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ABSTRACT

Complex and dynamic interaction behaviors in applications
such as Virtual Reality (VR) systems are difficult to de-
sign and develop. Reasons for this include the complexity
and limitations in specification models and their integration
with the underlying architecture, and lack of supporting de-
velopment tools. In this paper we present our StateStream
approach, which uses a dynamic programming language to
bridge the gap between the behavioral model descriptions,
the underlying VR architecture and customized development
tools. Whereas the dynamic language allows full flexibility,
the interaction model adds explicit structures for interac-
tive behavior. A dual modeling mechanism is used to cap-
ture both discrete and continuous interaction behavior. The
models are described and executed in the dynamic language
itself, unifying the description of interaction, its execution
and the connection with external software components.

We will highlight the main features of StateStream, and
illustrate how the tight integration of interaction model and
architecture enables a flexible and open-ended development
environment. We will demonstrate the use of StateStream
in a prototype system for studying and adapting complex
3D interaction techniques for VR.

Categories and Subject Descriptors

D.2.2 [ Software Engineering ]: Design Tools and Tech-
niques— State diagrams; user interfaces; H.5.2 [ Informa-
tion interfaces and presentation ]: User Interfaces—
Graphical user interfaces; prototyping

General Terms

Design, Algorithms
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Model-Driven Engineering, User Interface Description Lan-
guage, 3D interaction, Python
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Figure 1: Example of a dynamic, 3D manipulation
technique in a multi-user VR setup. When multiple
interaction tools can operate on multiple objects,
interaction behavior can become difficult to design
and program.

1. INTRODUCTION
The look and feel of a well designed interaction technique

appears simple, logical and intuitive to its users. Little
thought goes to the often painstaking and time-consuming
development process of making interaction techniques work
as designed, error-free and well-tuned. Even with use of
existing interface and interaction modeling methodologies,
taxonomies and software tools, it remains hard to design,
to model, to integrate, to debug and to evaluate complex
interaction techniques and scenarios. Trends in new input
modalities such as multi-user displays and distributed sys-
tems further complicate the design and development of in-
terfaces, the underlying software models, architectures and
tools.

In our recent efforts in developing multi-user and multi-
handed input 3D interaction techniques [12], we encounter
many situations where the complexity of the interaction de-
scription explodes. Simple interaction techniques are rela-
tively straightforward to design and implement, but their
re-use through variations and combinations can easily lead
to unexpected results, often only to be discovered while al-
ready applied in a VR application.

Consider the example in Figure 1, where a 3D box can be
selected and freely manipulated with a ray controlled by a
tracked stylus. This works intuitively for a single user oper-
ating the VR system, but when a second user joins in and



Figure 2: Cyclic development. From an informal be-
havior description, one generates a model abstrac-
tion which closely maps to running code. Errors or
unexpected situations may occur during interaction,
and need to be detected, analyzed and fixed. State-
Stream integrates model, code and tools.

grabs the same object, the interaction behavior can become
more complex. As a side-effect of our original event-based
implementation, the object’s control is just taken over by
the last selecting user. Naturally, one would want to decide
which alternative behavior is used, such as averaging inter-
acting forces, bending one user’s ray or scaling the object.
The relations between all components depend on which com-
bination of interaction tools operate on which object types.
To allow for these alternatives, one would need to rethink
and re-implement the interaction behavior in detail.

Although much effort can be put into capturing these new
situations in hard coded, imperative commands of callbacks
and event-handlers, problems concerning the number of ob-
ject relations and exceptions to the rule either get overlooked
or quickly overwhelm development tasks. In practice, classic
interaction modeling concepts and development tools often
lack integration and rarely provide the right level of abstrac-
tion for effective design and problem solving. These restric-
tions often prevent developers and designers from adopt-
ing and customizing more sophisticated 3D interaction tech-
niques in real VR applications.

Our motivation for this work follows from these issues.
We feel that (combinations of) interactive behavior are in-
herently complex and require model-based design and sup-
porting analysis tools. At the same time however, one wants
to avoid restrictions a model imposes on the flexibility of
existing software tools and existing design skills. A flexible
integration of model, architecture and the supporting tools
is important to support developers with varying skills and
backgrounds, ranging from graphics programmers to interac-
tion designers. The main problem is that many existing in-
teraction models are far separated from other, external soft-
ware components. This separation limits their descriptive
power, thereby restricting the visibility of features and is-
sues when integrated in run-time environments. This makes
it difficult to appreciate a model’s value, especially in agile
scenarios with many software components and a cyclic pro-
cess of design and development, see Figure 2. In this paper,
we address this issue of separation and discuss our developer-
centric approach. We present StateStream, a pragmatic soft-
ware approach to unify interaction models and architecture.

The contribution of StateStream is the developer-centric
approach of using a dynamic language to unify an interac-

tion model with underlying architecture and tools of inter-
active applications. The interaction model provides seman-
tic structure, but is described using in the same language
with familiar syntax as the other system components. It
allows integration and transition of existing code and con-
trol structures, but also benefit from dynamic language fea-
tures such as dynamic execution, introspection and exten-
sion at run-time. With this approach we have implemented
and integrated a dual interaction model, consisting of sep-
arated StateChart and Data Flow primitives. We describe
how this model provides powerful composition patterns for
code-reuse, how it eases integration with underlying system
components. To demonstrate the functionality of our model
and approach, we describe the creation, adaptation and re-
use of several interaction tools within our VR framework.

The remainder of this paper is organized as follows: We
first discuss related work on interaction models, tools and ar-
chitectures of current interactive graphics systems in section
2. Then, in section 3, we describe the StateStream model
and its components in technical detail. After a description of
the implementation in section 4, the process of creating sev-
eral 3D interaction techniques within our VR demonstrator
is described in more detail in section 5. Finally, we discuss
the results of this work in section 6 and conclude and give
our view on future work in section 7.

2. RELATED WORK
In this section we discuss the position of the StateStream

approach with respect to related work. We consider three
main themes of interest: model-based design, its practical
integration in the underlying architecture, and the support-
ing software tools in the development cycle.

2.1 Model-based Design
Modeling languages are considered an essential asset in de-

scribing and implementing interaction behavior while avoid-
ing detailed execution and validity issues for users. Among
the various models, the Data Flow paradigm and state based
models are the most well-known for user interaction. The
Data Flow model is widely applied to describe system flow
and interaction techniques in terms of filters, often with a
focus on reconfiguration. For example, with the InTml [9]
specification language one can describe 3D interaction tech-
niques, input devices and their connections. UNIT [22] uses
a similar model and focuses on flexible redefinition of con-
tinuous behavior of interaction techniques. The IFFI sys-
tem [23] provides an even higher abstraction to allow for
reuse of techniques across different VR toolkits. FlowVR [1]
extends the Data Flow approach over its entire VR archi-
tecture to provide distributed capabilities. Data Flow mod-
els excel in their description of continuous behavior compo-
nents, but often require ill-formed constructions to support
simple tasks such as message passing and event handling.

State-based models are better suited to model discrete
behavior and integrate with event-based systems. For spec-
ifying reactive user interface behavior, special interest goes
to StateCharts [13], which provides a visual formalism for
hierarchical, concurrent statemachines. The hierarchy and
concurrency can avoid state explosion, see [28]. Many State-
Chart variants exist with different model properties and op-
erational semantics [3, 18]. Recent examples of StateChart-
inspired user interface modeling approaches include HsmTk
[4] for 2D direct manipulation interfaces, CHASM [27] for



3D user interfaces and d.tools [14] for physical prototyping.
The SwingStates system extends the Java Swing user inter-
face toolkit with concurrent statemachines [2].

At discussions during the IEEE VR 2008 searis work-
shop (Software Engineering for Realtime Interactive Sys-
tems, [17]), participants acknowledged that the use of key
aspects of multiple modeling techniques is a promising ap-
proach. We observe that this integration does exist in many
approaches to some extent, but often lack an explicit sep-
aration between these two models. This quickly introduces
complex feature interaction, which complicates application
behavior analysis. Similar design issues were already ad-
dressed earlier in the specification of interactive systems.
For example, a separation of status and events phenomena
to model state and continuous relationships between inter-
face components is used, for a recent implementation see Dix
et al. [8]. An alternative approach to specify user interaction
in the context of Virtual Environments is proposed by Smith
et al. [19, 25]. They extend high-level Petri Nets with Data
Flow, so-called FlowNets, and use a semi-formal notation to
model discrete and continuous components. This work is
requirements-centric as it aims to provide only a sketch of
interaction to enable analysis of usability requirements.

In contrast, in our developer-centric approach we empha-
size unification of model and architecture for many devel-
opment iterations. The familiarity of developers with mod-
els and their mapping to underlying language and system
structures is important. Therefore, we chose to mix state-
based models and Data Flow to model event-based and con-
tinuous interaction. An early example of this model sepa-
ration is shown in [5], where StateChart diagrams are ex-
panded with Data Flow and constraint specifications to de-
sign custom user interface widgets. The use of this type of
model separation in real-time interactive graphics systems
is demonstrated in the HCSM driving simulator [7]. Jacob
et al. transfer this approach to the description and pro-
gramming of non-WIMP user interfaces [16, 24]. Our State-
Stream system builds on a similar, dual-modeling approach
where StateChart mechanisms and Data Flow are separate,
first-class primitives. The main difference of our work with
the systems above is the way the models are described and
implemented.

2.2 Model Integration
Model-based techniques are of practical relevance if results

can be effectively integrated with the underlying software ar-
chitecture, such as a scene graph system. From a historical
perspective, Myers [20] reports that both formal language
based tools and model-based techniques for UIMS’s suffered
from a high threshold of acceptance. In many model de-
scriptions, a specialized description language is compiled or
interpreted to running code. For example, XML-based de-
scriptions, sometimes augmented with native code snippets,
are first converted to C-style code, then compiled and run,
see e.g. [9, 26, 8, 28]. However, Carr already stated the po-
tential of editing specifications and directly executing them
[5].

We consider the semantics and syntax of the modeling
language to be determining in this high threshold. First,
declarative description model semantics may restrict expres-
siveness, especially with respect to the pure imperative cod-
ing practice on underlying architecture. Second, language
syntax is often different. Third, once code is compiled and

run, the relation between the running code and the mixed
description and code is difficult to grasp. As a result, con-
ceptually related elements may exist in different language
semantics, syntax, files and scope, which make development
and debugging difficult.

To alleviate some of these issues, we avoid the use of
a specialized declarative model language. Instead, we ex-
plicitly describe interaction techniques using the constructs
in Python, a dynamic, easy-to-learn programming language
which unifies our framework. Zachmann proposed the use
of a special-purpose scripting language on a fixed VR inter-
action API [29]. Early versions of Alice toolkit provided a
Python-based scripting environment for interaction and low-
level extensions to lower the learning barrier [6]. Although
the use of a dynamic language by itself does not provide
a ready solution, its flexible syntax and interpreter allow a
clean integration of pseudo-declarative models. The useful-
ness of a similar integration approach is demonstrated in
the SwingStates toolkit, where statemachines are described
in native Java inner classes [2].

We chose Python because the dynamic language offers
more flexibility, such as introspection, for building develop-
ment tools. Also, the integration with a scene graph sys-
tem builds upon earlier work on flexible abstraction layers
of our base VR architecture [11]. The StateStream model
is self-executing and operates at run-time in Python, allow-
ing interaction techniques and scenarios to be studied and
modified, often without restarting the application.

2.3 Development Environment
Finally, we consider the development environment and

run-time system to be an essential element of interaction
design software. Wingrave et al. [28] report on the complex-
ity of interface development and argue the need for better,
developer-centric methodology and tool support through the
entire design and development cycle. Hendricks [15] high-
lights the need for VR interaction to allow a smooth mi-
gration of novice users to becoming more experienced and
proposed the use of meta-authoring tools which assist in the
creation of interactions. Some of these ideas appear in the
d.tools environment [14], which provides an integrated de-
sign, test and analysis environment. However, like NiM-
Mit [26], d.tools is a strongly visually-oriented design tool
from which code is generated and run. This visual approach
generally does not scale well to larger systems and restricts
low-level inspection or modification of application states and
flow of control by more experienced designers and develop-
ers.

Our approach focuses on the low-level, fine-grained as-
pects of 3D interaction and detailed model behavior, and
less on an Integrated Development Environment (IDE) for
end users. Because of this low-level approach, the heart of
our approach is an accessible, programming language-based
interaction description. This description can be run di-
rectly, while components for analysis and visualization such
as graphs, traces and lists for the front-end GUI commu-
nicate with the running model. As a result, the dynamic
language serves as a unifying link for describing interactiv-
ity between objects, connect application components, and
to produce front-end development and analysis tools. We
feel this integration helps to lower the barriers between dif-
ferent stages of development from design, programming and
analysis. With this approach, we attempt to reduce system



Figure 3: Three main StateStream components. Ar-
rows indicate the main mechanisms through which
components influence each other.

viscosity by providing higher flexibility and expressiveness,
necessary to rapidly iterate to a better user interface system,
as suggested by Olsen [21].

3. MODEL DESCRIPTION
In this section, an overview is given of the StateStream

model primitives and how they integrate domains of be-
havior description. As described in the previous section, a
dual modeling approach is used, similar to PMIW [16]. The
first modeling primitive is the statemachine, a StateChart-
like mechanism intended for describing behavior in the dis-
crete domain. The second modeling primitive is the stream-
machine, intended for modeling conceptually continuous
streams of information, thus in the continuous domain. A
third domain is the actor domain, which essentially forms
an interface to the underlying architecture and contains
the statemachines and streammachines. Figure 3 gives an
overview of the various components and the control mech-
anisms through which they influence each other. Before we
describe these primitives in more detail, we first motivate
the choice of description language for model primitives and
application description, which is essential in our developer-
centric approach.

3.1 Description Language
One key aspect of our approach is that the StateStream

model primitives are described directly as class structures
in a dynamic, interpreted language, i.e. Python in our case.
This avoids the use of a specialized model description lan-
guage, parser and compiler or interpreter. Object-oriented
techniques such as class hierarchy and method overloading
are well-known and extremely useful for composition and
inheritance of StateStream model primitives. It allows a
transparent communication between domains, as well as in-
tegration with functionality of the underlying Python appli-
cation. Regular Python syntax is easy-to-read, and State-
Stream’s syntax slightly extends this to have a descriptive
rather than imperative appearance, although its semantics
are not formally declarative, see Figure 4 and 5. In contrast
to many other description languages, StateStream primitives
are self-executing within a simple execution engine in a stan-
dard Python interpreter. This means they can be run and
tested stand-alone, or be integrated within external Python

programs, classes and libraries. The internal StateStream
models and execution flow can be inspected and adapted at
run-time to allow for dynamic model behavior. The main
aspect of this is that new model primitives can be created,
loaded and inserted during an application, which is essential
when live prototyping applications or when the scene is not
known in advance.

3.2 Actor Domain
Behavioral functionality is split into conceptual actors,

each of which contain the two behavioral primitives as de-
scribed above. In the context of a VR application, an actor
often “is” or consists of a visible VR object and its behavior
specification. For interaction techniques, actors include the
graphical elements such as cursors, rays and information la-
bels. Some actors do not have a graphical representation,
but instead represent a proxy for example an external algo-
rithm or interaction device. Although it is not technically
restricted, actors preferably use streams and events instead
of direct references to other StateStream modeled objects,
nor do they contain behavior-specific logic. This is to pre-
vent for unexpected feature interaction outside the model
logic.

3.3 Discrete Domain
For describing discrete actor behavior, we use a simplistic

StateChart variant, which consists of hierarchical, concur-
rent statemachines. A graphical representation, automati-
cally generated from an instance of such a statemachine, is
shown in Figure 6. In this Figure, each rounded box rep-
resents a single state. An hierarchical state can have chil-
dren, which in turn can be a statemachine. Simple states
allow only one child state to be active at the same time
(red outlines), while concurrent states (grey, filled) have all
their states active. Template states (yellow, filled) repre-
sent concurrent states that are dynamically generated and
replicated. Each state can have transitions to another state.
State transitions can occur if certain events match the con-
ditions and filters of available transition. When a transition
among hierarchies occurs, this can cause a cascade of state
entries and exits. Custom functionality is defined in callback
functions such as state entry and exit functions, or at transi-
tions. These functions can be part of the actor, see Figure 4.
For consistency, it is advisable to set properties or perform
actions in a state entry function which can be reset or un-
done in the respective state exit function. A main functional
element here is the broadcasting of events to other objects
and to set state-sensitive properties of the related actor. In
this domain, the flow of control of the actors and their states
can be clearly modeled and visualized.

3.4 Continuous Domain
The streammachine primitive is intended for modeling

conceptually continuous streams of information. For this we
use a simple Data Flow graph structure, which consists of a
set of connected nodes or filters with various input and out-
put ports. The ports of the nodes can be connected through
connection objects, over which information of various data
types can be transported. The custom functionality of the
nodes is again defined in callback functions on the incom-
ing and outgoing ports. Simple Python syntax and con-
structions are used for creating a new streammachine class
and connections, see Figure 5. A part of a Data Flow net-



Figure 4: Sample Python code for an actor contain-
ing states, transitions and connections. With simple
syntax conventions and introspection we can create
objects implicitly for states, ports, connections etc.
at run-time.

Figure 5: Sample code for making a streammachine
class for a GTK widgets. We use the >> operator
to connect streams to ports or directly to variables
or functions.

work is shown in Figure 6, this is generated by introspecting
run-time objects. Continuous variables of an actor and its
graphical objects, e.g. position, rotation, color or size are
easily modeled and connected through filters. In a standard
VR scenario, updates are typically executed every render
frame and values are pushed through the network, but more
advanced and optimized update strategies on the graph are
possible.

One can clearly see how actor properties are related through
explicit connections, when in a certain state of an applica-
tion. This separation of concerns allows one to better reason
on intended behavior and analyze its implementation. Al-
though the streams are conceptually continuous, in imple-
mentations they are sampled and separated in function calls
or events. The separation of the discrete domain also has an
important practical implication. We do not pollute the dis-
crete event system with often-called “update” events, which
do not contain any state information. Especially when in-
specting event streams in a VR application with a rendering
frame rate of 60Hz and more, the amount of event informa-
tion would be simply overwhelming.

3.5 Integration
A StateStream-based application consists of the descrip-

tion of the actors, their statemachines and streammachines.
For a StateStream application, a main, top-level statema-

chine is maintained which reflects the application state. On
application start-up, main actors are instantiated, which in
turn can activate their own actors. During actor initializa-
tion, both its statemachine and streammachine structures
are created. All statemachines existing in the applications
are attached as (concurrent) child statemachines of the ap-
plication statemachine, or descendants thereof. The frame-
work maintains a global event broker for event queuing and
broadcasting. Event objects can contain various cargo, and
are injected in the active statemachines by the event broker
component. A stream broker component is in charge of the
maintenance of the stream graph. It sorts the acyclic Data
Flow graph of streammachines, and pushes values through
the active connections of the graph.

The discrete domain can influence the continuous by re-
questing the creation, connection, disabling etc. of stream-
machines and connections in the stream graph. The con-
tinuous domain can influence the discrete domain by broad-
casting events to the event broker. This is done through
specialized streammachines, e.g. triggers, which generate
an event based on the value of incoming streams.

Naturally, functionality in both domains can influence the
actor domain through their respective callbacks. This is of-
ten necessary, for example to obtain events and streams from
the underlying architecture into the StateStream domains,
or to reflect states and values through actor properties, e.g.
position or visibility status. In section 5, we will use several
interaction examples to demonstrate these relations.

4. STATESTREAM PROTOTYPE
In this section, we demonstrate how the StateStream inte-

grates interaction modeling with the components of our VR
architecture.

4.1 Base Architecture
StateStream integrates on a Python level with our in-

house VR toolkit VRMeer, which mainly builds upon the
C++ OpenSceneGraph library. We use SWIG to create
Python bindings for both OpenSceneGraph and the VRMeer
toolkit. Through sets of flexible Python abstraction layers,
one can quickly integrate various Python and C++ toolkit
functionality in a VR application. A run-time development
front-end interface is provided through iPython interactive
Python shell, optionally integrated with the PyGTK GUI
toolkit. A more detailed overview of abstraction layers is
given in [11], and for the VRMeer architecture with front-
end GUI see [10]. Running on top of the base abstraction
layers, our proposed StateStream interaction model inte-
grates interaction modeling with other system functionality.

4.2 StateStream integration
In our current implementation, a Python interpreter con-

trols the execution of a StateStream enabled VR application.
The VR system’s main loop interleaves the distribution of
the event to statemachines through the event broker, the ex-
ecution of the streammachine graph through the stream bro-
ker, the scene-graph update and the update of an optional
GUI. Events can be identified by their name and often ac-
companied by a cargo. This cargo can denote the destination
object(s) and possibly extra parameters. Statemachines and
their transitions can use a variety of filters to determine if
an event should be processed. For each rendering frame the
event broker’s queue is processed until it is empty. Cycles



Figure 6: Composition of a StateStream modelled 3D ray casting selection technique, see also section 5.1. A
stylus device can be used to point a ray at objects in the VR scene (a). Details of the modeling primitives can
be found in section 3. Generated graphical StateChart representations for the statemachines are shown for
both the selection technique (b) actor and the plane (c) actor. The statemachine of the ray actor is contained
in (b, right sub-state). The related Data Flow graph (d) displays the current streammachines, their ports
and connections that are in use for this state.

in event execution can be detected and avoided.
A set of basic system actors can convert events and vari-

ables of underlying scene graph or tracking libraries to ab-
stract, StateStream compatible events and streams. By per-
forming this conversion at a low level, the fine-grained details
of interactivity can already be flexibly modeled, composed
and inspected through their explicit models. As a result,
behavior is modeled orthogonal to system abstraction lay-
ers, so components in virtually all layers can be used from
within control of StateStream primitives. An example of this
is the conversion of button presses and pose of a 3D input
device, where button presses are converted to events, while
positions and rotations are made available through stream-
machine nodes. Other system actors monitor streams to
perform, for example, an inside test on a set of VR objects
and trigger a touch event as a result.

4.3 Front-End Interface
Concurrently with the running VR application, a graphi-

cal interface for interactive debugging and development envi-
ronment is available. It provides an interactive Python shell
and visual elements that reflect the internals of the VR ap-
plication, see Figure 7. The availability of the front-end on a
separate display or remote computer enables live debugging
sessions, which is especially useful for immersive, tracked
VR applications. We currently include visual widgets such
as lists, trees and graphs that reflect current application and
StateStream state and relations. New application-specific
widget elements can be created through code and existing
layout designers, and can be loaded and activated at run-
time. A powerful approach is to extend widgets to be State-
Stream actors as well, in order to integrate some of their
logic and behavior in the application. For example, a group
of text widgets can show the values of an incoming stream

connection. We envision that interaction techniques can be
made available with GUI panels and a programming API to
configure and tune their use.

5. RESULTS
In this section, we will give an overview of some of the

resulting interaction techniques we have obtained with our
system and discuss the process of designing them. We will
first illustrate a straightforward VR selection technique to
explain the basic working of the system. This description
is deliberately kept at a low level, so it will be clear how
the flow of execution is. At the same time, this shows that
even for a toy interaction technique a textual description
can sometimes become quite elaborate, see also [28]. We
will then continue and gradually extend them to more elab-
orate techniques, where combinations of states and streams
soon become overwhelming. Also keep in mind, that some
simple constructions in StateStream appear more intrusive
than direct imperative coding would be for the sake of ex-
tension, replacement and reuse in other techniques.

5.1 Selection and Manipulation
In direct object selection, a 6DOF stylus is used as a

straightforward selection tool of a single VR object. If the
tip of the stylus is inside, or touches, the bounding box of
a VR object, it should be selected and highlighted. We will
gradually work towards a ray casting selection and manipu-
lation technique, so some of the elements described here can
be found in the more complex Figure 6.

The direct selection actor class is sub-classed from a base
interactor actor, which represent the display of a cursor icon.
Its base statemachine consists of two states enabled and
disabled, and two transitions to switch between them if a
int enabled or int disabled event is received. In addi-



Figure 7: Screenshot of a typical layout of the StateStream front-end GUI. Visual widgets such as lists, trees
(a) and graphs (b) are grouped in two main panels, and dynamically reflect StateStream state and relations of
the current running VR application. New interaction tools and widget elements can be loaded and activated
at run-time from the interactive Python shell (c).

tion, the streammachine provides the connections to posi-
tion and rotation streams of an interaction device to update
the cursor. The enabled state of the base statemachine
is extended with an inside and notinside child state for
selection. Two transitions are added: touch to go from
not inside to inside, and untouch to go from inside to
not inside.

A simple VR object is also modeled as a StateStream
actor. Its statemachine consists of a touched and not

touched state, with transitions objtouch and objun-

touch, see Figure 6. The streammachine contains several
ports for both incoming and outgoing streams for position,
rotation etc.

If in the direct selection actor an incoming touch event
is received from a system actor, the state is changed to in-

side. In turn, in the state entering function of the inside

state, the selected object is sent a objtouch event. In the
not touched state entering function of the VR object, a
highlighting function can be called to change its appearance.
Note that in this toy example, we see mainly state-based
communication between object and interaction actor.

5.1.1 Ray Casting Extension

To extend the previous example by allowing remote se-
lection with a ray, we have to make a number of changes.
First, a ray actor is created that serves to visually repre-
sent the indicated direction of the stylus. We create the

statemachine of the ray actor in the enabled state of the
interaction actor, and it contains states to indicate visibility
and ray hit or ray miss, see Figure 6(b, right sub-state).
In the state exit and entry functions of the interactor inside

and notinside child states, visibility events for the ray are
generated.

Second, the ray’s streammachine is connected to the in-
teractor’s streammachine to communicate starting position
and direction. In the value update function of the ray’s
streammachine, these values are used to update the visual
ray object. Third, a system actor is activated that performs
the actual ray casting hit algorithm with scene objects. This
actor generates touch and not touched events, but addi-
tionally activates a continuous stream for the position of in-
tersection points. The interactor’s inside state is extended
to create the connection of the intersection point streamma-
chine to an end point port in the ray’s streammachine, see
Figure 6(d). The ray actor itself is responsible for its contin-
uous visual updating. In the ray hit state, we choose to use
the end point instead of the direction for drawing. In this
example, one observes a clear interplay between discrete,
state-based communication but also continuous updating of
values through streams.

5.1.2 Object Manipulation

If the stylus button is pressed during selection, one should
be able to manipulate it. Once one is manipulating an ob-



Figure 8: A StateChart diagram of a multiple ob-
ject selection actor. For two recently selected ob-
jects and a currently selected object, an instance of
a template statemachine was generated. These keep
the object-interaction relation consistent.

ject, the new object position and rotation are calculated
based on the original stylus pose just before the start of
the manipulation, and the movement of the stylus. Apart
from state changes, object manipulation therefore also re-
quires several continuous communication streams between
the object and interaction actors. This is achieved by cre-
ating streammachine that, in the touched state, connects
to the stylus pose and to the object pose, and calculate the
difference. As soon as the stylus button is clicked to start
manipulation, this difference stream is connected to another
streammachine that adds it to the new stylus pose stream.
The output of this adding streammachine is the new result-
ing pose of the object. This output is connected to the
object’s streammachine, and it can use this to update its
position.

In this example, one sees a carefully orchestrated combi-
nation of discrete and continuous mechanisms. Also we show
the use of streammachines as functional filters to combine
several streams.

5.2 Multiple Object Selection
The previous examples work on a single “object to inter-

actor” relation. If the scene contains multiple objects, for
example, an interaction technique might be required to ma-
nipulate more than one of them simultaneously.

To ensure correct handling, this requires that the inter-
action actors maintain a separate set of states and streams
for each object that it is involved with. To avoid modeling
in advance of all possible relations, we can dynamically in-
stantiate a templated actor. Each templated child instance
reflects a different “object to interactor” relation. As a re-
sult, we can extend an existing selection interactor to be
used on multiple objects.

To achieve this, events reaching the interactor are inter-
cepted and, if necessary, a new template is instantiated. The
template actor creates both a new child statemachine and
new streammachines, including all transitions and connec-
tions. A templated state of the actor is indicated in Fig-
ure 8 in yellow. The originally modeled state changes and
stream connections still work as advertised without changes.
This property is important for extending techniques to work
with multiple actors while maintaining overall consistency.
In this example, the templated actors have no interaction
with other instances. The dynamic instantiation of extra
model compontents is made possible by the dynamic fea-

Figure 9: Snap Measurement technique. A mea-
surement actor can be controlled by two 3D cursors
(left) or the connection of one endpoint snaps to the
object by starting a measurement inside the object
(right). One cursor concurrently manipulates the
object, while the measurement actor remains con-
sistent.

tures of Python. We are not aware of other systems where
similar extension of existing techniques can be done without
requiring much manual recoding and bookkeeping.

5.3 Snap Measurements
This third example demonstrates how an interaction tech-

nique can transfer its continuous operation to objects. The
interactive element here is a visual measurement tape that
can measure distances between arbitrary positions in space
or between objects, see Figure 9. With one or two styli,
a measurement tape can be drawn. In a regular, empty
scene, the measurement actor is drawn from stylus tip to
the other stylus tip, or from the last clicked point to sty-
lus tip. A panel is positioned and its text updated. When
the stylus enters an object however, it interprets the user
action as wanting to measure from this object and not in
empty space. The stream connection to the stylus interac-
tor is not directly used for drawing anymore, but the object
position is used instead. In such a way, a measurement tape
actor can be created that measures position between two
objects. The advantage here is that the objects can still be
moved around while the measurement tape automatically
updates. This demonstrates the transparency of the actors,
e.g. that the original relation of interactor-to-object can be
replaced by object-to-object. This relation is often fixed in
other interface implementations. It also gives insight in how
streaming can be used to generate constraints dynamically,
while the Data Flow graph is kept consistent.

5.4 Two-Handed Scaling
The final example combines the earlier examples into a

two-handed object scaling technique, similar to the popular
two-finger scale technique on multi-touch displays. It ex-
tends interaction demonstrated earlier, but uses a tri-fold
relation between an object and two interactors. The core
modeling technique used here is state ordering. Two inter-
actors are individually used as regular selection and manip-
ulation tools. As described, manipulation updates are com-
municated through stream connections to the object. When
the two manipulate the same object, a “fight” for preference
might occur, as they would normally have parallel state ma-
chines and connections as generated from the template. In
the object, we want to redirect and combine incoming con-
nections to different properties of the object, e.g. depending



on the order of incoming styli. For scaling, the changing dis-
tance between the two points of interaction determines the
scaling factor of the object, where the first stylus determines
the pivot point. Individually, the interaction technique is
hand-symmetrical, but it can change to asymmetrical de-
pending on the scaling mode. Through the use of template
ordering, the functionality of each object-interactor relation
may change. Although this example illustrate the complex
interaction between concurrent sub states, for clarity a sep-
arate actor to control state ordering might be more compre-
hensive.

5.5 Development Use
We observe that the separation of concerns from the actor,

discrete and continuous domain serves as a guide already in
an early design phase. Developer discussions tend to focus
more on how to get into a certain state, and what connec-
tions to ensure in that state. Through containment of dif-
ficult situations, overall understanding is enhanced. Also,
the development of actor appearance and behavior gets im-
plemented and tested as self-containing components, before
they are integrated with other actors. The interactive front-
end assists in quick prototyping on top of existing actors, by
loading, activating and stepping through situations while
observing and adding connections.

A wide array of streammachines is being constructed to
provide flexible combinations of streams. In that sense, a
bottom-up approach is used to provide a wide platform of
tools. Because of the hierarchy in states, also a top-down
approach is used. By working from a basic state and grad-
ually specifying new sub states, one can postpone new de-
tailed behavior specification. From use by different develop-
ers, several design patterns emerge with a focus on re-use.
To improve composition and reuse, it is preferred for actors
to maintain as much state as possible, and to consume and
replicate streams instead of just connecting external objects.
Implementation difficulties mainly arise in conversion of ex-
ternal components. For example, concepts of event systems
may differ, such that the absence of an event can be consid-
ered an important “idle” event in a different system.

6. DISCUSSION
In this section, we will shortly discuss results and limita-

tions of the current model and its integration in the archi-
tecture. We are aware that, for a good understanding of the
strengths and weaknesses of current approach, we require a
long-term evaluation of the development of complex inter-
action techniques in real-life applications, on different types
of interactive systems. Similar to SwingStates [2], an evalu-
ation where students implement existing techniques is part
of future work. It must be stated that the current model
and architecture have already evolved over the last year as
a result of iterative application development experience.

First, we currently use basic StateCharts and Data Flow
mechanisms to serve as a proof of concept. More elabo-
rate variants of these might be used in the future, such as
different StateChart approaches [3]. Second, our practical
focus is on prototyping: model integration, the avoidance of
a pure declarative description and dynamic model changes.
Although simple consistency checks can be made on the
models, real formal verification and operational semantics
are more difficult, especially for dynamically changing mod-
els. The model is executed from within a Python interpreter,

so off-line verification for full applications will involve com-
plex parsing of Python code trees. Third, some advanced
model and introspection properties are currently restricted
to dynamic features of the Python interpreter. The use of
Groovy1, a dynamic programming extension for Java, is an
interesting alternative. Fourth, good system and model inte-
gration results from running a single Python interpreter with
a single event broker and stream broker. Performance-wise
this is sufficient for most applications and we are investigat-
ing optimization and distribution. For systems or stream
components that are critical in latency and performance one
would have to resort to advanced multi-threading schemes.
Finally, because of our developer-centric, language-based ap-
proach we currently do not have a unified graphical model
representation which can be edited graphically from a full-
fledged IDE. Although we consider this essential for a trans-
fer to a larger audience, we see this as a substantial amount
of system engineering to be included in a later stage.

7. CONCLUSIONS AND FUTURE WORK
In this paper we described StateStream approach towards

unifying the integration of model, architecture and tools for
the development of 3D interaction techniques through a dy-
namic language. The dynamic, interpretative nature of the
language provides familiar syntax, and allows us to employ
flexible communication between model domains and to in-
troduce novel modeling features, for example the generation
and activation of templated behavior descriptions at run-
time. We demonstrate the language-based approach on a
dualistic model, in an effort to provide two primitives that
fit specific discrete and continuous domains of interactive
behavior. In this way, we provide structure and separate
concerns when designing or studying complex interaction
between actors. As demonstrated in several examples, this
interplay between the two main model domains and the ac-
tor domain is suitable to define complex behavior, but can
be extended with the dynamic language. The observation
we want to make here is that in practice, aside from toy ex-
amples, no single, purely model-based approach can be ex-
pected to be complete and elegant. That is, it is inevitable
to encounter situations that cannot be modeled within the
current model specification, or require a more complex con-
struction pattern. The use of a dynamic programming lan-
guage and dynamic adaptation of models at run-time can
create complex interaction constructions. However, to main-
tain an overview, custom tools can be integrated to selec-
tively analyzed and visualized their hierarchical structure
and communication. With this in mind, we feel our itera-
tive integration approach of interaction models, its underly-
ing architecture and development tool sets is a useful asset
towards bridging the gap between models and practical use.

The StateStream system, model, syntax and tools are con-
tinuously refined. Naturally, we strive to enlarge the set of
available actors and front-end tool widgets to enhance de-
veloper productivity. From a research perspective, we aim
at more understanding of the interaction model to allow
reasoning on actor relations. We believe that this under-
standing is needed for extending the current state-of-the-art
with optimization and distribution over multiple processes
or machines. Finally, we plan to investigate alternative visu-
alization techniques to enable better insight and evaluation

1http://groovy.codehaus.org/



of interaction techniques over time.
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