reduce
GPU memory usage and GPU to CPU transfer times.

¢ As minor contribution, we also explore some implemen-
tation choices of the LE method that were not explicitly
discussed in past literature [8]], [[11].

The paper is organized as follows: in Section [l we review
the literature on CCL algorithms with emphasis on GPU ap-
proaches; Section [III] discusses the extended and new property
computation strategies; Section describes our evaluation
methodology; Section [V] presents the experimental results;
finally, Section concludes the paper and suggests future
directions.

II. LITERATURE REVIEW

A good discussion on the main categories of sequential CCL
methods, including some representative works, may be found
in [5)], [37]. Algorithms developed in the last decade (not
including GPU algorithms), are addressed specifically in [9].
There are also considerably many works concerning hardware
implementations of CCL [13]], [18], [31], [34], [41]. In this
section, we will briefly review some of the existing GPU
algorithms that are most relevant to our discussion. We will
attain our discussions to binary images.

A. Existing GPU methods

GPUs are massively parallel processors with limited synchro-
nization mechanisms, making it difficult to implement data
structures such as trees and linked lists, normally used in
CPU algorithms, in a thread-safe way. Since CCL is a global
problem, GPU algorithms have to cope with these limitations

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

by employing local operations and merging partial solutions
iteratively or recursively.

Label Equivalence (LE) GPU methods [8]], [[1O]], [11f], [40]
are akin to sequential two-pass algorithms in that they rep-
resent and manipulate equivalence chains. The first method
in this category was published by Hawick et al. [§]], who
studied its application to hyper-cubic mesh graphs in the
context of Monte-Carlo phase state transition simulations.
Their algorithm, which we dub as Hawick’s Label Equivalence
(HLE, for short), is comprised of an initialization part (usually
referred as the Prelabel kernel) and an iterative part, further
divided into the Scan, Analysis and Update kernels.

Given an input binary image of size w X h, the Prelabel
kernel initializes a label array L (also of size w X h), setting
any background pixels to a special value and each foreground
pixel p = (x,y) to a provisional label equal to its own raster
x + yw, effectively turning p into the representative pixel of a
CC containing only itself. The Scan operation merges adjacent
sub-components by exchanging labels between neighbors that
belong to disjoint equivalence chains, and the Analysis and
Update phases ensure that all pixels in the same equivalence
chain point to a single representative element, the represen-
tative pixel. After a number of iterations, sub-components
converge to fully connected components, Hence, the Scan
phase detects no changes to be made, and the algorithm stops.

Kalentev et al. [[11] proposed an LE variation (Kalentev’s
Label Equivalence, or KLE) that saves a considerable amount
of space and time by not requiring an additional equivalence
table, as HLE does, which also renders the Update kernel
unnecessary, since label equivalences are represented directly
in the output array. They also employ regular memory writes
to global memory during the Scan phase, instead of using
atomic operations, as in HLE, which they claim to accelerate
the algorithm, despite the possibility of increasing the number
of iterations. As an additional contribution, they describe the
calculation of CC sizes by employing an additional array that
is initialized during the Prelabel phase and updated during
Analysis using atomic addition instructions. Other works in
this category include [10], which is very similar to HLE, but
divides the iterative part in more kernels and [40], that employs
an optimization [|6] that groups pixels in 2 x 2 blocks, making
it possible to process one fourth of the original image size in
the 8-connected neighborhood case.

Tile Merging (TM) algorithms, on the other hand, are
based on solving the CCL problem locally, usually in shared
memory, for rectangular regions, or tiles, then merging these
local solutions into a global one. Oliveira et al. [23]], who also
described an LE implementation similar to HLE, described
the first TM method, which was comprised of the Local
Merge, Global Merge and Path Compression kernels. Although
their work is not completely reproducible, due to absence
of a detailed explanation of the Global Merge kernel and
online unavailability of the source-code provided by them at
the time of this writing, Stava et al. [33] implemented what
seems to be a very similar technique. They also mention,
but not discuss, the possibility of using the Inclusive Scan
operation [/] in order to obtain consecutive labels for the
connected components, a topic that we will address again

2

in Section Yonhehara et al. [39] presented a variation of
Oliveira’s method that uses w x 1 stripes for the Local Merge,
instead of rectangles. Their experiments allegedly indicate
a speedup of 1.4x over their implementation of Oliveira’s
method, at the resolution of 1024 x 1024 pixels, but their
Global Merge kernel is also not clearly explained.

Many other works [1]], [4], [12], [15], [25], [26], [28], [29],
(321, [35], [36] proposed GPU CCL algorithms, some of which
may be classified as optimizations and/or applications of LE
and TM.

III. PROPERTY CALCULATION

In this section, we discuss the computation of CC properties
in GPU CCL algorithms. Various object properties used in the
context of object tracking [17]], [30], [38] may be calculated
by following the strategy of Kalentev et al. [11], such as
size (number of pixels), bounding boxes, center point, etc.
Some works [3]], [[14], [19] estimate these object features using
object representations other than connected components, but
they can be computed directly from CCL. We discuss the
computation of size, center and co-variance matrix, for the
following reasons:

o These properties allow us to compute the principal axes
of the CCs, which may be used for obtaining oriented
bounding boxes or error ellipses, both more abstract
object models that are sometimes employed in tracking.

o They take up a considerable storage space, significantly
impacting LE and TM’s performance, allowing for a
deeper discussion of performance sensitivity.

We refer to the generalization of the property computation
technique by Kalentev et al. to both LE and TM as Early
Computation. We review their technique in Section
before presenting the necessary modifications to compute our
properties of interest in Section |III-B| and the particularities
of Early Computation in the TM algorithm in Section [[II-C
Finally, we propose a completely new property computation
strategy, Late Computation, in Section

A. CC size computation in KLE: Early Computation

In order to compute CC sizes, Kalentev et al. [11] modified
the Prelabel kernel to initialize an array Ag (with the same
size as L) with per-pixel provisional sizes (1 for foreground
pixels and O for background ones) and the Analysis kernel
to store the sum of sizes of merged sub-components at
representative positions. For instance, if pixels p; and p2
were the representative pixels of connected components C
and Cs, and Cy was merged into C during some pass of the
Scan kernel, the next Analysis kernel would be responsible for
executing the following operations:

Ag(p1) As(p1) + As(p2) (atomically)

1
As(p2) <0 M

By clearing the Ag(p2) position, the algorithm ensures that
C5’s size is not summed up more than once, because py may
change labels several times, but there is a single Scan pass
during which it goes from representative to non-representative

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

and therefore should transfer its size information to its new
representative pixel (p; in this case). At the end of this
modified algorithm, representative pixel positions in Ag con-
tain the size of the respective CCs and non-representative
positions contain zeroes. This set of modifications adds a
constant cost to the Prelabel kernel and a variable cost to the
Analysis kernel, depending on image content, as will be seen
in Section [V]

It is essential that properties be transferred during the Anal-
ysis phase, because the representation of equivalence relations
may change during this phase, but the relations themselves
remain stable. In contrast, if we did it during the Scan phase,
inconsistencies might result from race conditions acting on
Equation

B. Representing additional properties

The calculation of centroids and co-variance matrices requires
more involved operations than shown in Equation [I} Assume
that arrays A,, A, are used for accumulating the x,y centroid
components and consider, for instance, the same scenario with
components Cp,Cy described in Section In this case,
updating A, would require

As(p1)Az(p1) + As(p2) Az (P2)

As(p1) ¢ As(p1) + As(p2)

Ax(p2) 0

(atomically)

2

but the first assignment cannot be completed with a single
atomic operation in contemporary GPU architectures. Hence,
we choose a simpler representation, in which the A, A, arrays
actually store the sum of x, y pixel coordinates, allowing us to
update them just as in Equation[T} Similarly, the A2, A2, Az,
arrays are used for storing the sum of squared x coordinates,
the sum of squared y coordinates and the sum of xy coordinate
products, respectively, needed for the computation of co-
variance matrices. The complete initialization operations for
a provisional pixel p = (z,y) are

AS(L?J) «—1 A.L2('ray) (*.’,E2
Am (ZL’, y) T Ay2 (Za y) — y2 3)
Ay(z,y) vy Agy(z,y) «ay

It is possible, at the end of the algorithm, to obtain the centroid
of an arbitrary connected component, with representative pixel

p. as
1 Az(p)]
, “4)
As(p) {Ay(p)
and its actual co-variance matrix as
Apa(p) (Am<p>)2 Asy(P) _ As(p)A, ()
As(p) As(p) As(p) As(p)? (5)
Asy(®) _ As(P)A () Ap®) (Ay<p))2
As(p) As(p)? As(p) As(p)

This procedure allows for a simple and efficient extension
of Kalentev et al.’s area computation method for comput-
ing centroids and co-variance matrices. As a downside, it
requires a considerable number of bits to be represented.
Table [I[] compares LE’s memory consumption across a range

TABLE I: Memory consumption of label and property arrays
(size, centroid and co-variance matrix) in LE.

Resolution. | 1K?2 4K? 16K? 64K?>
Labels 4MB 64MB 1GB 16GB
Properties 48MB 768 MB 12GB 192 GB

of increasingly higher resolutions with and without the com-
putation of any properties. Refer to Appendix [B] for explicit
expressions for the number of bits needed for each property
type, as functions of image resolution. In order to support the
range of resolutions spanned by 32-bit unsigned labels, which
include the resolutions used in our tests, we employed 32-bit
unsigned integers for Ag and 64-bit unsigned integers for the
remaining properties, according to these expressions. Because
the memory costs grow considerably faster when properties
are computed this way, we will discuss another scheme based
on contiguous relabeling to reduce memory usage, described
in Section

Finally, we consider the issue of memory layout for property
computation. There are two main options for storing pixel-wise
properties: structure of arrays (SOA) where each property has
its own device memory buffer; or array of structures (AOS)
where all properties of a single pixel are interleaved. This
choice may significantly impact access performance [22]. In
our case, since all kernels manipulating properties must first
inspect Ag before updating the other A, arrays in parallel,
the SOA structure provides superior performance by ensuring
a coalesced access pattern [21].

C. Early Property Computation in TM

During the Prelabel kernel in LE, provisional labels are
assigned to pixels, and if Early property calculation is to
be employed, provisional properties are also initialized ac-
cording to Equation [3] Since property arrays S, are stored
in global memory and global memory operations are guar-
anteed to be synchronized between kernel launches by the
CUDA driver [21]], this ensures that property update operations
(Equation [I)) may be applied later, during the Analysis kernel,
without further concerns.

However, since TM’s first step (Local Merging) performs
both initialization and merging, we need to make sure that
the provisional property arrays S, are correctly initialized
before any merging takes place. We have investigated three
alternatives:

1) Initialize all S, arrays with provisional properties (Equa-
tion [3) during Local Merge, and delay any property
operations (Equation [I) until the first Global Merge
kernel execution.

2) Use a memory setting function (such as CUDA’s
cudaMemset ()) to initialize the S, global memory
arrays to zero prior to Local Merge, allowing regular
property update operations to be carried on during Local
Merge itself.

3) Use shared memory (which can be synchronized for
threads in the same block) for storing provisional prop-
erties during Local Merge, apply Equation [I] on shared

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

memory instead of global memory, then store the results
into global memory S, arrays at the end of the kernel.

The first and second alternatives give very similar perfor-
mance. In fact, we only observed a 1—3% difference in pro of
the second one. The third alternative seemed promising due
to the superior performance of atomic operations in shared
memory. However, we noted that the high shared memory
requirements of storing all property values for all pixels con-
siderably degrades the GPU’s L1 cache performance, incurring
in a 14% slowdown just from allocating the necessary space.

The remaining adjustments to TM boil down to modifying
the intermediate and final Path Compression kernels so that,
at the end of these kernels, properties are merged just like in
LE’s Analysis.

D. Late Property Computation

If we assume the number of connected components expected
in a frame is low compared to the number of pixels, then
allocating one property slot of each type per pixel in advance
becomes very inefficient. However, if properties accumulation
are delayed until CCL completion, it becomes possible to
count the number of CCs, then allocate exactly one slot
per representative pixel and have all foreground pixels sum
their property contributions into the slots associated with their
known representative labels. In summary, this is what we call
Late Property Computation.

However, this requires mapping the sparse set of repre-
sentative labels {l,...,l,,} produced by a CCL algorithm
into a set of consecutive labels {0,...,n — 1} that can be
used as contiguous indices into property arrays A, of length
n. As noted by [33], consecutive labels may be obtained
with an Inclusive Scan operation [7]. We refer to the whole
process of properly initializing the required memory buffers,
applying Inclusive Scan, and relabeling all pixels as Sequential
Relabeling. Since this topic was not extensively covered in
known references, for completeness, we describe it in more
details in Appendix

Only 48n bytes are required for storing the properties listed
in Section [[II-B in this case, in contrast to 48wh bytes in the
Early Computation case (w X h being the image dimensions).
An secondary benefit of compacting the property arrays is
accelerating GPU-to-CPU property transfers. Also, any CPU
or GPU post-processing operation that took connected compo-
nent properties as input would need to inspect only n instead of
wh property slots. Indeed, these additional benefits of Sequen-
tial Relabeling may also be combined with Early Computation,
allowing to compact property slots after the standard algorithm
finishes, yet Late Computation is still distinctive with regards
to preventing massive memory allocation in advance.

IV. EVALUATION METHODOLOGY

The GPU CCL algorithms cited so far are data-dependent
in different ways: some may require multiple iterations to
complete, and checking is done on host side [8]], [10], [[11],
[28]], [40]; others encapsulate all iterations inside kernels and
need a fixed number of passes [1]], [15], [23]], [33]], [39]]. When
evaluating these methods, authors appeal to different datasets,

(b) Spiral at 1% LE iter.

Fig. 1: A binary input Spiral Pattern (a) and the label array
(b) after the first LE iteration. Black represents background
pixels, and each shade of gray represents a different label.
Representative pixels are indicated by a circle in the center.

(a) Binary spiral

usually for comparing against CPU methods, although they
sometimes compare to other GPU methods as well. Although
GPU algorithms are usually proven faster than their CPU
counterparts, this is usually verified by comparing their av-
erage processing time on image datasets, which does not
help in clarifying how image characteristics (such as number
of objects, their sizes, shapes and locations, for instance)
contribute to the total processing time.

A commonly employed test pattern for algorithms that
perform host-side iterations is the Spiral Pattern, illustrated in
Figure [I] Nevertheless, we noticed some limitations presented
by the Spiral Pattern: (1) it produces very long equivalence
chains, causing Analysis overhead in LE; (2) the number of
iterations for LE is always two (Figure[I); (3) in many tracking
scenarios, connected components tend to be convex, so it does
not represent the typical geometry of connected components.

The first point is confirmed by our experiments in Sec-
tion and since this pattern stresses Analysis passes, it
makes difficult to derive a relation between processing time
and other image parameters, such as percentage of foreground,
number of CCs, or number of iterations. In order to overcome
these limitations, we propose Ridge Patterns: a family of
synthetic connected component shapes that can be easily
replicated and parametrized in order to control, among other
image characteristics, the number of LE iterations.

A. Introduction to Ridge Patterns

Spiral patterns are an unrealistic object shape model for object
tracking/segmentation scenarios, although they can be used as
a difficult test case for GPU CCL algorithms, as discussed
in Section In contrast, one of the simplest conceivable
rasterized shapes that could be used as an artificial object
model is that of a quadrangular shape, such as a square.
However, as Figure E] illustrates, LE’s preference for labels
with lesser raster values causes convex shapes to be labeled
in at most 2 iterations, contrary to the general case, in which
an arbitrary number of iterations may be needed (the frames
in the video datasets studied in Section for instance,
require from 1 to 6 iterations). Controlling the number of LE
iterations, while keeping the artificial object model as simple
as possible, motivated us to develop Ridge Patterns.
Informally, Ridge Patterns consist of trapezoidal shapes
topped with a crest, e.g. an up-and-down pattern of pixels
that delays the propagation of minimal labels, forcing LE into
the desired number of iterations. Crest size and shape are
determined by the pattern’s level, a parameter that corresponds
to the exact number of iterations the LE algorithm takes to

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

L2000 000 000 00
£Z 000 000 006 OO
< £ 000 000 6000 OO
L L Q00 000 009 08
£ 5 QO [JOlO) e

RESNO0|ONENO010 OJENO6)0
L7 000 000 000 000
£Z 000 @00 0@ 000
<5000 000 000 000

(a) (b) (c) (d)

Fig. 2: Output of Prelabel, Scan, and Analysis kernels on 4
different 3 x 3 image patches (a-d), on first LE iteration. Black
indicates background, and distinct shades of gray indicate
final labels. Intermediate links formed by the Scan kernel
are indicate by solid lines joining adjacent pixels. Although
cases (a-b) are completely labeled after a single iteration, cases
(c-d) are left with two sub-components each, and require an
additional iteration.

T

(a) R, !ﬁi‘

HEH:I (c) Ry

(b) Ry

Fig. 3: Examples of minimum Ridge patterns R;, for levels
1 <1 < 4. Crest pixels are colored with a darker gray hue, and
pixel rows in the trapezoidal base are colored with alternating
lighter hues.

ot

h(R4)

h(T4)

d) Ry |]
(@) R4 5 w(Ty = wiRg) T

complete on the pattern. Basic crest shapes for levels 1 and 2
can be deduced from the cases presented in Figure fc-d), and
higher levels may be achieved by recursively replicating that
basic structure. Figure [3] illustrates ridge patterns for levels
1-4, and Figure [provides a good intuitive understanding of
the recursive nature of crest design, by showing the partial
labeling through iterations 1-4.

In the next subsection, we will present a more thorough
description of Ridge Patterns that can be used for reproducing
them. Note that some of our choices, such as using a trape-
zoidal instead of a square base, are not strict requirements
for the purpose of obtaining simple shapes, or controlling the
number of LE iterations. The purpose of trapezoidal shapes
is to ensure that sub-components get an even distribution
of pixels, an important performance factor when computing
properties, as will be discussed further in Section For
instance, if the level 4 pattern shown in Figure [had a
rectangular base, the number of pixels in the left-most sub-
component C,, connected to the root pixel p throughout the

Gl Snis. Sl Skl

(a) st iter. (b) 2nd iter. (c) 3rd iter. (d) 4th iter.

Fig. 4: Consecutive LE iterations applied to a Level 4 Ridge
Pattern.

5

first iteration, would be considerably greater than the other
sub-components. This would cause the first Analysis kernel
to issue too many atomic sum operations for the same target
memory addresses A, (p), that hold the property sums of Cp,.

B. Formal description of Ridge Patterns

A Level-1 Ridge Pattern, indicated by R;, is a 2 x 2 rasterized
trapezoidal shape, as shown in Figure 3(a). A Level-l Ridge
Pattern, indicated by Ry, for [> 2, is formed by a trapezoidal
base 17, topped with a crest Cj, which consists in a sequence
of vertical pixel stripes, or peaks. The number of crest peaks
is

G| =272 +1 (6)

Peaks are enumerated from left to right, and indicated by F;,
0 < i< 22, The z-coordinate of P; is

2(P,) = 3i)

and each peak is one pixel-wide, which gives a separation of
two pixels between consecutive peaks. Furthermore, the height
of P;, relative to the top of 7;, corresponds to the number of
powers of two of the form 2k 0 < k <1—2, that divide 1,
plus one, that is

= {zk — (i mod 2k)J)

2k
The crest’s width w(C}), and height (equal to the height of
the tallest peak) h(C}), are therefore given by
w(C)) =272+ 1) +2(27 %) =2 42072 41
hCp) =1

(€))
(10)

Appendix [A] proves that a crest shape defined like this causes
the desired number of iterations.

The trapezoidal base T;, as previously explained, is a
secondary aspect of the pattern’s definition. The 45° incli-
nation wrt. raster coordinates is meant to produce an even
distribution of atomic operations during the first Analysis
kernel, and its height is defined so that the pattern’s total area
is approximately that of a square with size equal to the base
size. Hence, its width w(T;) and height h(T;) are given by

(1)
12)

w(T)) =2w(C)) — h(C)) —1=2"+2"1 421
MT)) = w(C)) —h(C) =271+ 272 41—

C. Using Ridge Patterns for image generation

In this section, we introduce six families of synthetic images
composed of Ridge Pattern combinations that we use for eval-
uating GPU CCL algorithms. Each family constitutes a group
of test images generated by some free parameter, and some of
the families are themselves characterized by parameters. We
assume images sizes have the form 2" x 2" pixels.

The starting point for defining these families is to introduce
the Rf notation: it indicates a R; pattern in which Cj is
horizontally scaled by a factor of 2¥, but vertical dimension is

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

kept and 7; dimensions are recomputed from Equations [TTHT2]
As a result, we obtain

w(clk) _ 2k+171 + 2k+l72 + 2k (13)
h(CF) =1 (14)
w(le) — 2k’+l + 2k+l—1 + 2k+1 -1 (15)
h(j-vlk) _ 2k+171 + 2k+l72 + 2]@ —1 (16)

If we are to place multiple scaled patterns side-by-side, we also
need to add a two pixel horizontal/vertical separation between
them. The total horizontal space occupied by such patterns is

2+ w(TF) < 2kt (17)

and since w(T}) > h(T}), the equation above places a lower
bound on the maximum scale factor 2* that may be applied
to the base R; pattern, in order to fit multiple Rf patterns
side-by-side in a 2™ x 2™ image. From this point, the image
families are defined as follows:

1) Leveling: Each image is comprised of a single level [
pattern, scaled as much as possible for the image size, that
is, R?’l’l. The family is spanned by the parameter [, with
1 <1 < n— 1. This family tests the sensitivity of the LE
algorithm to the number of iterations.

2) Scaling(l): Given the R?‘l_l (the largest level-I pattern
for the given resolution), each image is generated by uniformly
scaling R "' by a factor \ in the [0,1] interval, which is
always possible, since this Ridge Pattern contains no crest. The
family is spanned by all A € [0, 1], which includes an empty
image (A = 0) and the unmodified R?il*l pattern (A = 1). It
is useful for testing whether algorithms are affected by a large
connected component.

3) Subdivision(l): For a given [, the first image contains
the Rl”_k_1 pattern. The second image is obtained by re-
placing this pattern with four Rf*"*Z patterns, which keeps
the number of pixels approximately constant, but multiplies
the number of connected components by 4. Further family
members are obtained by recursively applying this replacement
rule, a process that exponentially increases the number of
connected components, and is limited to n—[—1 times. This is
a way of determining if algorithms are affected by the number
of connected components.

4) RandomInstancing(l,s): Given the Subdivision(l)
family, each image in this family is generated by applying
s subdivisions (that is, picking the s-th family member), then
erasing each pattern with probability 1 — p, p € [0,1]. The
family is generated varying the values of p, but since random
numbers are generated for each pattern instance, members are
probabilistic, unlike previous families. This family constitutes
another way of testing whether algorithms are sensitive to the
number of connected components, but in a way that foreground
varies with the number of components, unlike Subdivision,
and with great flexibility in CC placement. Note that s is
restricted by 0 < s <n—1[1—1.

5) RandomMerging(l, s): Members of this family are
also probabilistically generated from the s-th members of
Subdivision(/), as in the previous family, but here the pa-
rameter p, which characterizes family members, controls the
probability of two adjacent patterns being merged into a single

6

TABLE II: Thread block layouts (B, By, B.) for LE/TM
kernels. Global Merge’s layout depends on merge level &, and
is limited by the maximum number of threads per block, 1024.

Kernels By By B,
LE Prelabel 8 8 1
LE Scan/Analysis, TM Path Comp. 16 8§ 1
TM Local merge 16 16 1
TM k-th Global Merge 4 4 gmin{3,k+1}

component. Patterns are merged by simply adding a horizontal
or vertical line of foreground pixels to connect them. The
number of foreground pixels in this family is constant, as in
Subdivision(l), but the number of connected components and
their shapes can vary greatly.

V. EXPERIMENTS

This section is divided as follows: details our hardware
and software conditions; discusses practical considera-
tions on LE implementation, backed up by experiments; [V-C|
evaluates our implementations of the LE and TM algorithms
(briefly introduced in Section combined with the two
property computation strategies presented in Section
analyzes the effectiveness of our methodology in predicting
processing times in video sequences.

A. Hardware and software details

We implemented our versions of the LE and TM algorithms
for binary images, only. Labels were represented with 4-byte
unsigned integers, but one label was reserved for background,
resulting in a maximum 2zy-resolution product of 232—1 pixels.
Our software was developed using the CUDA 9.1 [21] plat-
form and is available for download under version 3.0 of the
GNU General Public License at https://gitlab.com/Icg/cuccl,
where more information on how to modify, compile and
use our code is also provided. The Sequential Relabeling
phase uses the Inclusive Scan implementation from the Thrust
open source library (https://thrust.github.io/), that is distributed
along with the CUDA toolkit.

We performed our experiments with resolutions of the form
2™ x 2™, 10 < n < 14, and observed a series of behaviors that
are consistent across these resolutions. However, the memory
requirements of the Early Computation strategy limited its use
to 81922 (n = 13) pixels, with our GPU. All subsequent
discussions, unless otherwise mentioned, are based on this
specific image size.

The hardware and software specifications of the test en-
vironment are: Intel Core i7 7700K (8 cores, 4.2 GHz),
32GB Ram (1.6 GHz), NVIDIA GTX 1080 8GB memory,
Ubuntu 16.04.02, NVIDIA Driver 390.30, CUDA SDK 9.1,
Gnu C/C++ Compiler 5.4.0, Thrust library 1.9.01.

We do not discuss our kernels’ sensitivity to runtime param-
eters such as thread block and grid dimensions, although these
parameters can significantly affect performance in CUDA
programs. However, various configurations were tested and the
best ones, shown in Table |[lI, were picked for the experiments.
Note that, with these settings, at 81922 resolution, the TM
algorithm needs 5 Global Merge levels to complete.

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://gitlab.com/lcg/cuccl
https://thrust.github.io/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

B. Performance considerations on LE implementation

Label Equivalence implementations [8]], [[10], [11]], [40]] some-
times disagree on details such as usage of atomic operations,
GPU memory allocation, and distribution of operations among
kernels, to name a few. We implemented LE borrowing ideas
from both HLE and KLE: as in HLE, we used texture memory
instead of global memory for storing current label equivalences
during the scan phase, due to its superior performance; like
KLE however, we stored equivalence chains in the output label
array L, instead of using an auxiliary equivalence table T, re-
ducing memory requirements, and rendering the Update kernel
at the end of every iteration unnecessary. We still opted for
atomic operation-based label replacement as in HLE though,
because: (a) we did not observe any substantial performance
improvements, as suggested by Kalentev et al. [[11] from not
using atomic operations, and (b) the number of iterations might
slightly vary between different runs if atomic operations were
not used, making comparisons to TM more difficult. What
follows is a discussion about some implementation alternatives
for the Scan kernel. Based on experimental evidence, we
will recommend some implementation choices that were not
explicitly detailed in the past literature.
1) Changes in first Scan pass: We considered three alter-
native policies for label selection in the first Scan:
o F8 (full 8) — searching all 8 neighboring pixels (just as
in HLE and KLE).
o F4 (full 4) — searching only the four pixels with smaller
raster values.
o P4 (pruned 4) — same as F4 but stopping at the first non-
background found.
This is motivated by the fact that the first pass follows the
initialization of all pixels with provisional labels x+yw, hence
the smallest label neighbor is necessarily the one with smallest
raster index. Figure [5] shows the application of Level 1 Ridge

30 B
-@—- P4 — P4
/g F8 F8
Z/ 20 -@- F4 4 =— F4
£
£
)
£ 101 .
X
0000000000? |
0 T T T T T T T T

T T
1 35 7 9111315
(b) Instances (x2'%)

0 5 10

(a) Subdivisions

Fig. 5: Performance of the P4, F8 and F4 variations of
the first Scan kernel in LE against the Subdivision(1) and
RandomInstancing(1, 9) image families, at resolution 8192 x
8192.

Patterns to evaluate these policies, and reveals that F8 and F4
have very similar and stable performance, regardless of the
number of connected components and foreground occupancy.
In contrast, the P4 variant is visibly affected by these variables,
performing much worse than F8 and F4 at all times. This

behavior is likely to originate from thread branching in the
P4 variant, which tends to become more irregular as more
components (and consequently, more component borders) are
present. Meanwhile, F4 and F8 cause all threads to execute the
same path, issuing consistent and contiguous texture fetches
for every thread. The first Scan pass is also necessarily
followed by at least one Analysis pass, so it is not necessary
to employ a global flag to mark changes in the label array L.
A possible further optimization would be implementing the
Prelabel and first Scan operations as a single kernel, saving
a pair of read-write operations and the overhead of a kernel
launch. However, we kept the Prelabel operation separate
because its duration depends only on image resolution, as will
be seen in Section |V| In the remainder of this paper, all tests
used the F4 selection policy, and do not use a global flag for
marking changes in L.

~ 40 4 = Global | == L3 global
E == L3 local
~ Local - L5 global
qé 30 - =@= L5 local
b
2 20 1]
2
3
S 10+ i
-
Ay
0- T T [N N N R . S —
5 10 13579111315

(a) Ridge level (b) Instances (x2'0)

Fig. 6: Total time spent in LE Scan using global and shared
memory approaches for taking note of equivalence changes:
(a) was tested with the Leveling family, and (b) with the
RandomlInstancing(l,5) family, for | = 3 and | = 5,
indicated as L = 3 and L = 5, respectively.

2) Changes in later scan passes: Neither Hawick et al. nor
Kalentev et al. explicitly specified if the global memory flag
used to mark changes in L should be allocated in page-locked
memory, but we assume it to be the case in both works, since
this memory type is expected to provide faster access [21]]
to the flag’s value in the host code that checks for additional
iterations. However, the overhead of several threads writing to
a single global memory address when there are label changes
is considerable, so we propose using shared memory to reduce
this cost as follows:

1) A shared memory flag is allocated for each thread block
and cleared at the beginning of kernel execution.

2) A block-level synchronization command (for example,
__syncthreads () in CUDA) is issued.

3) Threads carry out a regular Scan operation, setting the
shared flag if they issue an atomic operation, regardless
of its result.

4) Threads are again synchronized block-wise, and if the
shared flag is set, the global flag is set by the first thread
in the block.

Figure [6] (a) shows that, for a single large component, the
global flag approach is only slower after 8 subdivisions (ap-

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

proximately 260000 components). However, Figure [6] (b) also
reveals that the global approach is quickly surpassed by the
local one as the number of connected components increases.
In particular, the discrepancy between the global and local
versions with level 5 patterns is much greater than with level
3 patterns. During the rest of this paper, the local flag version
with the F8 neighbor selection policy should be assumed for
later Scan passes.

C. Evaluating LE and TM with synthetic images

In this section, we discuss the performance of our LE and
TM implementations when running against the members of
the five synthetic image families described in Section [IV]
beyond the classical Spiral Pattern images, which constitute a
sixth family. Three variations of each algorithm were studied:
Ordinary LE/TM, which involve only computing the CCL, but
no CC properties, and the versions that compute CC properties
using Late Computation or Early Computation (described in
Section M), dubbed Late LE/TM and Early LE/TM, respec-
tively. Although the Inclusive Scan operation is only strictly
necessary for the Late algorithms, we have also applied in
Ordinary and Early algorithms, since its effects (obtaining
sequential labels and speeding up GPU-to-CPU transfers) are
advantageous to all algorithm variants.

The plots shown in Figures show some performance
plots for different image families. For each family, the top
row shows the stacked processing times of all kernels that
constitute Ordinary LE/TM as functions of the family’s free
parameter. The two additional rows have a similar layout,
but show only the overhead added by Late/Early LE/TM
to each kernel. Note that Late LE/TM are implemented by
chaining Sequential Relabeling (which is already performed
for all algorithms in our tests) and Properties Sum kernels
after Ordinary LE/TM, so the only overhead in Late LE/TM
is due to Property Accumulation.

Figure presents kernel execution times for the
Leveling, Subdivision(3), RandomInstancing(3,5), and
RandomMerging(3,5) Ridge Pattern image families. We
picked level [= 3 for non-Leveling families because it is
the most frequent number of LE iterations observed in the
datasets evaluated in Section Similarly, we picked s =5
subdivisions for the random families because higher values
result in more than 1024 connected components per image, an
amount considerably larger than the average in the datasets.

Figure [7a] shows that Ordinary LE is very sensitive to the
number of iterations, since the processing time increases over
a 100% from 1 to 10 iterations. Nevertheless, in the range of
most likely iterations in the datasets, 3 to 5, Ordinary LE’s
performance is comparable to Ordinary TM’s, which is not
affected by Ridge Pattern level, as expected. However, in Early
LE more iterations tend to cause a positive impact on the first
Analysis kernel’s overhead, since property sums are carried
by atomic operations in a greater number of addresses. As a
result, total Early LE processing times do not vary much for
different levels, although it is still considerably slower than
Early TM when there is a single CC in the scene.

Figure reveals that Ordinary LE/TM and Early LE/TM
are mostly invariant to the number of connected components

8

when foreground occupancy is kept constant. Despite the
number of CCs being exponentially increased, we only see
a noticeable increase in Ordinary processing time starting
at 6 subdivisions, which corresponds to 4096 CCs. Such an
increase could be explained by the fact that Ridge Pattern
instances become smaller than the thread size, causing consid-
erable thread divergence in LE Scan and TM Local Merge. The
case with s = x = 0 subdivisions is identical to z = =3 in
the Leveling family and causes Early LE to take longer in the
First Analysis kernel, but greater values of s = x diminish this
effect, by spreading atomic operations. For the same reason,
Late LE/TM usually performs better on scenes with a greater
number of components, as the Late overhead plots show.

Figure[7c|shows the impact of increasing the number of CCs
and the total foreground occupancy, by randomly distributing
CCs in the test images. Considering that each value of the
instance probability p is tested 100 times, the z-axis also
corresponds, in the average, to the total foreground occupancy
(which is proportional to the number of CCs). That said, it is
clear that LE/TM processing times are linearly influenced by
the number CCs, when more CCs imply greater foreground
occupancy (unlike Figure [7b). One can observe modest slopes
in the Ordinary cases, more evident linear behavior in Early
cases, and a considerably steep linear behavior in Late cases.
When total processing times are grouped by foreground oc-
cupancy, we see maximum standard deviation of 6% for LE
and 32% for TM across all experiment runs. This shows that
geographic distribution of CCs is not a relevant performance
factor for LE, but extremely relevant for TM.

Figure |/d| is harder to interpret, because the merging prob-
ability may create complex shapes when connecting adjacent
Ridge Patterns. In particular, when the merging probability is
0, no instances are connected, obtaining the same performance
as s = x = b in Figure [7b] and when the probability is
1, all pattern instances are merged, resulting in the same
performance as « = | = 3 in Figure[7a] Increasing the merging
probability p above 0, at a first moment, makes larger CCs with
more complex shapes more likely to exist. But as p approaches
1, the number of CCs decreases and the tendency is to form
a single large component, which possibly explains why the
LE processing time peaks are somewhere in between, where
more complex shapes are more likely to exist. Note that this
causes saturation behavior in Late overhead, which tends to
take longer when fewer CCs concentrate foreground pixels.
Ordinary/Early TM are also not considerably affected by this
test.

Finally, Figure [§] shows the effect of a single, increasingly
large connected component, allowing us to isolate the impact
of the total number of foreground pixels and to compare Spiral
and Ridge Patterns. Ordinary LE/TM are not considerably
affected by a larger Ridge Pattern, but the Spiral Pattern has a
strong destabilizing effect on both, being the test family that
causes the strongest impact on Ordinary TM, an otherwise sta-
ble algorithm in terms of average processing time. The Spiral
Pattern is the only test case seen in this work in which the
first LE Analysis pass represents such a significant portion of
Analysis time that later passes are not even visible in the plot.
Meanwhile, Ridge Scaling causes Local Merge time to grow

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 9

LE ™ LE ™

| —

t
[e=]
ut
(=]

No properties

Overhead (ms) Performance (ms)

e |
8
5E& 50 50
a, .
2 K
o —— l
2
3 - - s e———— ___-_ L ———
g6 0 0
£z
£E 50 50
[
Qo
85 o0- - 0 -
5 10 5 10 0 5 0 5
(a) Leveling family. Level of single Ridge Pattern shown along the (b) Subdivision(3) family. Number of subdivisions (base-4 logarithm
T-axis. of number of CCs) shown along the z-axis.
= LE T™ LE ™
88
£3 %0 50
(SRS
2 g
2
s —
£
g2
‘ié 50 50
¥
ag I I
£, | — —
0~
RO |
£E 50 50
o
Qo
5 ol il 0 |
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
(c) RandomInstancing(3, 5) family. Appearance probability of each (d) RandomMerging(3, 5) family. Merging probability between each
of the 1024 Scaled Ridge Patterns of form RY shown along z-axis. pair of neighboring patterns of form R shown along x-axis.
I Prelabel/Loc. Merge Analysis Analysis/Path Comp. First Scan/Glob. Merge
I Seq. Relabeling I Later Analysis/Path Comp. I Later Scan/Glob. Merge
[0 CPU overhead Memset (not in Early LE) I Prop. Sum (Late only)

Fig. 7: Stacked kernel processing times in Ordinary LE/TM, and stacked kernel overheads due to property computation in
Early LE/TM and Late LE/TM measured on four image families (a)-(d), at 8192 x 8192 pixels. For each family member,
represented by a point in the z-axes of the respective plot groups (a)-(d), kernel processing times and overheads were averaged
over 100 executions. Analogous kernels in LE/TM are colored similarly. The vertical order of the colored stripes does not
necessarily reflect the order of operations.

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

™

[SA]
o
1

\
\
i

No properties

Overhead (ms) Performance (ms)
=
1

ot
o
1

(=)
!

VL

ot
(=)
1

Late properties Early properties
Overhead (ms)

0.2 0.4

(a) Spiral patterns (foreground occupancy percentage varies along x-
axis).

Il Prelabel/Loc. Merge
B Seq. Relabeling
CPU overhead

Analysis Analysis/Path Comp.
I Later Analysis/Path Comp.
Memset (not in Early LE)

10

LE

50 1

l\
|
[

|

L
L

0_

0.1 0.2

(b) RidgeScaling(2) family. Foreground occupancy of a single R%O
pattern varies along z-axis.

First Scan/Glob. Merge
Bl Later Scan/Glob. Merge
[Prop. Sum (Late only)

Fig. 8: Stacked kernel processing times in Ordinary LE/TM (top row), and stacked kernel overheads due to property computation
in Early LE/TM (middle row) and Late LE/TM (bottom row), at 8192 x 8192 pixels, measured on: (a) Spiral Patterns, and
(b) the Scalingg,q, image family. A level 2 pattern was used in (b) to match the number of LE iterations required by Spiral
Patterns. For each family member, represented by a point in the x-axes of the respective plot groups (a)-(b), kernel processing
times and overheads were averaged over 100 executions. Analogous kernels in LE/TM are colored similarly. The vertical order
of the colored stripes does not necessarily reflect the order of operations.

super-linearly in TM. These behaviors may be explained by the
geometric differences between the patterns, as the equivalence
chains in a spiral patterns are essentially linear, and lack
locality of memory access. Late/Early property computation
strategies seem less affected by Ridge Patterns than by Spiral
Patterns, but it should be noted that the formulation of Ridge
Patterns as trapezoidal shapes restricts maximum foreground
occupancy to about 25%, whereas Spiral Patterns may reach up
to 50%. Although the exceptional behavior of Spiral Patterns
will render them less useful for processing time estimation
in Section [V-E} they may be considered good candidates for
worst case estimates.

D. Final notes on Late/Early overhead

By studying Figures [7}j§] we see that, in most cases, the pro-
cessing time difference between Ordinary TM and Early TM
is obtained by multiplying each kernel by some scale factor
and adding a constant cost relative to memory setting. Early
LE, in the other hand, usually involves a noticeable change
(for worse) in Analysis behavior, making its average Early
to Ordinary performance ratio worse than TM’s. This effect is
regulated by the size of CCs: worse performance is seen when
a considerable number of pixels is distributed among fewer

components (Figures [7b] and [8a). For Late algorithms, the
critical performance factors are the number of CCs and their
size (Figures[7b}{7d} and[8a). Nonetheless, in the average, Late
LE/TM are usually faster than their Early counterparts, though
associated with greater variance. Table shows the mean
processing time and related standard deviation in each pattern
family for Ordinary, Early, and Late LE/TM, for resolution
8192 x 8192. The Spiral Pattern corresponds to the largest
deviation, in all tables.

The Sequential Relabeling operation is fundamental to
making Late Computation’s average performance better than
Early’s, because it allows to execute a fast Memset operation
for property arrays A, initialization on fewer indices. Conse-
quently, Memset time is hardly visible in all Late plots, while
it represents a considerable fixed cost (12 ms in average) in
Early TM, which always has to initialize 81922 elements in
each of the A, property arrays. Nonetheless, this operation
is also important for Ordinary and Early algorithms, since
full property arrays at this resolution (81922 elements per
property), with the chosen numeric representation, occupy
2.5 GB of memory, which takes around 25 ms in a GPU-
to-CPU transfer.

Late Computation’s final merit is making it possible to
apply these algorithms on higher resolutions. At a resolution

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 11

TABLE III: Mean processing time and relative standard deviation of Ordinary/Late/Early LE/TM on the synthetic image
families at 8192 x 8192 pixels. The total number of images in each family is shown on the rightmost column.

Family \ Ord. LE Ord. TM Early LE Early TM Late LE Late TM Images
Leveling 309 ms £34% 195 ms + 1% 60.0 ms + 9% 36.1 ms + 1% 59.7 ms +18% 483 ms+ 1% 1200
RandomlInstancing | 19.3 ms + 9% 17.0 ms + 9% 380 ms £10% 31.6 ms+ 9% 321 ms £23% 29.6 ms+25% 2100
RandomMerging 26.3 ms +£16% 19.5 ms + 4% 505 ms+11% 372 ms +£5% 533 ms+13% 514 ms £ 24% 2100
Scaling 175 ms £11% 158 ms +11% | 388 ms £21% 293 ms+ 12% | 28.8 ms +36% 27.0 ms + 39% 1600
Spiral 179 ms £30% 228 ms £32% | 41.6 ms +35% 394 ms £+ 28% | 30.7ms+51% 44.0 ms &+ 56% 900
Subdivision 21.5ms £12% 192 ms +5% 475 ms +£11% 36.2 ms + 4% 453 ms +10% 43.0 ms + 14% 1600
Total ‘ 19.7ms £31% 17.5 ms £ 20% ‘ 41.3 ms +£23% 32.6 ms + 18% ‘ 35.7ms £39% 34.4 ms + 39% ‘ 9500

TABLE IV: Mean processing time and relative standard devia-
tion of Ordinary/Late LE/TM on the synthetic image families
at 16 K x 16 K pixels. The total number of images in all
families is shown on the rightmost column.

| LE | ™ | Images
Ordinary | 76 ms + 31% 68 ms + 18% 16120
Late 145 ms + 44% 140 ms + 41% 16120

of 16 K x 16 K pixels, for instance, memory requirements
would be 1 GB for LE/TM label arrays, and 10 GB for
Early Computation property arrays, making it impossible to
run Early LE/TM on most end-consumer graphics cards, such
as the one used in our tests. Even if fewer or smaller bit-
depth properties were being computed, the space requirements
might still be a limiting factor if other parts of a processing
pipeline were to be carried out in GPU memory. We applied
the same battery of artificial tests previously discussed on
Ordinary LE/TM and Late LE/TM, at 16 K x 16 k resolution,
obtaining the results shown in Table

The sensitivity of the Properties Sum kernel due to increas-
ing foreground occupancy remains an issue to be observed
in Late computation performance (it represents approximately
50% of Late processing time at 16 K2 pixels), but considering
the videos evaluated in Section [V-E] it is possible to assume
that the [0%, 25%] occupancy range explorable with Ridge
Patterns is representative of real world scenarios. In this sense,
Figures [7] and [§] and Tables [[TI{IV] already present us with the
worst cases of Late computation.

E. Evaluation on video datasets

In order to test our implementations in real world data, we
evaluated their performance against three image/video datasets
[2], [16], [27]. These datasets cover a range of different
image processing/understanding problems, like object seg-
mentation [2], [16]], [27], object classification [2f], and track-
ing [16]], [27]. All of them feature ground-truth foreground
segmentation of a wide range of objects (persons, vehicles,
animals, etc.), and some have been used in public algorithm
performance contests, like the 2018 DAVIS Challenge on Video
Object Segmentation [27], and the The PASCAL Visual Object
Classes Challenge [2].

All of these datasets have multiple incremental releases, but
we used only the largest and most recent versions released
up to this date. In the Pascal-VOC [2]] object detection and
classification dataset, each scene was frequently associated

TABLE V: Main characteristics of the latest versions of the
image/video datasets used.

Dataset | DAVIS Pascal VOC Segtrack
Reference [27] 121 [16]
Year 2017 2012 v2 (2013)
Images 6208 2913 1067

with multiple object foreground annotations; in these cases,
we generated a single binary image comprised of the union
of all scene objects’ foreground masks. As in the original
paper [33]], our TM implementation is restricted to resolutions
that are powers of two, so we scaled all frames up to the target
resolutions using nearest neighbor sampling (to prevent losing
border shapes that impact LE iterations) for all tests. DAVIS
2017 [27] videos’ resolution is 1600 x 900 pixels, while all
other datasets have varying, and considerably smaller (usually
less than 1024 x 1024) resolutions. Table |V| summarizes the
main characteristics of each dataset, considering the way we
used them Ridge patterns are limited to a foreground occu-
pancy of about 25% of the image pixels, so unless explicitly
mentioned, the following results are based on dataset images
with a foreground occupancy below 30%, which correspond to
exactly 8165 images, or approximately 80% of their contents.
For brevity, synthetic image families are indicated by single
letters in tables, in the following manner: L for Leveling, R for
RandomlInstancing, M for RandomMerging, K for Scaling,
P for Spiral, and S for Subdivision.

Figure [9 plots the processing time distribution curves for
the datasets and for the set of all synthetic images previously
evaluated. Table presents the corresponding statistics, in
numeric form. Although the processing time distributions
in the datasets are not perfectly matched by the synthetic
images, they produce excellent approximations of the mean
and standard deviation.

Finally, we present a simple, yet effective model of per-
formance prediction. We verified that mean processing times
and processing time standard deviation could be modeled as
functions f(z) of the resolution, where f has the form

f(z) =a+ bx°

with a, b, c € R. We estimated these parameters for the mean
processing time and for the processing time standard deviation
through least-squares fitting on the whole set of synthetic tests
performed across all resolutions (a total of 60780 images), ob-
taining the parameters shown in Tables The resulting
performance model curves are plotted in Figure[I0} The error

(18)

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 12
Ordinary Early Late
> : : :
s
.:% 0.10 } —— Eaiterr;s _ :] :
.- /\ T | |
A=] /V [\] 1 | [
= 0.05
i | A\ :
5 AN 7 N R
A 0.00 T :I T '-I] I T |{ T T] { T — T
= : : !
£ 0.2 ; - i . i
g 0.
g ' : |
H ! : :
& F 0.1 7 | . t 1 1
3 1 1
Q : /-r\ 1
o A
5: 0.0 - 1 | { ! ._.a_r-,‘- : i 1 : : I\»'_;; : 4 E‘\Igl :
0 10 20 30 40 50 O 20 40 60 80 100 0 50 100 150

Processing time (ms) Processing time (ms) Processing time (ms)

Fig. 9: Processing time distribution in datasets and synthetic test patterns for each algorithm, at 8192 x 8192 pixels. The
distribution curves f(t), were estimated by computing a 100-bin histogram of the processing time ¢, then convolving the
histogram with a Gaussian kernel (with a diameter of 10 bins), and finally normalizing f so that fooo f(t) dt = 1. For each

case, the mean processing time u is indicated by a vertical dashed line, and the points p — 30 and p + 30 are indicated by

shorter dashed lines, with the same color of f.

TABLE VI: Mean processing time g and processing time
standard deviation o in the datasets and synthetic pattern
images are shown in the central columns, for each algorithm.
The rightmost columns show how much these quantities,
measured on the synthetic patterns, deviate from the datasets,
relative to the datasets’ standard deviations.

. Datasets Patterns Patterns error (>< i)
Algorithms oD

KD oD ns gs HS — KUD 0s — 0D
Ordinary LE 21.4 55 197 6.2 | -0.32 0.12
Ordinary TM | 17.0 42 175 3.5 0.10 -0.16
Early LE 432 122 413 9.5 | -0.16 -0.22
Early TM 31.6 7.1 326 5.9 0.14 -0.17
Late LE 36.6 155 357 13.8 | -0.06 -0.11
Late TM 31,5 140 344 135 0.21 -0.03

magnitudes in these tables confirms that Equation [T8] provides
a reliable performance model, and suggests that synthetic
images may be a viable replacement for actual datasets with
respect to performance estimation. Figure [TI0] also shows that
our: (a) Ordinary/Early TM implementation have a substantial
long-term advantage over Ordinary/Early LE; (b) Late LE
and Late TM share a similar behavior, which was already
expected, since Figures showed that the Properties Sum
kernel dominates execution time as the number of foreground
pixels grows. Notice that, although all curves are plotted up
to 16K? pixels, the memory requirements (over 2.75 GB) for
Early Properties Computation (central column plots) impose a
practical limit on the maximum image resolution.

VI. CONCLUSION

In this work, we discussed a set of extensions and evaluation
methods for GPU connected component algorithms and tested

TABLE VII: Parameters of mean processing time estimation
model, as defined by Equation[I8] The error for each resolution
x was computed as M, where up and op are the

[ea

datasets’ actual mean and standard deviation.

Algorithm | a, by ¢u | Max. error
Ordinary LE 75 1.22¢=* 1.05 0.12
™ | 254 7.63¢~5 1.07 0.50
Early LE | 170 2.51e=% 1.05 0.33
™ | 289 2.06e—% 1.05 0.51
Late LE 93 3.70e=* 102 0.01
™ | 256 3.29¢=% 1.02 0.13

TABLE VIII: Parameters of processing time standard deviation

estimation model, as defined by Equation [T8] The error for
; f@)—op

each resolution z was computed as e where pp and

op are the datasets’ actual mean and standard deviation.

Algorithm ‘ Ao be Co ‘ Max. error
Ordinary LE 34 118 % 1.11 0.05
T™ | 108 6.45¢=6 1.11 0.17
Early LE 24 527 % 1.05 0.02
T™ | 100 2.88¢~5 1.06 0.12
Late LE 64 8.13¢5 1.05 0.05
™ | 122 1.15e~% 1.03 0.06

them on two existing algorithms: the Label Equivalence [S§]]
and the Tile Merging [33|] algorithms. Our main contributions
are:

« A pair of strategies, described in Section [T} for extending
these algorithms to compute properties of connected
components. In the strategy dubbed Early Computation,
the connected component size calculation method by Ka-
lentev et al. [[11] was extend in order to compute centroids

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

Ordinary

Early

13

Late

—_
[e=]
&

LE N
™ E

—
[e=]
[=}

Processing time
Mean (ms)
—
=)
oA
PRI B RTIT MRt M
l

[y
=)
[
1
1

—_
[e=)
[=}
1
1

L

Processing time
Standard dev. (ms)

=

LI T T T A DL
4K? 8K?2 16K? 1K? 2K2

Pixels

2K?2

Pixels

LI LI A T
4K? 8K2 16K?

Pixels

LI LR A T T T
4K? 8K?2 16K? 1K? 2K?

Fig. 10: Processing time mean and standard deviation as functions of resolution. These curves correspond to the model of
Equation @ with the estimated parameters shown in Tables VIIIl Both = and y axes are in logarithmic scale.

and coverings matrices using dense property arrays and
atomic operations at GPU thread-level. On the other hand,
the completely new strategy named Late Computation
uses Inclusive Scans in order to work on smaller property
arrays, and as result, improve mean performance, reduces
the cost of GPU-to-CPU transfers and makes it possible to
apply GPU CCL at greater resolutions impossible to Early
Computation, at the expense of increased performance
variance.

e A performance evaluation methodology for GPU CCL
algorithms described in Section [[V]that uses synthetic im-
age families built out of Connected Component patches,
known as Ridge Patterns, to explore data dependency in
the tested algorithms (LE and TM). Our methodology
extends a test case from the literature (Spiral Pattern),
resulting in mean performance close to three natural
image datasets, with over 9000 total frames, that were
also tested. We also described the fitting of a detailed
performance prediction model based on image features,
and showed that certain synthetic image combinations im-
proved performance prediction in the evaluated datasets,
allowing to predict performance without evaluating a
huge number of frames.

¢ As a minor contribution, we highlighted some implemen-
tation choices of the LE algorithm, not explicitly justified
in past literature, that allowed it to perform better when
compared with TM.

Comparisons between implementations of different algo-
rithms are frequent in the literature. However, if not-so-
obvious implementation details are overlooked, such as the
ones discussed in Section two implementations of the
same algorithm may considerably differ in their final per-
formance. When comparing our implementations of the LE
and TM algorithms, we saw that they kept a similar level of
performance, but a more important conclusion than which im-
plementation is faster in average, is how these implementations

respond to variations in the input data. With respect to that, our
methodology revealed that both algorithms are sensitive to the
number, size and shape of connected components, specially
when computing properties, but TM is considerably more
stable than LE. TM is also more suitable to Early property
computation, as the impact of atomic operations is better
distributed during its Local Merge phase than during LE’s first
Analysis phase, resulting in a smaller overhead. Nonetheless,
the benefits of Late Computation over Early (faster average
performance in most cases, reduced memory usage with
compact representation, and reduced transfer times), are very
significant.

A. Future directions

In this paper, we addressed two of the most famous and well-
documented GPU CCL methods in the literature [8]], [33]], but
applying our methodology to other methods [1], [[12], [15],
(28], [29], [36], [39], [40] could give a better understanding
of their relative strong and weak features.

In the investigation of object properties, we chose an exact
integer representation that requires a considerable number
of bits, even at lower resolutions. A 32-bit floating-point
representation, albeit susceptible to rounding errors due to the
unpredictable order of atomic operations, might be able to
give satisfactory results in some scenarios, which is left to
investigate.

Finally, one limitation of the artificial image families we
developed was the non-uniform distribution of image features.
It seems plausible that a set of artificial images with uniform
feature distributions could give better prediction results and
allow even less tests to be used for reliable performance
estimation.

ACKNOWLEDGMENTS

We thank the Brazilian science and research government
support agencies CNPq and CAPES for the first and third
authors’ grants.

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

[2]

[3]

[4]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

REFERENCES

P Chen, HL Zhao, C Tao, and HS Sang. Block-run-based connected
component labelling algorithm for GPGPU using shared memory. Elec-
tronics letters, 47(24):1309-1311, 2011.

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John
Winn, and Andrew Zisserman. The pascal visual object classes (voc)
challenge. International Journal of Computer Vision, 88(2):303-338,
Jun 2010.

David Fernandez, Ignacio Parra, Miguel Angel Sotelo, and Pedro A
Revenga. Bounding box accuracy in pedestrian detection for intelligent
transportation systems. In IEEE Industrial Electronics, IECON 2006-
32nd Annual Conference on, pages 3486-3491. IEEE, 2006.

Mohsen Ghanea, Payman Moallem, and Mehdi Momeni. Automatic
building extraction in dense urban areas through geoeye multispectral
imagery. International Journal of Remote Sensing, 35(13):5094-5119,
2014.

Costantino Grana, Daniele Borghesani, and Rita Cucchiara. Connected
component labeling techniques on modern architectures. In Image
Analysis and Processing—ICIAP 2009, pages 816-824. Springer, 2009.
Costantino Grana, Daniele Borghesani, and Rita Cucchiara. Optimized
block-based connected components labeling with decision trees. /EEE
Transactions on Image Processing, 19(6):1596-1609, 2010.

Mark Harris, Shubhabrata Sengupta, and John D Owens. Parallel prefix
sum (scan) with CUDA. GPU gems, 3(39):851-876, 2007.

K. A. Hawick, A. Leist, and D. P. Playne. Parallel Graph Component
Labelling with GPUs and CUDA. Parallel Computing, 36(12):655-678,
December 2010.

Lifeng He, Xiwei Ren, Qihang Gao, Xiao Zhao, Bin Yao, and Yuyan
Chao. The connected-component labeling problem: A review of state-
of-the-art algorithms. Pattern Recognition, 70:25-43, 2017.

In-Yong Jung and Chang-Sung Jeong. Parallel connected-component
labeling algorithm for GPGPU applications. In 2010 International
Symposium on Communications and Information Technologies (ISCIT),
pages 1149-1153, october 2010.

Oleksandr Kalentev, Abha Rai, Stefan Kemnitz, and Ralf Schneider.
Connected component labeling on a 2D grid using CUDA. Journal of
Parallel and Distributed Computing, 71(4):615-620, April 2011.
Young-Min Kang, Sung-Soo Kim, and Gyung-Tae Nam. GPU-based
object identification in large-scale images for real-time radar signal
analysis. I/JNCAA, page 140, 2016.

Michael J Klaiber, Donald G Bailey, Yousef O Baroud, and Sven Simon.
A resource-efficient hardware architecture for connected component
analysis. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 26(7):1334-1349, 2016.

Pawel Kmiotek and Yassine Ruichek. Representing and tracking of
dynamics objects using oriented bounding box and extended kalman
filter. In Intelligent Transportation Systems, 2008. ITSC 2008. 1l1th
International IEEE Conference on, pages 322-328. IEEE, 2008.
Praveen Kumar, Ayush Singhal, Sanyam Mehta, and Ankush Mittal.
Real-time moving object detection algorithm on high-resolution videos
using GPUs. Journal of Real-Time Image Processing, 11(1):93-109,
2016.

Fuxin Li, Taeyoung Kim, Ahmad Humayun, David Tsai, and James M.
Rehg. Video segmentation by tracking many figure-ground segments.
In ICCV, 2013.

Xi Li, Weiming Hu, Chunhua Shen, Zhongfei Zhang, Anthony Dick,
and Anton Van Den Hengel. A survey of appearance models in visual
object tracking. ACM transactions on Intelligent Systems and Technology
(TIST), 4(4):58, 2013.

Yuhai Li. Fast multi-level connected component labeling for large-
scale images. In Optoelectronics and Microelectronics (ICOM), 2015
International Conference on, pages 334-337. IEEE, 2015.

Guo Lie, Wang Rong-ben, Jin Li-sheng, Li Lin-hui, and Yang Lu.
Algorithm study for pedestrian detection based on monocular vision. In
Vehicular Electronics and Safety, 2006. ICVES 2006. IEEE International
Conference on, pages 83-87. IEEE, 2006.

Cristobal A Navarro, Nancy Hitschfeld-Kahler, and Luis Mateu. A sur-
vey on parallel computing and its applications in data-parallel problems
using GPU architectures. Communications in Computational Physics,
15(02):285-329, 2014.

NVIDIA Corporation, 2701 San Tomas Expressway Santa Clara, CA
95050. CUDA API Reference Manual, version 8.0 edition, 6 2017.
NVIDIA Corporation, 2701 San Tomas Expressway Santa Clara, CA
95050. CUDA C Best Practices Guide, version 8.0 edition, 6 2017.
VMA Oliveira and RA Lotufo. A study on connected components
labeling algorithms using GPUs. In SIBGRAPI, volume 3, page 4, 2010.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

14

John D Owens, Mike Houston, David Luebke, Simon Green, John E
Stone, and James C Phillips. GPU computing. Proceedings of the
IEEE, 96(5):879-899, 2008.

Fanny Nina Paravecino and David Kaeli. Accelerated connected com-
ponent labeling using CUDA framework. In International Conference
on Computer Vision and Graphics, pages 502-509. Springer, 2014.
Chao Peng, Sandip Sahani, and John Rushing. A GPU-accelerated
approach for feature tracking in time-varying imagery datasets. IEEE
Transactions on Visualization and Computer Graphics, 2016.

F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and
A. Sorkine-Hornung. A benchmark dataset and evaluation methodol-
ogy for video object segmentation. In Computer Vision and Pattern
Recognition, 2016.

Allan Rasmusson, Thomas Sangild Sgrensen, and Gernot Ziegler. Con-
nected components labeling on the GPU with generalization to voronoi
diagrams and signed distance fields. In International Symposium on
Visual Computing, pages 206-215. Springer, 2013.

Lubomir Riha and Manohar Mareboyana. GPU accelerated one-pass
algorithm for computing minimal rectangles of connected components.
In Applications of Computer Vision (WACV), 2011 IEEE Workshop on,
pages 479-484. 1EEE, 2011.

Rupesh Kumar Rout. A survey on object detection and tracking
algorithms. PhD thesis, 2013.

Kurt Schwenk and Felix Huber. Connected component labeling algo-
rithm for very complex and high-resolution images on an fpga platform.
In SPIE Remote Sensing, pages 964603-964603. International Society
for Optics and Photonics, 2015.

Youngsung Soh, Hadi Ashraf, Yongsuk Hae, and Intack Kim. A
hybrid approach to parallel connected component labeling using CUDA.
International Journal of Signal Processing Systems, 1:130-135, 12 2013.
O Stava and B Benes. Connected component labeling in CUDA. In
Wen-Mei W. Hwu, editor, GPU Computing Gems Emerald Edition, GPU
Computing Series, pages 569-581. Morgan Kaufman, 2010.

Robert Walczyk, Alistair Armitage, and T David Binnie. Comparative
study on connected component labeling algorithms for embedded video
processing systems. /PCV, 10:176, 2010.

Martin Weigel. Connected-component identification and cluster update
on graphics processing units. Physical Review E, 84(3):036709, 2011.
Henning Wenke, Sascha Kolodzey, and Oliver Vornberger. A work-
optimal parallel connected-component labeling algorithm for 2d-image-
data using pre-contouring. In International Workshop on Image Pro-
cessing, pages 154-161, 2014.

Kesheng Wu, Ekow Otoo, and Kenji Suzuki. Optimizing two-pass
connected-component labeling algorithms. Pattern Analysis and Ap-
plications, 12(2):117-135, 2009.

Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A
survey. Acm computing surveys (CSUR), 38(4):13, 2006.

Kensaku Yonehara and Kunio Aizawa. A line-based connected com-
ponent labeling algorithm using GPUs. In Computing and Networking
(CANDAR), 2015 Third International Symposium on, pages 341-345.
IEEE, 2015.

Sergey Zavalishin, Ilia Safonov, Yury Bekhtin, and Ilia Kurilin. Block
equivalence algorithm for labeling 2d and 3d images on GPU. Electronic
Imaging, 2016(2):1-7, 2016.

Chen Zhao, Guodong Duan, and Nanning Zheng. A hardware-efficient
method for extracting statistic information of connected component.
Journal of Signal Processing Systems, pages 1-11, 2016.

APPENDIX

A. Proof that Ridge crest controls LE iterations

By analogy to Figure] (d), C> requires 2 LE iterations. Let

our induction hypothesis be that C; = {P,,..

., P,} requires

[iterations, for some /. Assume that P; + 1 denotes increasing
the height of P, by one pixel. Let us build a crest C] =

(P,

., P!} from C; by replicating peaks {Py,...,P,} to

the right of P,, and increasing the height of the first and last
resulting peaks by one pixel, e.g.

The partial crest {F}, ..

Cl={P+1,P,....,P,,P,....,P, 1,P, +1}

., P!} is identical to Cj, except for

P} = Py + 1, so the induction hypothesis implies [iterations

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2851445, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

are required for propagating the final label (which corresponds
to smaller raster index) from Pj to P,. At the same time,
the partial crest {P,, ..., P, } is also identical to Cj, with the
exception of P/ = P, +1. Again, by the induction hypothesis,
[iterations are required for transmitting a minimal label across
the partial crest { P/, ..., P, }. However, P has smaller raster
index than P/, so there exists a number v, with u < v < w,
such that the crests {P,,...,P,} and {P), ,...,P,} will
have been unified into separate components (rooted at P} and
P!, respectively) at the end of [iterations. With an additional
iteration, crest {P),,...,P,} unifies to the label of F.
Since w = 2=, it follows that crest Cj is indeed Cpyq. W

B. Property computation

Table [IX] presents the bit-depths required for each of property
type as a function of image resolution, w X h.

TABLE IX: At resolution w X h, the number of bits per-pixel
required by a property array A, must be calculated considering
the largest possible connected component, a w X h rectangle.
The ceiling of the base-2 logarithm of the expressions below
give these values for the property arrays we compute, where
the expressions for A, and A,> are analogous to those for A,
and A2, respectively, and have thus been omitted.

Ag Az A:c2 Aacy

wh(w—1)(h—1)
4

wh RRUD g (w2 wt g w)

C. Sequential relabeling

The Inclusive Scan, or Prefix Sum, operation is a common
parallel programming primitive. It consists in replacing each
element in an array with the sum of itself with its predecessors.
Formally, given an array R with K elements, the Inclusive
Scan S of R is defined by

S(r) = _ R(i) (19)

i=1

forall 1 <r < K.

As noted by Stava et al. [33]], it is possible to use this oper-
ation for obtaining consecutive labels after completion of the
Tile Merging algorithm. At the end of this algorithm, a pixel
p = (x,y) is representative if, and only if, L(z,y) = = +yw,
given image dimensions w X h. In order to obtain a sequential
relabeling Lg of L, we initialize a wh-element array R with

1, if L(z,y) =z + yw

R(z +yw) =
(yw) 0, otherwise

(20)
forall 1 <z <w,1 <y < h, and compute its prefix sum S.
Then the elements in Lg may be initialized as

Furthermore, S(wh) holds the number of distinct labels in
L, i.e. connected components. This is also valid for the
Label Equivalence algorithm, since representative pixels are
characterized the same way as in TM.

2y

15

Pedro Asad is a DSc. student of The Systems
Engineering and Computer Science Program of the
Federal University of Rio de Janeiro (UFRJ), Brazil,
from which he also received his MSc. degree (2016)
on the topic of tracking human gestures using low-
cost depth sensors. He lectured introductory and in-
termediate programming in undergraduate engineer-
ing courses as a temporary teacher at UFRJ, in the
period of 2015-2017. His current research interests
include GPU programming, computer vision and
data visualization.

Ricardo Marroquim is an Associate Professor at
the Systems Engineering and Computer Science
Program of the Federal University of Rio de Janeiro.
He received his Doctorate degree from this same in-
stitution in 2008. Before joining UFR]J as a professor
in 2009, he was an ERCIM post-doc fellow at the
Visual Computing Lab in Pisa. After returning from
Italy he became one of the leading researchers in
Brazil in the area of Digital Heritage. His other main
research topics are scientific visualization, real-time
rendering, animation, and neuroinformatics.

Andréa L. e L. Souza is a DSc. student of the
Computer and Systems Engineering program of the
Federal University of Rio de Janeiro, Brazil. She
graduated in Mathematics (2008) at Fluminense Fed-
eral University and received her MSc. in Applied
Mathematics (2011) from the Pontifical Catholic
University of Rio de Janeiro. She acted as a mathe-
matics teacher in the public education system during
the year of 2011, and as a virtual mathematics tutor
at Cecierj Foundation (2011-2013) and at Flumi-
nense Federal University (2012). Her research in-
cludes topics in Mathematics Applied to Computing and Computer Graphics.
She is currently working on natural interfaces for 3D performance-driven
animations controlled by hand gestures using real-time depth sensors.

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

