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Figure 1: A metric derived from our model, that predicts the perceived difference (right) between original and distorted disparity (middle).

Abstract

Binocular disparity is an important cue for the human visual system
to recognize spatial layout, both in reality and simulated virtual
worlds. This paper introduces a perceptual model of disparity for
computer graphics that is used to define a metric to compare a stereo
image to an alternative stereo image and to estimate the magnitude of
the perceived disparity change. Our model can be used to assess the
effect of disparity to control the level of undesirable distortions or
enhancements (introduced on purpose). A number of psycho-visual
experiments are conducted to quantify the mutual effect of disparity
magnitude and frequency to derive the model. Besides difference
prediction, other applications include compression, and re-targeting.
We also present novel applications in form of hybrid stereo images
and backward-compatible stereo. The latter minimizes disparity in
order to convey a stereo impression if special equipment is used but
produces images that appear almost ordinary to the naked eye. The
validity of our model and difference metric is again confirmed in a
study.

CR Categories: I.3.3 [Computer Graphics]]: Picture/Image
generation—display algorithms,viewing algorithms;
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1 Introduction

The human visual system (HVS) uses an interplay of many
cues [Palmer 1999; Howard and Rogers 2002] to estimate spatial

configurations which is crucial for the understanding of a scene.
For this reason, conveying depth has challenged artists for many
centuries [Livingstone 2002] and has been identified as an important
problem in contemporary computer graphics [Wanger et al. 1992;
Matusik and Pfister 2004; Lang et al. 2010].

There are many known and unknown high-level processes involved
in stereo perception. In this work, we will exclusively consider
binocular disparity, a low-level, pre-attentive cue, attributed to the
primary visual cortical areas [Howard and Rogers 2002, Chapter 6]
which is one of the most important stereo cues [Cutting and Vish-
ton 1995]. Different from previous studies of disparity [Howard
and Rogers 2002, Chapter 19], we propose a model to account for
the mutual effect on perceived depth of frequency and magnitude
changes in disparity, measured with a consistent set of stimuli.

Applications of our model include a stereo-image-difference met-
ric, disparity re-targeting, compression and two novel applications:
backward-compatible stereo and hybrid stereo images. Backward-
compatible stereo minimizes disparity in order to show an almost
ordinary appearance when observed without special equipment, but
conveys a stereo impression if special equipment is used. Hybrid
stereo images depict different stereo content when observed from dif-
ferent distances. Finally, the metric is validated in another perceptual
study.

We make the following contributions:

• Measurement of detection and discrimination disparity thresh-
olds, depending on magnitude and frequency of disparity;

• A perceptual model and a resulting metric to predict perceived
disparity changes;

• A study to validate the effectiveness of our findings;

• Various application scenarios (including two novel ones:
backward-compatible stereo and hybrid stereo images).

We report a concrete model for standard stereo equipment, but we
expose all details to build new instances for different equipments.

2 Background

Here, we give background information on stereoscopic vision and
show analogies between apparent depth and brightness perception.



2.1 Depth Perception

Depth perception is an important skill that received much atten-
tion [Howard and Rogers 2002; Palmer 1999]. The estimation of
observer-object and inter-object distances is one of the most impor-
tant tasks of the HVS. Its exploration is of relevance in many com-
puter graphics contexts, including virtual reality and movies [Wanger
et al. 1992; Lang et al. 2010].

Depth Cues The HVS relies on a large variety of depth cues,
which can be categorized [Palmer 1999] as pictorial information
(occlusions, perspective foreshortening, relative and familiar object
size, texture and shading gradients, shadows, aerial perspective),
as well as, dynamic (motion parallax), ocular (accommodation and
vergence), and stereoscopic information (binocular disparity). The
HVS exhibits different sensitivity to these depth cues (which may
strongly depend on the object’s distance to the eye [Cutting and Vish-
ton 1995]) and integrates the occasionally contradictory information.
Dominant cues may prevail or a compromise 3D scene interpretation
(in terms of cues likelihood) is perceived [Palmer 1999, Chapter
5.5.10].

Stereopsis is one of the strongest and most compelling depth
cues, where the HVS reconstructs distance by the amount of lateral
displacement (binocular disparity) between the object’s retinal im-
ages in the left and right eye [Palmer 1999, Chapter 5.3]. Through
vergence both eyes can be fixated at a point of interest (e. g., F in
Fig. 2), which is then projected with zero disparity onto correspond-
ing retinal positions. The disparity at P for the fixation point F is
measured as the difference of vergence angles ω−θ (Fig. 2). Note
that this is different from the computer vision meaning of this word,
where, disparity describes the lateral distance (e. g., in pixels) of a
single object inside two images (Fig. 2). We will use “disparity” in
the sense of perception literature and data, while “pixel disparity”
refers to the vision definition. In our work we consider only hor-
izontal disparities as they have stronger contribution to the depth
perception than other, e. g., vertical disparities [Howard and Rogers
2002, Chapter 20.3].
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Figure 2: Binocular vision.

Binocular Fusion Retinal images can be fused only in the region
around the horopter, called Panum’s fusional area, and otherwise
double vision (diplopia) is experienced. The fusion depends on
many factors such as individual differences, stimulus properties
(better fusion for small, strongly textured, well-illuminated, static
patterns), and exposure duration.

Disparity Sensitivity Stereopsis is a low-level cue, which can be
conveniently studied in isolation from other depth cues by means
of random-dot stereograms as proposed by Julesz [1971]. Inter-
estingly, disparity shares a number of properties with brightness
perception [Brookes and Stevens 1989; Lunn and Morgan 1995;
Bradshaw and Rogers 1999]. The disparity detection threshold
depends on the spatial frequency of a corrugated in-depth pattern
with a peak sensitivity around 0.3–0.5 cpd (cycles-per-degree). The
disparity sensitivity function (DSF), which is analogous to the con-
trast sensitivity function (CSF) in the luminance domain, has the

familiar inverse “u”-shape with a cut-off frequency around 3 cpd
[Bradshaw and Rogers 1999, Fig. 1]. Also, for larger-amplitude
(suprathreshold) corrugations [Ioannou et al. 1993], the minimal dis-
parity changes that can be discriminated (discrimination thresholds)
exhibit a Weber’s Law-like behavior and increase with the amplitude
of corrugations [Howard and Rogers 2002, Fig. 19.24 d]. Analo-
gous to luminance maladaptation, where the HVS can hardly adopt
to rapidly changing illumination conditions, disparity perception is
subject to a similar mechanism. Disparity detection and discrimina-
tion thresholds are increasing when corrugated patterns are moved
away from the zero-disparity plane [Blakemore 1970, Fig. 6]. The
larger the pedestal disparity (i. e., the further the pattern is shifted
away from zero-disparity) the higher are such thresholds.

Visual Channels for Disparity Techniques used in spatial con-
trast vision, such as masking and adaptation, provide clear evidence
that the CSF shape is an envelope of responses for a number of
independent channels, which are tuned to different spatial frequen-
cies [Daly 1993]. The same conclusion can be drawn when similar
techniques are employed with respect to disparity (refer to [Howard
and Rogers 2002, Chapter 19.6.3d] for the survey of relevant experi-
ments). The independent channel bandwidth for disparity modula-
tion has not been clearly established, but existing estimates suggest
the range of 1–3 octaves.

Disparity Contrast Apparent depth is dominated by the distribu-
tion of disparity contrasts rather than absolute disparities [Brookes
and Stevens 1989], which is similar to apparent brightness which
is governed by contrasts rather than absolute luminance. While the
precise relationship between apparent depth and disparity features is
not fully understood, depth is perceived most effectively at surface
discontinuities and curvatures, where the second order differences
of disparity are non-zero. This means that binocular depth triggered
by disparity gradients (as for slanted planar surfaces) is weak and,
in fact, dominated by the monocular interpretation [Brookes and
Stevens 1989]. As confirmed by the Craik-O’Brien-Cornsweet il-
lusion for depth [Anstis and Howard 1978; Rogers and Graham
1983], where a strong apparent depth impression arises at sharp
depth discontinuities and is maintained over regions where depth is
actually decaying towards equidistant ends. Recently, it was found
that effects associated with lateral inhibition of neural responses
(such as Mach bands, the Hermann grid, and simultaneous contrast
illusions) can be readily observed for disparity contrast [Lunn and
Morgan 1995].

2.2 3D Image Quality Metrics

While it has been recognized that image quality metrics for conven-
tional 2D images (see [Wang et al. 2004] for a survey) should be
extended to meaningfully predict the perceived quality of stereo-
scopic 3D images, relatively little research addresses this issue.
Meesters et al. [2004] postulate a multidimensional 3D-image-
quality model that incorporates perceptual factors related to disparity
distortions (focus of this work), visual comfort, and 3D image im-
pairments. In practice, all these factors are considered in isolation
and existing quality metrics are mostly driven by 3D image com-
pression applications. A comprehensible 3D-image-quality metric
seems a distant goal.

Visual Comfort in 3D displays strongly depends on interac-
tions between eye vergence and accommodation which tends to
maintain the display screen within the depth of focus (DOF)
that roughly falls into the range of ±0.3 diopters [Hoffman
et al. 2008]. Accommodation-vergence models incorporating dual-
parallel feedback-control systems exist (see [Lambooij et al. 2009]



for a short survey), but focus rather on dynamic interactions. Our
perceived disparity model does not account for accommodation, but
we focus our measurements and applications on disparity ranges that
do not cause visual discomfort due to blur and diplopia.

3D Image Impairments Meesters et al. [2004] provide a detailed
survey of techniques dealing with 3D-image impairments induced by
camera configurations, image compression, or display technology.
These impairments are either aspects of higher-level (cognitive)
aspects of the HVS, which are beyond the scope of this work, or
affect mostly the 3D appreciation and visual discomfort and are less
related to depth perception.

Misperceptions of stereo content shown on stereoscopic displays
is often caused by wrong viewing distance or position, which results
in distorted shape perception. Recent work by Held et al. [2008]
presents a mathematical model for predicting these distortions. How-
ever they do not address the problem of detecting visibility or
strength of those changes which is crucial for our applications.

Compression Artifacts MPEG and JPEG compression artifacts
in the color information, affect image quality, but have little in-
fluence on perceived depth [Seuntiens et al. 2006]. Therefore we
do not consider them in this work. Sazzad et al. [2009] devel-
oped a non-reference stereoscopic image quality metric which com-
bines the estimate of blockiness and blur with a disparity measure.
Benoit et al. [2008] report significant correlation with subjective
mean-opinion-score (MOS) data for stereo images, when the dispar-
ity error is incorporated into standard 2D image metrics (in particular
in conjunction with the structural similarity index (SSIM) [Wang
et al. 2004]). But, in all cases, pixel disparity errors are measured
in absolute scale without taking perceived disparity distortion into
account which is one of our main goals.

2D Image Quality Metrics focus on near-threshold detection
[Daly 1993], supra-threshold discrimination [Lubin 1995], func-
tional differences [Ramanarayanan et al. 2007], and structural differ-
ences [Wang et al. 2004]. Since we intend to measure suprathreshold
depth distortions and evaluate their magnitude in perceptually mean-
ingful scales, the VDM metric [Lubin 1995] is closest to our needs.
Analogously, we consider the DSF, disparity masking, disparity
channel decomposition, and pooling of perceived disparity differ-
ences over such channels to derive a per-pixel difference map. The
VDM metric relies on the contrast transducer, which represents a
hypothetical response of the HVS to a given contrast [Wilson 1980;
Lubin 1995; Mantiuk et al. 2006]. The following section describes
a perceptual experiment to derive disparity transducers for selected
frequencies of corrugated spatial patterns leading to to a perceptual
linearization of physical disparity.

3 Method

To derive disparity transducers, we need precise detection and dis-
crimination thresholds that cover the full range of magnitudes and
spatial frequencies of corrugated patterns that can be seen without
causing diplopia. While some disparity detection data is readily
available [Bradshaw and Rogers 1999; Tyler 1975] (see [Howard
and Rogers 2002, Chapter 19.6.3] for a survey), we are not aware of
any set of densely measured discrimination thresholds. The closest
experiment to ours has been performed by Ioannou et al. [1993]
where observers matched peak-to-trough corrugations of various
spatial frequencies to a variable amplitude-reference corrugation
of fixed intermediate frequency. Only three suprathreshold ampli-
tudes (up to 8 arcmin) have been investigated [Howard and Rogers

2002, Fig. 19.24 d], and we are more interested in the disparity-
difference discrimination within the same frequency to account for
intra-channel masking. Furthermore, existing measurements are
often performed with sophisticated optical setups (e. g., [Blakemore
1970]), whereas we wanted to acquire data for modern, inexpensive
3D displays, which are also used in our applications (Sec. 6).

We allow for free eye motion in our experiments, making multiple
fixations on different scene regions possible, which approaches real
3D-image observations. In particular, we want to account for a better
performance in relative depth estimation for objects that are widely
spread in the image plane (see [Howard and Rogers 2002, Chap-
ter 19.9.1] for a survey on possible explanations of this observation
for free eye movements). The latter is important to comprehend
complex 3D images. In our experiments, we assume that depth cor-
rugated stimuli lie at the zero disparity plane (i. e., observers fixate
corrugation) because free eye fixation can mostly compensate for
any pedestal disparity within the range of comfortable binocular vi-
sion [Lambooij et al. 2009; Hoffman et al. 2008]. Such zero-pedestal
disparity assumption guarantees that we conservatively measure the
maximum disparity sensitivity [Blakemore 1970], which in such
conditions is similar for uncrossed (positive, i. e., ω−θ > 0 as in
Fig. 2) and crossed (negative) disparities [Howard and Rogers 2002,
Fig. 19.24 c]. For this reason in what follows we assume that only
disparity magnitude matters in the transducer derivation.

Parameters Our experiments measure the dependence of
perceived disparity on two stereo image parameters: disparity
magnitude and disparity frequency. We do not account for variations
in accommodation, viewing distance, screen size, luminance, or
color and all images are static.

Disparity Frequency specifies the spatial disparity change per unit
visual degree. Note, that it is different from the frequencies of the
underlying luminance, which we will call luminance frequencies.
We considered the following disparity frequencies: 0.05, 0.1, 0.3,
1.0, 2.0, 3.0 cpd. In the pilot study, we experimented with more
extreme frequencies, but the findings proved less reliable (consistent
with [Bradshaw and Rogers 1999]).

Disparity Magnitude corresponds to the corrugation pattern ampli-
tude. The range of disparity magnitude for the detection thresholds
to suprathreshold values that do not cause diplopia have been con-
sidered, which we determined in the pilot study for all considered
disparity frequencies. While disparity differences over the diplopia
limit can still be perceived up to the maximum disparity [Tyler 1975],
the disparity discrimination even slightly below the diplopia limit
is too uncomfortable to be pursued with naïve subjects. To this
end, we decreased it explicitly, in some cases, significantly below
this boundary. After all, we assume that our data will be mostly
used in applications within the disparity range that is comfortable
for viewing. Fig. 3.1 shows our measured diplopia and maximum
disparity limits, as well as the effective range disparity magnitudes
that we consider in our experiments.

Stimuli All stimuli are horizontal sinusoidal gratings with a cer-
tain amplitude and frequency with a random phase. Similarly to
existing experiments, the disparity is applied to a luminance pattern
consisting of a high number of random dots, minimizing the effect
of most external cues (e. g., shading). A cue that could influence our
measurements is texture density. However in our case, as we seek to
measure 1 JND, subjects always compare patterns with very similar
amplitudes. Therefore the difference in texture density between
two stimuli is always imperceivable and does not influence detec-
tion thresholds as confirmed by Bradshaw et al. [1999]. Formally,
we parameterize a stimulus s ∈ R2 in two dimensions (amplitude
and frequency). The measured discrimination threshold function
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Figure 3: Left to right: (1) Disparity magnitude ranges: (red) maximum disparity used in our experiments, (yellow) diplopia and (blue)
maximum disparity limits. (2) The experimental setup where subjects select the sinusoidal gratings which exhibits more depth. (3) Our fit to the
disparity discrimination threshold function ∆d(s). (4) The cross section of our fit at the most sensitive disparity frequency 0.3 cpd (the error
bars denote the standard error of the mean (SEM) at measurement locations). (5) Analogous cross section along frequency axis showing the
detection thresholds. Both cross sections are marked with white dashed lines in (3). (6) The transducer functions for selected frequencies.
Empty circles denote the maximum disparity limits.

∆d(s) : S →R maps every stimulus within the considered parameter
range to the smallest perceivable disparity change.

Stimulus Generation An image-based warping is used to pro-
duce both views of the stimulus independently. First, the stimulus’
disparity map D is converted into a pixel disparity map Dp, by taking
into account the equipment, viewer distance, and screen size. We
assumed standard intra-ocular distance of 65 mm, which is needed
for conversion to a normalized pixel disparity over subjects. Next,
the luminance image is traversed and every pixel L(x) from location
x ∈ R2 is warped to a new location x± (Dp(x),0)T for the left, re-
spectively right eye. As occlusions cannot occur for these stimuli,
warping produces artifact-free valid stimuli. To ensure sufficient
quality, super-sampling is used: Views are produced at 40002 pix-
els, but shown as 10002-pixel patches, down-sampled using a 42

Lanczos filter.

Equipment We use three representative forms of stereo equip-
ment: active shutter glasses, anaglyph glasses and an auto-
stereoscopic display. We used Nvidia 3D Vision active shutter
glasses (∼ $100) in combination with a 120 Hz, 58 cm diagonal
Samsung SyncMaster 2233RZ display (∼ $300, 1680× 1050 pix-
els), observed from 60 cm. As a low-end solution, we also used this
setup with anaglyph glasses. Further, a 62 cm Alioscopy 3DHD24
auto-stereoscopic screen (∼ $6000, 1920× 1080 pixels total, dis-
tributed on eight views of which we used two) was employed. It is
designed for an observation distance of 140 cm. Unless otherwise
stated, the results are reported for active shutter glasses.

Subjects All subjects in our experiment are naïve, paid, and have
normal or corrected-to-normal vision. We verified that no subject
was color [Ishihara 1987] or stereo-blind [Richards 1971].

Task In this experiment, we sample ∆d at locations S = {si|si ∈ S}
by running a discrimination threshold procedure on each to evaluate
∆d(si). A two-alternative forced-choice (2AFC) staircase procedure
is performed for every si. Each staircase step presents two stimuli:
one defined by si, the other as si +(ε,0)T , which corresponds to a
change of disparity magnitude. Both stimuli are placed either right
or left on the screen (Fig. 3.2), always randomized. The subject
is then asked which stimulus exhibits more depth amplitude and
to press the “left” cursor key if this property applies to the left
otherwise the “right” cursor key. After three correct answers ε is
decremented and after a single incorrect answer it is incremented
by the step-size determined via PEST (Parameter Estimation by
Sequential Testing) [Taylor and Creelman 1967].

In total 27 PEST procedures have been performed per subject.
Twelve subjects participated in the study with the shutter glasses and

four subjects with each other setup of stereo equipment (anaglyph
and auto-stereoscopy). Each subject completed the experiment in 3–
4 sessions of 20–40 minutes. Four subjects repeated the experiment
twice for different stereo equipment. The supplemental material
includes the full account of obtained results, which indicate that the
disparity sensitivity near the detection threshold and for low disparity
magnitudes is the highest for the shutter glasses. For larger disparity
magnitudes the differences in the sensitivity are less pronounced
between different stereo technologies.

4 Model

We use the data from the previous procedure to determine a model
of perceived disparity by fitting an analytic function to the recorded
samples. It is used to derive a transducer to predict perceived dis-
parity in JND (just noticeable difference) units for a given stimulus
which is the basis of our stereo difference metric (Sec. 5).

Fitting To model the thresholds from the previous experiment, we
fit a two-dimensional function of amplitude a and frequency f to the
data (Fig. 3.3–5). We use quadratic polynomials with a log-space
frequency axis to well fit (the goodness of fit R2 = 0.9718) the almost
quadratic “u”-shape measured previously [Bradshaw and Rogers
1999, Fig. 1]:

∆d(s) = ∆d(a, f )≈ 0.2978+0.0508a+0.5047 log10( f )+

0.002987a2 +0.002588a log10( f )+0.6456 log2
10( f ).

Based on this function, we derive a set of transducer functions which
map a physical quantity x (here disparity) into the sensory response
r in JND units. Each transducer t f (x) : R+→ R+ corresponds to
a single frequency f and is computed as t f (x) =

∫ x
0 (∆d(a, f ))−1da.

∆d is positive, t f (x) is monotonic and can be inverted, leading to
an inverse transducer t−1

f (r), that maps a number of JNDs back
to a disparity. For more details on transducer derivation refer to
Wilson [1980] or Mantiuk et al. [2006].

One should notice that limiting disparity magnitudes below the
diplopia limits in our experiments (Sec. 3) has consequences. Our
∆d(s) fit is, strictly seen, only valid for this measured range. Con-
sequently, transducers (Fig. 3.6) have to rely on extrapolated in-
formation beyond this range. While the transducer functions look
plausible, they should actually remain flat beyond the maximum
disparity limits, which are denoted as empty circles in Fig. 3.6. In
those regions we enforce that the overall increase of the transducers
remains below a one-JND fraction, reflecting that depth perception
becomes impossible, but securing the invertibility of the function.

In practice, we rely on a family of transducers Tf discretized using



numerical integration and inverse transducers T−1
f found by inver-

sion via searching. All transducers are pre-computed (Fig. 3.6) and
stored as look-up tables.
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Figure 4: Our perceived disparity model pipeline: Starting from
angular vergence derived for pixel disparity (top left, orange), a
Laplacian decomposition separates disparity in different frequency
bands. The transducers acquired from our experiments (bottom left,
green) are used to transform disparity into perceptual units (JND).

Pipeline The transducers of the previous section can be integrated
in a pipeline to compute perceived disparity of a stimulus (Fig. 4).
This pipeline takes a stereo image, defined by luminance and pixel
disparity, as input and outputs the perceived disparity decomposed
into a spatial-frequency hierarchy that models disparity channels
in the HVS. Such spatial-frequency selectivity is usually modeled
using a hierarchal filter bank with band-pass properties such as
wavelets, Gabor filters, Cortex Transform [Watson 1987; Daly 1993],
or Laplacian decomposition [Burt and Adelson 1983]. The latter
is our choice, mostly for efficiency reasons and the fact that the
particular choice of commonly used filter banks should not affect
qualitatively the quality metric outcome [Winkler 2005, p. 90].

First, the pixel disparity is transformed into corresponding angular
vergence, taking the 3D image observation conditions into account.
Next, a Gaussian pyramid is computed from the vergence image.
Finally, the differences of every two neighboring pyramid levels
are computed, which results in the actual disparity frequency band
decomposition. In practice, we use a standard Laplacian pyramid
with 1-octave spacing between frequency bands. Finally, for every
pixel value in every band, the transducer of this band maps the
corresponding disparity to JND units by a simple lookup. In this
way, we linearize the perceived disparity.

To convert perceived disparity e. g., after a manipulation (see appli-
cations - Sec. 6), back into a stereo image, an inverse pipeline is
required. Given a pyramid of perceived disparity in JND, the inverse
pipeline produces again a disparity image by combining all bands
similarly to previous work on luminance [Mantiuk et al. 2006].

5 Metric

Based on our model, we can define a perceptual stereo image metric.
Given two stereo images, one original Do and one with distorted
pixel disparities Dd, it predicts the spatially varying magnitude of
perceived disparity differences. To this end we insert both Do and
Dd into our pipeline (Fig. 5). First, we compute the perceived dispar-
ity Ro, respectively Rd. This is achieved using our original pipeline
from Fig. 4 with an additional phase uncertainty step (also called
the phase independence operation in [Lubin 1995]) before applying
per-band transducers. This eliminates zero crossings at the signal’s
edges and thus prevents incorrect predictions of zero disparity dif-
ferences at such locations. In practice, we use a 5× 5 Gaussian
low-pass filter at every level of our Laplacian pyramid and compen-
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Figure 5: Perceptual disparity image difference metric: First, an
original and a distorted pixel disparity map (bottom left) are trans-
formed to vergence. Next, we convert them into JND using our
pipeline (top left). Subtracting both JND results we obtain a per-
band spatially varying perceived disparity difference (top right).
Finally, Minkowski summation combines all bands into a single
distortion map scaled in JNDs (bottom right).

sate for the resulting amplitude loss, which is a part of the calibration
procedure (below). Than every pixel i, j and each band k the differ-
ence Ro,d

i, j,k = Ro
i, j,k−Rd

i, j,k is computed and finally combined using

a Minkowski summation [Lubin 1995]: di, j =

(
∑k

∣∣∣Ro,d
i, j,k

∣∣∣β) 1
β

,

where β , found in the calibration step, controls how different bands
contribute to the final result. The result is a spatially-varying map
depicting the magnitude of perceived disparity differences, which
can be visualized, e. g., in false colors, as in Fig. 1 (right).

In our metric, we consider all frequency bands up to 4 cpd, which
cover the full range of visible disparity corrugation frequencies
and we ignore higher-frequency bands. Note that the intra-channel
disparity masking is modeled because of the compressive nature of
the transducers for increasing disparity magnitudes.

Calibration We performed the metric calibration to compensate
for accumulated inaccuracies of our model. The most serious prob-
lem is signal leaking between bands during the Laplacian decompo-
sition, which offers also clear advantages. Such leaking effectively
causes inter-channel masking, which conforms with the observation
that the disparity channel bandwidth of 2–3 octaves might be a viable
option [Howard and Rogers 2002, Chapter 19.6.3d]. This justifies
relaxing frequency separation between 1-octave channels such as
we do. While decompositions with better frequency separation be-
tween bands exist such as the Cortex Transform, they preclude an
interactive metric response. Since signal leaking between bands as
well as the previously-described phase uncertainty step lead to an
effective reduction of amplitude, a corrective multiplier K is applied
to the result of the Laplacian decomposition.

To find K and calibrate our metric we use the data obtained in our
experiment (Sec. 3). As reference images, we used the experiment
stimuli described in Sec. 3 for all measured disparity frequencies and
magnitudes. As distorted images, we considered the corresponding
patterns with 1, 3, 5, and 10 JNDs distortions. The magnitude of
1 JND distortion directly resulted from the experiment outcome and
the magnitudes of larger distortions are obtained using our transducer
functions. The correction coefficient K = 3.9 lead to the best fit and
an average metric error of 11%. Similarly, we found the power term
β = 4 in the Minkowski summation.
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Figure 6: A comparison of perceived difference between the
Campbell-Robson disparity pattern and the same pattern after
adding a constant increment of amplitude (left), once using one
transducer per band (multi-band, center) vs. the same transducer
for all bands (single-band, right).

Validation First, we tested for the need of having different trans-
ducers for different bands. This is best seen when considering the
difference between two Campbell-Robson disparity patterns of dif-
ferent amplitude (Fig. 6). Comparing our metric and a metric, where
the same transducer for all bands is used, shows that ours correctly
takes into account how the disparity sensitivity depends on the pat-
tern frequency. Our method correctly reports the biggest difference
in terms of JNDs for frequencies to which the HVS is most sensi-
tive to (i. e., ∼0.4 cpd). Using only one transducer is still beneficial
comparing to not using it, which in such a case would result in an
uniform distortion reported by the metric.

Figure 7: Left to right: Stimuli of increasing complexity and in-
creasing amount of external cues shown in red-cyan anaglyph: a
GABOR patch, a 3D TERRAIN, and a FACTORY.

Next, we checked whether subthreshold distortions as predicted by
our metric cannot be seen, and conversely whether over threshold
distortions identified by our metric are visible. We prepared three
versions of each stimulus (Fig. 7): a reference, and two copies with a
linearly scaled disparity which our metric identifies as 0.5 JND and
2 JND distortions. In a 2AFC experiment, the reference and distorted
stereo images were shown and subjects were asked to indicate the
image with larger perceived depth. Five subjects took part in the
experiment where stimuli have been displayed 10 times each in a
randomized order. For the 0.5 JND distortion the percentage of
correct answers falls into the range 47–54%, which in practice
means a random choice and indicates that the distorted image cannot
be distinguished from the reference. For the 2 JND distortion the
outcome of correct answers was as follows: 89%, 90%, and 66% for
the scenes GABOR, TERRAIN, and FACTORY, respectively. The two
first results fall in the typical probability range expected for 2 JND
[Lubin 1995] (the PEST procedure asymptotes are set at the level
79%, equivalent to 1 JND [Taylor and Creelman 1967]). On the other
hand, for FACTORY the metric overestimates distortions, reporting
2 JND, while they are hardly perceivable. The repeated experiment
for this scene with 5 JND distortion lead to an acceptable 95% of
correct detection. The results indicate that our metric correctly scales
disparity distortions when disparity is one of the most dominating
depth cues. For scenes with greater variety of depth cues (e. g.,
occlusions, perspective, shading), perceived disparity is suppressed
and our metric can be too sensitive. The t-test analysis indicates
that the distinction between 0.5 and 2 JND stimuli is statistically
significant with p-value below 0.001 for the GABOR and TERRAIN
scenes. For FACTORY such statistically significant distinction is
obtained only between 2 and 5 JND stimuli.

6 Applications

Besides the perceived disparity difference assessment (Sec. 5), we
demonstrate the application of our model to a number of problems:
stereo content compression, re-targeting, personalized stereo, hybrid
images, and finally an approach to backward-compatible stereo.

Same as in the experiment, we use warping to generate image pairs
out of a single (or a pair of) images. Different from the experiments,
in our applications, we have to avoid holes, which is done not by
warping individual pixels, but a conceptual grid [Didyk et al. 2010].
Further, to resolve occlusions a depth buffer is used: If two pixels
from a luminance image map onto the same pixel in one view, the
closest one is chosen. All applications shown here, including the
model, run on graphics hardware at interactive rates.

6.1 Stereo Image and Video Compression

Our model can be used to improve the compression efficiency of
stereo content. Assuming a disparity image as input, we first convert
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Figure 8: Perceptual disparity compression pipeline: An original
pixel disparity (vergence) image (top left), is transformed into JND
(middle). In this space, disparities which are below one JND (red
dotted line) can be identified and removed, because they are not
perceived (right). Optionally, a threshold of more than one JND can
achieve more aggressive compression. The compressed disparity
will have less details, as those which are not perceived are removed
(bottom left).

physical disparity into perceived disparity (Fig. 8). In perceptual
space, disparity below one JND can be safely removed without
changing the perceived stereo effect (Fig. 9). More aggressive results
are achieved when using multiple JNDs. It would further be possible
to remove disparity frequencies beyond a certain value. As shown by
Tyler [1975] subjects cannot perceive disparity corrugations with a
frequency above 3-5 cpd. This, however, requires further verification
and was not used in our results, e. g., Fig. 9.

6.2 Global Disparity Operators

Global operators [Pratt 1991] that map disparity values to new dis-
parity values globally, can operate in our perceptually uniform space,
and their perceived effect can be predicted using our metric. To this
end disparity is converted into perceptually uniform units via our
model, it is modified, and converted back.

Non-linear disparity-retargeting allows us to match pixel dis-
parity in 3D content to specific viewing conditions and hardware,
and provides artistic control [Lang et al. 2010]. The original tech-
nique uses a non-linear mapping of pixel disparity, whereas with
our model, one can work directly in a perceptual uniform disparity
space, making editing more predictable. Furthermore, our difference
metric can be used to quantify and spatially localize the effect of a
retargeting (Fig. 9).
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Figure 9: Disparity operations (e. g., compression and re-scaling) are improved by operating in our perceptually-uniform space. A stereo
image (a), and the same image with disparities below 1 JND removed (b). The insets show pixel disparity and file size when compressing
with LZW. Our method detects small, unperceived disparities and removes them. Additionally it can remove spatial disparity frequencies that
humans are less sensitive to. Further, we compare rescaling of an original image (c) using pixel disparity (d) and our perceptual space (e).
Our scaling compresses big disparities more, as our sensitivity in such regions is small, and preserves small disparities where the sensitivity is
higher. In the lower insets, pixel disparities and the difference to the original, as predicted by our metric, are shown. Simple scaling of pixel
disparity results in loss of small disparities, flattening objects as correctly indicated by our metric in the flower regions. Our scaling preserves
detailed disparity resulting in smaller and more uniform differences, again correctly detected by our metric.

Histogram equalization can use our model to adjust pixel dispar-
ity to optimally fit into the perceived range [Pratt 1991; Mantiuk
et al. 2006]. Again, after transforming into our space, the inverse cu-
mulative distribution function c−1(y), is built on the absolute value
of the perceived disparity in all levels of the Laplacian pyramid and
sampled at the same resolution. Then, every pixel value y in each
level, at its original resolution is mapped to sgn(y)c−1(y), which
preserves the sign.

6.3 Personalized Stereo

When displaying stereo content with a given physical disparity, its
perception largely depends on the viewing subject and the equipment
used. It is known that stereoacuity varies drastically for different
individuals, even more than for luminance [Coutant and Westheimer
1993; Richards 1971]. In our applications we used an average
model derived from the data obtained during experiments. Although
it has the advantage of being a good trade-off in most cases, it can
significantly over- or underestimate discrimination thresholds for
some users. This may have an impact especially while adjusting
disparity according to user-preferences. Therefore our model pro-
vides the option of converting perceived disparity between different
subjects, between different equipment, or even both. To this end a
transducer, acquired for a specific subject or equipment, converts
disparity into a perceptually uniform space. Applying an inverse
transducer acquired for another subject or equipment achieves a
perceptually equivalent disparity for this other subject or equipment.

6.4 Hybrid Stereo Images

Hybrid images change interpretation as a function of viewing dis-
tance [Oliva et al. 2006]. They are created, by decomposing the
luminance of two pictures into low and high spatial frequencies
and mutually swapping them. The same procedure can be applied
to stereo images by using our disparity band-decomposition and
perceptual scaling (Fig. 10).

6.5 Backward-compatible Stereo

The need for specialized equipment is one of the main problems
when distributing stereo content. As an example, consider printing
an anaglyph stereo image on paper: the stereo impression is enjoyed
with special anaglyph glasses, but the colors are ruined for spectators
with no such glasses. Similarly, observers without shutter glasses
see a blur of two images when sharing a screen with users wear-

Figure 10: A hybrid stereo images: nearby, it shows the BUDDHA;
from far away, the GROG model.

ing adapted equipment. We approach this backward-compatibility
problem, in a way that is equipment and image content independent,
by employing our model. Starting from an arbitrary stereo content,

Common anaglyph

Backward compatible

Pos. Disp.Zero Disp.Neg. Disp.

Figure 11: Backward compatible stereo provides just-enough dis-
parity cues to perceive stereo, but minimizes visible artifacts when
seen without special equipment.

we compress (i. e., flatten ) disparity, which improves backward
compatibility, and, at the same time, we employ our metric to make
sure that at least a specified minimum of perceived disparity remains.
When compressing the stereo content, we can make use of the Craik-
O’Brien-Cornsweet-illusion [Anstis and Howard 1978; Rogers and
Graham 1983], which relies on removing the low-frequency compo-
nent of disparity. Since we are less sensitive for such low frequencies



(Fig. 3.5), the resulting gradual disparity decay in the Cornsweet
profile remains mostly invisible and apparent depth, which is in-
duced at the disparity discontinuity is propagated by the HVS over
surfaces separated by this discontinuity [Rogers and Graham 1983]
(Fig. 11). One additional advantage of the Cornsweet disparity is its
locality that enables apparent depth accumulation by cascading sub-
sequent disparity discontinuities. This way the need to accumulate
global disparity is avoided which improves backward-compatibility.
Similar principles have been used in the past for detail-preserving
tone mapping [Krawczyk et al. 2007], as well as bas-relief [Weyrich
et al. 2007]. Note that one can also enhance high spatial frequencies
in disparity (as in unsharp masking [Kingdom and Moulden 1988])
to trigger the Cornsweet disparity effect, but then the visibility of
3D-dedicated signal is also enhanced.

7 Discussion

Previous experiments concerning depth discrimination thresholds ex-
ist [Blakemore 1970; Prince and Rogers 1998; Bradshaw and Rogers
1999], but only covered a smaller subset of our space. Further, these
findings were based on mutually very different setups and viewing
conditions e. g., they require participants to fixate points or bars,
sometimes for only a short time. Our thresholds are mostly higher
than what is reported for physical stimuli in the literature. Here,
our focus on current stereo equipment shows. The difference im-
plies that there is still room for improvement of modern equipment,
but also that it is worth deriving thresholds for existing hardware
explicitly.

Our disparity perception model is based on a number of simpli-
fying assumptions. We ignore the dependence of stereoacuity on
image content, which may be quite complex. Stereoacuity weakly
depends on the display luminance when it is larger than 3 cd/m2,
which means that for LCD displays stereoacuity can be slightly
reduced only in dimmer image regions [Howard and Rogers 2002,
Chapter 19.5.1]. The stereoacuity exhibits also a weak dependence
on image contrast at suprathreshold levels (over 10 JNDs), but then
it declines sharply near contrast threshold [Howard and Rogers 2002,
Fig. 19.12]. Luminance contrast thresholds required for stereoacu-
ity have weak dependence on suprathreshold disparity magnitude,
and their dependence on the luminance spatial frequency is simi-
lar as in the CSF function, but the actual thresholds are 2–4 times
larger [Howard and Rogers 2002, Fig. 19.13]. Disparity thresholds
depend on spatial frequency of suprathreshold luminance contrast,
but for suprathreshold disparities such dependence is weak [Lee and
Rogers 1997]. Such relations hold mostly irrespectively of spatial
frequency of disparity corrugations.

In our experiments we dealt with suprathreshold luminance con-
trast as well as threshold and suprathreshold disparity magnitudes,
so related disparity–contrast signal interactions are naturally ac-
counted by our model. Instead of adding two more dimensions
(spatial frequency and magnitude of luminance contrast) to our ex-
periment, we decided to tolerate existing inaccuracies of our model
for near threshold contrast which we find justified due to the nature
of our applications, dealing mostly with suprathreshold disparity-
contrast signals. We relegate in-depth investigations of near thresh-
old disparity-contrast signal interactions as future work.

We also ignore temporal effects although they are not only limited
to high-level cues, but also present in low-level pre-attentive struc-
tures [Palmer 1999; Howard and Rogers 2002]. Furthermore, our
measurements are performed for an accommodation onto the screen
which is a valid assumption for current equipment, but might not
hold in the future. Our measurements consider only horizontal cor-
rugations, while the stereoscopic anisotropy (lower sensitivity to
vertical corrugations) can be observed for spatial corrugations below

0.9 cpd [Bradshaw and Rogers 1999], but our metric could easily
accommodate for anisotropy by adding orientation selectivity into
our channel decomposition [Daly 1993; Lubin 1995].

Our metric measures perceived disparity differences, which is differ-
ent from viewing comfort or immersion in the environment which
are important problems when dealing with stereo. However, an
automated computational model of perceived disparity like ours
could be a critical component when developing dedicated algorithms.
Similarly, the prediction of disparity distortions is merely one of
many factors which contributes to the perceived realism of a 3D
scene, image quality itself as well as the visual comfort (e. g., eye
strain) [Meesters et al. 2004] are further interesting aspects.

We do not include the influence of color, whereas it is known for
centuries [Livingstone 2002] how e. g., aerial perspective (the haze
effect) greatly helps the depiction of space. As for most luminance
perception models and metrics, higher-level processing is beyond
the scope of this paper. A perceptual model that includes an analysis
of the shape and its properties (e. g., its curvature, moments, etc.)
would be an exciting avenue of future research.

Finally, our model, once acquired, is easy to implement and efficient
to compute, allowing a GPU implementation which was used to
generate all results presented in this paper at interactive frame rates.

8 Conclusion

We identified the interdependence of disparity magnitude and spatial
frequency in a consistent set of stimuli using a psycho-visual experi-
ment. By fitting a model to the acquired data, we derived a metric
that was shown to perform the challenging task of predicting human
disparity perception. We showed that this metric is a beneficial
component for existing applications, but also proposed novel ones
that are of interest for various purposes.

In future work, one could consider temporal effects and higher-level
cues (shading, texture, bas-relief ambiguity...) that would comple-
ment our approach. The effects of conflicting stimuli (accommoda-
tion, image content,...), currently, remain mostly unclear. Finally, an-
other potential application of our metric could be a multidimensional-
data visualization. Here, stereoscopic displays are commonly used
to improve the exploration, but disparity is often scaled in an ad hoc
manner, while our disparity perception model should enable more
intuitive and meaningful depictions.
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