
March 2008 7

THE MAKING OF AN

INTERDISCIPLINARY GAMES PROJECT
Rafael Bidarra

Delft University of Technology, Mekelweg 4 , NL-2628 CD Delft , The Netherlands

r.bidarra@ewi.tudelft.nl

Jerke Boers, Jeroen Dobbe, Remco Huijser

Cannibal Game Studios, Rotterdamseweg 145 , NL-2628 AL Delft, The Netherlands

{j.boers, j.dobbe, r.huijser}@cannibalgamestudios.com

ABSTRACT

M
any universities with a Computer Science (CS) curriculum now offer a game develop-
ment course in a variety of flavors. However, the fundamental standpoint that leads
their particular course design is not always clear. Delft University of Technology intro-

duced project-based education in its CS curriculum five years ago, including a second-year
games project. Initially designed as little more than a companion to the computer graphics
course, the games project matured into a large project integrating a broad range of computer
science topics. More importantly, though, the current games project brings CS students together
for the first time to work in a realistic and interdisciplinary game development team, involving
students pursuing a Game Design and Development degree at the Utrecht School of the Arts.
We believe that the key to the huge success of our games project lies in the consistent combi-
nation of this careful interdisciplinary organization with the deployment of professional tech-
nology and working environment specifically crafted for an educational environment. We also
conclude that a streamlined collaboration among students of related disciplines works as a very
powerful catalyst in their personal and academic development.

KeyCategories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in Education—Collaborative learning
K.3.2 [Computers and Education]: Computer and Information Science Education—

Computer science education, Curriculum
K.8.0 [Personal Computing]: General—Games

General Terms: Design, Experimentation, Human Factors

Keywords: Games education, project-based education, interdisciplinary education, game
design and development, industry involvement

INTRODUCTION

Five years ago, Delft University of Technology introduced project-based education in the Com-
puter Science (CS) curriculum. One of the new project-based courses was the second-year games
project [Bidarra et al. 2003]. This games project was initially associated with an introductory
course on Computer Graphics (CG), and as such, the primary goal was to have students apply
computer graphics techniques in a practical setting.

While first running the games project, it soon became apparent that it had more potential and
a bigger scope than was initially envisioned. CG was covered, and it naturally required students
to learn more about other game-related aspects.

Because of its potential and the enthusiastic reaction from the students, the project has been
actively improved over the years. Combined with valuable industry input, the games project has
now matured into a multidisciplinary course covering all aspects of game development, and
therefore better reflecting real-life game development environments. See Figure 1 for some sample
impressions of last year’s games.

8 JOGD Volume 3 Issue 2

March 2008 9

10 JOGD Volume 3 Issue 2

FIGURE 1 Some representative scenes of the games developed in 2007.

In this article, we describe and motivate the evolution over the past five years, from a pioneer
to a professional games project, from both an academic and industry perspective. We start by
summarizing the project organization, followed by a discussion about the technology deployed
and the working environment provided. During the course of the project, several external parties
were involved in the project. We conclude with an evaluation of the project run in 2007, and some
general conclusions about running such a games project.

PROJECT ORGANIZATION

Project-based education very much responds to the basic concepts behind constructive alignment
[Biggs 1999], a rather influential stream, in particular in higher education, which advocates
among other things that “students construct meaning from what they do to learn.” In line with
this, an advantage of including such projects in a curriculum is that the acquisition of knowledge
is strongly motivated by its immediate application in a practical environment. In addition, it
encourages students to actively learn to value and promote the teamwork process, instead of
focusing exclusively on the final product.

Characteristic for CS project courses is that students have to work in groups on a more or less
open assignment [Schaefer 2004]. In our case, they design and implement a computer game from
scratch, using the technology provided, while working in a team. This section describes how we
organized the project as a whole.

Course Goals

At first, the games project focused on teaching students to apply computer graphics techniques in
practice, which has been the main motivation of similar projects (e.g., [CS248 2001]). However,
as game development involves more than just CG, we also wanted the students to be able to focus
on software engineering, artificial intelligence, user interaction, and other techniques involved in
game development.

As we strived to continuously improve the project and better prepare students for work after
their study, we also wanted to make sure students learned how to work within the context of a
realistic software project, while learning how to cope with the challenges of interdisciplinary
collaboration.

Considering this over the past few years, we gradually expanded the course goals to comprise
a wider range of games-related issues, eventually leading to the current set of learning objectives.
We say these goals have been achieved when the student has demonstrated proficiency in:

Applying media and programming techniques within the context of computer games, and
in relating them to particular game effects

Striving for the balance between the effectiveness of a programming technique and the desired
quality of a game effect

Describing the main modules of a game engine and purposefully use their functionality

March 2008 11

Deepening object-oriented programming skills while building a complex and large software
system in an agile context

Developing and contrasting teamwork skills within the context of a realistic interdisciplinary
team

Teams

For several years, the games project had been run in groups of about five to seven CS sopho-
mores, who had to handle alone both game design and implementation. The former not being part
of their educational curriculum or goals distracted from their work as programmers, and did not
allow them to focus their efforts on the course goals stated previously.

Therefore, in Spring 2007, the project entered a new phase: we started a pilot collaboration
with the Utrecht School of the Arts (HKU), which offers a bachelor’s degree on Game Design and
Development. Their second-year students also have a one-semester project, focusing exactly on
the game design process as a whole. Integrating their game design project with our game devel-
opment project led to one large multidisciplinary project. In this integrated project, groups con-
sisted of four CS students and five Game Design (GD) students. The CS students were mainly
responsible for the implementation of the game, while the GD students were in charge of game
design and artwork/content creation. In doing this, they worked as two departments of “one
single company,” with lead programmer and lead designer roles, respectively, assigned among
them.

Integrating these two projects brought much more realism and power to the project: realism,
because it more closely matches the actual team composition in a real-world game development
company; power, because this interdisciplinary collaboration promotes that each team member
contributes with his or her best skills. In other words, we fully confirmed the value of the splen-
did advice recently given by Randy Pausch: “ (…) not to turn artists into engineers or vice versa,
but to teach students how to work in teams that utilize the disparate talents of their members”
[Pausch 2007].

These mixed groups, though having clear advantages over traditional uniform groups, also
had some disadvantages; for example, more time was spent on communication, traveling, and
appointments. In particular, everyone in these groups vividly experienced the additional
challenges brought about by communicating with people from outside their own discipline, which
requires a rather different way of thinking and explaining.

Significantly, after this interdisciplinary pilot experiment—which although facultative, was
chosen by the vast majority of the students—all students unanimously recommended that next
year we make it obligatory to work in such mixed teams.

Project Planning and Development Process

In line with other project courses in the CS curriculum, the games project at first consisted of
three main phases: analysis, design, and implementation, where the implementation phase was
by far the largest and most complicated. As this project is aimed at CS students, the focus is not

12 JOGD Volume 3 Issue 2

on the game design aspects of developing a game, but rather on the implementation of games. The
students did not perceive the analysis and design phase as very useful. The analysis phase, in
which the initial game design is created, was very short and did not provide much educational
value for the students. The design phase was mostly used to create a technical design for the
game; however, since the students did not have any experience with developing games, the
designs created upfront were proven rather useless early in the implementation phase.

Key to designing and implementing a successful game in practice is having an approach
in which you strive to have a playable and working version of the game as soon as possible:
the so-called first playable [Laramée 2005]. After this version is established, different gameplay
elements can be tried and changes can be made to the initial version. This usually occurs in
multiple iterations leading to a more agile development process [Martin 2003]. To better accom-
modate this process and to make the project more interesting for students we decided to drop the
classic waterfall style of development, incorporating several elements from the Agile Manifesto
[Beck et al. 2001] and eXtreme Programming [Beck 2006] adapted specifically to what works
well for the games project. Prototyping and iterative development are given a central role to help
students cope with much uncertainty when it comes to potential technical solutions and the exact
requirements. To give this shape we introduced new phases of a more iterative nature: spikes, first
playable, beta, and release.

At the beginning of the project, students have no experience with the technology and, as they
have no prior experience developing games, no knowledge of what developing a game entails. To
smoothly introduce students to actual game development and the technology involved, the spikes
phase offers room to try different concepts and technical solutions using small pieces of code
(spikes), gaining more insight into important aspects of their game. The first playable phase is
aimed at gaining the first playable by integrating all relevant spikes into one product. Both the
beta and release phases are aimed at refining the previous versions and completing the game.

For the interdisciplinary groups this turned out to be a very important methodology that en-
abled both parties to work together on their game. During the first phase, GD students were able
to concentrate more on setting up their initial game design, pitching their game concepts to the
teachers and the CS students in their team. CS students were able to get a feel for the technology,
the requirements, and what it takes to implement the concepts of the GD students. Once the game
concept and initial design were finished, and the different spikes created, groups could start con-
centrating on creating their first playable. After the first playable was assembled, GD students
could continuously evaluate their game (by play-testing) and come up with new requirements and
changes. CS students could then evaluate the technical feasibility, prototype (spike), and incor-
porate these changes when desirable for the game design. At the start of each phase, CS students
were encouraged to evaluate their current design, improving it where necessary to incorporate de-
sired changes, also called refactoring [Fowler 1999], using the information gained from building
their spikes.

Deliverables

To monitor the progress of the teams and to steer them toward an effective development process,
students had to hand in three distinct deliverables at the end of each phase:

March 2008 13

The implementation of the game (working source code)

A simple game design document (containing an explanation of the game and its key features)

A technical document (linking the explanation of the game to the implementation)

As is to be expected from an iterative approach, each deliverable started from a basic version and
evolved into the final product. With each phase, we could monitor how far the students had pro-
gressed (compared to the previous phase). These deliverables and the team progress also served
as a valuable basis for the assessment.

Focus on Requirements

To provide students with a clear direction and a tangible approach to fulfill the course, a list of
requirements was set up. While this list initially only contained some general requirements and
computer graphics techniques, it has been expanded to include AI techniques and a number
of other game-related elements/techniques. Students had to select from these different lists of
requirements, as long as they incorporated all of the general requirements, two graphics and two
AI techniques, and implemented one other technique/requirement of their choice. These require-
ments ensure that students build a 3D game involving interesting technical challenges. By offer-
ing a wide choice among many game-related techniques we guarantee that there are always
challenging aspects for every student to explore. This, in turn, encourages students to remain
motivated, to delve deeper into whatever study subjects required, and to exceed themselves in the
implementation of the techniques of their choice.

Assessment

Several aspects are important when it comes to determining how to assess the students’ work.
From the course goals, it is apparent that we have to assess the final product and the process. This
led to both a product mark and a process mark:

The product mark takes into account, among other things, the quality of the game (various
aspects of gameplay), the quality of the software (e.g., architecture, modularity, clarity, choice
of technical solutions), technical realization of the different requirements, and the quality of the
project documentation. Placing great emphasis on the technical realization supports the focus on
the requirements.

The process mark takes into account the collaboration between team members (e.g., use of
working environment, task planning and assignment, communication with GD colleagues) and
the individual contribution of each group member in the entire development process (e.g.,
attitude, dedication, initiative, leadership, performance).

final grade =
6 * product mark + 4 * processs mark

10

14 JOGD Volume 3 Issue 2

To assist the tutors in performing the assessment of individual contribution and collabora-
tion, the students perform several peer-evaluations throughout the semester, in which they anony-
mously assess each of their group members. Our experience has steadily confirmed that this peer
assessment provides very valuable, reliable, and effective learning elements to each student [Liu
2006], in addition to assisting the tutors in their coaching and assessment responsibilities.

Adding the collaboration component and the quality of the game into the equation stimulated
students to also focus on collaboration and get as much out of the group as they could. Including
peer assessment assured that students would be motivated to cooperate with this collaborative
process, thus avoiding negative peer-reviews.

WORKING ENVIRONMENT

An important part of any games project is the choice of the supporting technology to work with.
In this section, we motivate the evolution of a successful framework applied in our games project
throughout the years. We discuss the most important challenges faced while continuously using,
configuring, and improving the framework, and describe the solutions we came up with to resolve
those issues. At the same time, some conclusions are drawn that should be useful to anyone
running game design and development projects or courses.

First Steps, First Lessons

After the first year run of our project, in Spring 2003, it soon became apparent that several
students were somehow frustrated and disappointed with the results achieved. In fact, their huge
initial enthusiasm was taken down quite a bit because they had not been able to concentrate on
making their game, as they had to overcome many difficulties related to the programming
language and support technology. Once students had finally learned how to work with the frame-
work provided, they had very little time left to spend on creating their game, which should have
been the focus of the course.

In this phase, the project was supported by the open source rendering engine OGRE [OGRE
2007]. This engine is written in C++, which was considered the industry standard. However,
in the context of “inexperienced” students who have to develop a large and complex software
product, C++ becomes a problem. Students were more focused on mastering and controlling the
programming language than on the development of their game. A “higher-level” language like
Java, which is taught throughout the CS curriculum, might help students to focus more on im-
plementing concepts, rather than on “advanced” technical features (such as memory management
and pointers).

Furthermore, OGRE, an open source rendering engine, was not easy to install and lacked
quality support and documentation. Moreover, we needed the functionality of a complete game
engine, which includes much more than just graphics. Therefore, students had to first set up
OGRE, then choose a sound library, set that up to work, and share the right details with OGRE.
In many cases, even a physics and collision engine had to be integrated, and all that in a language
students felt uncomfortable with, before they could even begin working on their actual assignment:
the game.

March 2008 15

All in all, the first and most important lesson learned was that the choice of supporting tech-
nology for your course or project should be carefully made and aligned in straight relation to the
learning objectives. To get students to focus on the actual course goals (e.g., applying computer
graphics techniques and concepts in practice), you will have to carefully tune the choice of tools,
language, and libraries in line with those goals [Biggs 1999].

Cannibal Birth: a Promising Alternative

During the second year this project was run (Spring 2004), we started to realize how we could
improve the aforementioned situation. A couple of students, who were particularly keen with
games and their technology, formed a development group called Cannibal, and started to work on
a new game engine. To adopt this new technology in our games project, we had set as require-
ments that (i) it was intuitive to use, (ii) it enabled students to realize their dreams, and (iii) it was
fun to work with.

A key aspect of this new engine was that it should favor usability over raw performance. This
should make it easier to use and more manageable, leading to increased productivity and a better
focus on developing the game. This motivation also led to the choice of C# as the main pro-
gramming language. Although it is not an industry standard in game development, C# offers good
performance, is of a higher level than C++, and has proven to be very easy to learn and work with
[Bates 2004]. Complementary to the choice of C#, Managed DirectX [Miller 2003] was also cho-
sen as a managed graphics framework. Together, the Cannibal Engine and a managed framework
based on C# and Managed DirectX should encapsulate many of the technical details, so that
students could focus more on the project requirements and the design of the system. A better
focus on design is especially convenient for game development projects because they tend to
grow exponentially in complexity as they grow in size.

In Spring 2005, we deployed the Cannibal Engine for the first time in the games project.
Students’ enthusiasm rapidly grew as they saw their programming speed increase and realized
they were able to accomplish much more in a shorter time. This led them to request many excit-
ing new features to accommodate their newfound wishes. To that, the Cannibal team corre-
sponded with proportional enthusiasm, satisfying many of those requests, which in turn left
hardly any time for proper testing, with the proverbial consequence of allowing a number of
issues to creep in with every new feature released. The lesson for the future was clear: stick to one
stable version of whatever software is going to be used in the project—game engine, libraries,
modeling tools, etc. New intermediate releases or upgrades during the semester are a source of
entropy that seldom pays.

At the end of the term, a survey was conducted among students to verify our observations.
The most important results of this survey were that over 90% of all students found it very easy to
install and start using the Cannibal Engine; not a single student faced major problems with the
programming language C#; and over 80% of all students found the engine very intuitive and fun
to work with. Therefore, we confirmed that the focus on usability and support, and not so much
on features and performance, was indeed important. Students could get right into creating their
game, instead of having to struggle over and over again with many “complicated” technology and
language issues.

16 JOGD Volume 3 Issue 2

Cannibal Growth: Supporting Team Collaboration

After two years using and improving the Cannibal Engine, in Spring 2007 we had the opportunity
to upscale the games project, giving the interdisciplinary step described in Teams. This larger and
more complex course demanded a number of improvements, including a more complete game
engine and supporting teamwork facilities to manage the larger teams.

Cannibal Game Engine

The evolution of the Cannibal Engine has been a continuous process driven by the eagerness of
the Cannibal team to improve their technology. In this process, improving usability has always re-
mained the focus point of the development, considering user feedback. In addition, the Cannibal
team has worked on new techniques like collision detection methods and alternative dynamic
lighting models. The latter resulted in an experimental version of the engine that used deferred
lighting, theoretically allowing an unlimited number of dynamic light sources.

In this phase, one of the most important developments of the Cannibal framework has been
the adoption of Microsoft’s XNA [XNA 2007]. XNA enables Cannibal to provide cross-platform
development using C# on both Windows and Xbox 360, and comes with a convenient develop-
ment environment called Game Studio Express, further increasing the usability of the engine and
the focus on students.

Online Collaboration Platform

With the introduction of multidisciplinary teamwork in a larger, rather diverse group of students,
collaboration within each team became even more important. In addition, more and more game
development aspects were included in the process, so planning became more important for the
geographically dispersed teams.

To enable students to effectively learn from this collaboration process, an integrated work-
ing environment was provided in which they had access to a number of different collaboration
tools. The most important tools provided to students were a Wiki [Leuf 2001], a Subversion
repository [Pilato 2004], and a custom bug/task tracking system, all integrated into one. The Wiki
system allowed for easy, fast, and collaborative editing of documentation for the game and com-
munication. Students were motivated to keep their Wiki up to date throughout the project. This
improved the collaboration between team members, and made it very easy to timely produce their
deliverables, by simply extracting document data from the Wiki. The Subversion system was
used to share code and assets among the group and to record the changes and different versions
of the game. The bug/task tracking system also supported planning and was used to keep track of
the project’s progress. The team was encouraged to create milestones for each phase of the pro-
ject, and to fill them with tasks assigned to each team member.

The tools presented here provided added value to the student teams, and were very useful to
the tutors. By supplying these tools to students, tutors can meticulously follow the development
process of the teams. This provides them with valuable insight and overview of the course, and
helps them decide when and where to focus their guidance.

March 2008 17

As it turned out, collaboration between different disciplines is much more difficult than be-
tween like-minded people, even with the right tools available. Suddenly, artists had to understand
technical people and vice versa; content created by GD students now had to be adapted to suit the
needs of CS students and the capabilities of the development platform. Since these different dis-
ciplines cause problems faced by many established game development studios in the past [Roathe
1998], some clashes were to be expected. In exceptional cases, mostly due to inexperience, this
would lead to an “over the fence” culture, where GD students would create content, throw it over
the fence, and blame the CS colleagues for it not working. These, in turn, would point the finger
back at the GD students, leading to undesirable and nonproductive situations. However, learning
through experience, all teams were eventually able to work out their differences and become
rather productive.

Cannibal Experience: Learning by Doing

After the success of 2007, the Cannibal staff realized the potential of the “learning by doing”
solution for educational settings, and started to work on their first professional product using the
developed technology. This product, called Cannibal Experience [Cannibal Experience 2007], is
directly aimed at higher-education institutions, supporting them to use game development as a
means to teach their curriculum. Cannibal Experience mainly consists of two components: Game
Development Platform and Online Collaboration Platform (see Figure 2). Both components are
considered critical for the success of any game-related course, with an emphasis on project-based
education. Of course, a support layer, including technical assistance, underlies both platforms,
allowing students (and teachers) to ask questions directly to the Cannibal staff.

18 JOGD Volume 3 Issue 2

FIGURE 2 Overview of Cannibal Experience.

Game Development Platform

Regarding Development Tools (see Figure 3), the game engine plays a central role. Therefore, it
has been carefully revised and more rigorously tested. More features and much flexibility have
cautiously been added, without compromising the usability and cleanliness of the API. During
development of the new version of the engine, special attention has been paid to allow students
to work with the engine at their knowledge level. Students applying game technology for the first
time can use the engine at a very high level, using only top-level features. When students want to
delve deeper, they can start extending and modifying the behavior of the engine at any level they
feel fit; they can, for instance, add new event triggers, add new sources of textures (e.g., a web-
cam), or implement new input devices (e.g., the Wii controller) [Thibault 2007]. The engine’s
main features include strongly object-oriented scene-graph management; asset management; dif-
ferent graphics elements (e.g., shaders, particles, lighting, animation); audio; intersection checking;
a flexible and extendable event-driven programming system handling, among other things, user
input and game logic; a user interface system based on common controls (e.g., button, slider bar).

March 2008 19

FIGURE 3 Overview of Development Tools.

Furthermore, Development Tools includes several editors; for example, a world editor and a
game object editor. These tools can be used by nontechnical team members to verify and config-
ure their content in the game environment. With the challenges introduced by interdisciplinary
collaboration, the tool chain is an indispensable component, as it allows artists and game design
team members to work independently on their content items and know that these will not cause
complications when they hand their content to their technical team members. The content pipeline
is used to import, process, convert, and serialize the assets so their contents can be used at run-
time in the game. Assets created externally can also be imported into the Cannibal editors and be
further configured for use with the engine.

From our experience of recent years, as students were moving faster and faster through course
material and their requirements, their need for information on more (elaborate) game development
techniques became increasingly apparent. Instead of having to explain techniques and concepts
every once in a while, teaching staff became overloaded with questions. To resolve this issue,
Learning Resources have been included in the Game Development Platform. These resources con-
sist of a collection of tutorials and a starter kit designed specifically to help students to get started
with concepts and techniques right away. These tutorials range from getting to start up the game to
collision detection algorithms, character AI, and working with content like textures, sounds, mod-
els, and animations. The starter kit is a fully prepared virtual world where all these elements are
covered. It comes with a full set of game content items like textures, sounds, various shaders, and
different static and animated models. Having at your disposal all information on developing a game
is of significant and valuable assistance in the whole process of learning by doing.

Online Collaboration Platform

As discussed in the section Cannibal Growth: Supporting Team Collaboration, the Online
Collaboration Platform already contained several integrated Collaboration Tools for the students
to share work and collaborate. A discussion forum has been integrated as well, as we realized that
such functionality was particularly appreciated by GD students. A forum also helps to better
facilitate online discussion between students at different geographical locations, while allowing
students to work at different times, since a forum is by definition an asynchronous communica-
tion tool. Having gone professional, the Cannibal staff will usually be less involved in tutoring
future educational projects than has been the case with the games project described so far. There-
fore, different tools were provided for teaching staff to manage their course, enroll students, set
up teams, and monitor progress. These new functionalities provide them with valuable insight,
and help them decide when and where to focus their guidance.

Besides supporting project planning and team collaboration, Community Resources have
also been integrated, where students and teaching staff alike can come together online and hold
their discussions using Cannibal Experience. In addition, teaching staff have private forums
where they can discuss course setup and other educational or tutoring aspects.

Community Resources also provide a way for all members to communicate directly with the
Cannibal staff, by means of a forum, for feature requests, bug reporting, submitting suggestions, etc.
The Cannibal staff, in turn, continuously provides the Cannibal Experience community with knowl-
edge about the environment and its components. Creating a community and actively participating
in it allows Cannibal and teaching staff to cope with the continuous requests for information and
feedback from students.

INDUSTRY INVOLVEMENT

From the very beginning of the games project, we have actively tried to involve a variety of part-
ners with a relation to game development and game technology. In particular, involvement of real

20 JOGD Volume 3 Issue 2

stakeholders from the games industry has been an important success factor for the project because
it strongly stimulates and motivates students. Furthermore, these parties enrich the project with
significant game development experience and technical expertise. For example, throughout the
semester, we schedule a number of guest lectures in which experts from renowned Dutch game
developers (e.g., Streamline Studios, Triumph Studios, W!Games, Coded Illusions, Playlogic) tell
about their experiences in games development, from a wide variety of viewpoints, ranging from
design methodologies, through current CG or AI challenges, to commercial video game produc-
tion and market aspects.

Another way to get the industry involved has been to invite companies to sponsor the
Game of the Year competition, an exciting contest “unofficially organized” every year by our
faculty among the participating teams. The basic idea is that the sponsoring company provides
both a jury member and a prize for the winning team. This scheme gets the companies to promote
their games, and helps them become acquainted with the best skills of our best students. No
wonder that as a result of this close collaboration with the games industry, over the years many
former students of the games project have found BSc internships, or even their final MSc research
project, at selected Dutch game development companies. Eventually, some of these students
found career opportunities, while several others formed their own game-related startups, as is the
case with most of the authors of this article.

Finally, in 2007 the project was sponsored by Microsoft Netherlands. Because the Cannibal
Engine is based on XNA, Microsoft Netherlands donated a number of Xbox 360 consoles to the
faculty for use in this project, giving a significant boost to the students’ enthusiasm. This year was
also unique as both CS and GD students were given the opportunity to present their games at the
Microsoft DevDays event in Amsterdam, at the end of which Microsoft handed a grand prize for
the Game of the Year.

PROJECT EVALUATION

In 2007, for the first time, all CS students (approximately 30) of all participating groups suc-
cessfully finished the project, whereas in previous years a couple of students might fail, typically
due to lack of motivation or dedication on their part. As might be expected, the games developed
by the six interdisciplinary groups were significantly more creative, consistent, and appealing
than the game of the single group working alone. However, all games, although considerably sim-
ple, were recognized as a remarkable result for a one-semester design and development cycle (see
Figure 1 for some representative screenshots). Please refer to the course Web site [MKT4 2007]
for the description and sources of each of the games produced.

From the organization point of view, we very much profited from the accumulated experi-
ence, the biggest challenges having to do with the novel cooperation with the HKU colleagues
(e.g., appointments, traveling time, language and culture clashes, etc.). However, learning to
cope with this diversity was precisely one of the main reasons for the initial choice, and the con-
sensus was that it had been very effectively achieved.

March 2008 21

The working environment (see the section Working Environment) was generally acclaimed
as rather helpful and pleasant to most tasks. The Cannibal engine was, this year, considered es-
pecially accessible, easy to use, and attractive, among other things, due to the Xbox 360 compat-
ibility. The assistance and supervision tasks were now more directed toward architecture and
conceptual issues, rather than having to concentrate on technical programming problems. In ad-
dition, extra time had to be dedicated to the coordination of the interdisciplinary groups to avoid
or overcome conflicts at hand.

As usual, the games project was evaluated at the end of the spring term. For this, all students
were surveyed on the most relevant aspects of its organization. The results of this evaluation
(100% replies) were by and large rather positive.

First, and most importantly, the project goals mentioned in the section Course Goals were
largely achieved. Indeed, most students acknowledged having attained a much deeper insight on
many subjects. When asked to indicate the three areas most improved upon, students mostly
indicated media and programming techniques, ranging from mathematical foundations (55%) to
computer graphics (64%) and AI (45%). Programming and software design proficiency were
mentioned most (90%).

Although apparently most creative work had been left to the GD students, CS students
quickly realized that they had plenty of room left to exercise their own creativity, getting the most
out of the engine (e.g., programming many gameplay, physics, and control elements of the game).
The limited experience of OO programming at project startup was quickly overcome, which
profited from the use of C#. The “fun factor” should not be underestimated, as 45% of all students
attributed their learning experience was stimulated the most by their own enthusiasm and moti-
vation for the project. Another group of 36% students indicated the room for choice in require-
ments led them to go that much farther for the requirements that interested them most. Finally, all
groups recognized that carefully watching over their teamwork process made it possible to
achieve their successful results.

In Table 1, we summarize several other results of the survey, underlining some more con-
crete, interesting aspects of the project realization. The table indicates, for each statement, the per-
centage of students who subscribed to it. Not surprisingly, every year many students point out that
they would have liked to spend even more time to “get their product really satisfying,” an inter-
esting fact that, besides matching the reality of many game developers, leads some students to
form development groups to create a new (and better) game, further increasing their computer sci-
ence proficiency outside of the curriculum.

TABLE 1 Summary of Survey Results

The time I dedicated to this project was (much) more that the nominal (of its study credits) 59%
My dedication was (very) great 71%
We were given an interesting assignment 93%
I experienced the powerful capabilities of teamwork 92%
I am satisfied with the product delivered 63%
I needed more structure or help planning 63%
I learned more from this project than from any other in the curriculum 75%
This project was more fun than other projects in the curriculum 100%

22 JOGD Volume 3 Issue 2

Finally, we also gathered some lessons learned and recommendations aimed at further im-
proving this project in its future editions. The most important are:

All communication facilities and, in general, methods for streamlining teamwork (online col-
laboration platform and tool chain) can better be introduced in practice and extensively explained
right from the beginning of the semester (e.g., by means of a guest lecture).

Besides introducing the available tools, students miss the experience to successfully plan
such a large and complex software project on their own. Most students indicate they would like
more structure, but do feel they learn a lot from planning themselves. As hinted by several stu-
dents, it would be wise to sit down and advise each group while they plan on their own.

Much attention has to be paid to the preparation and planning of all joint meetings, assign-
ments and deadlines between the CS and GD (sub)groups of students, to ensure a successful and
productive synergy.

CONCLUSIONS

Five years after the introduction of project-based Computer Science education at Delft University
of Technology, we can safely conclude that its highly instructive and motivating potential has
been more than confirmed, so much so that various departments and faculties started following
the same approach. Initiated as a pioneer project on computer graphics [Bidarra et al. 2003], the
games project, as it is known on campus, has now gained a prominent role as the integrator course
par excellence of the Computer Science BSc curriculum.

In its current form and organization, including the input from the game development indus-
try as described in this article, the project has achieved a substantial maturity, deploying a pro-
fessional game engine, a fine-tuned working environment, and very experienced tutoring
assistance. It is understood that by now, numerous former CS students of this project have grad-
uated from Delft and have found their career in one of the various Dutch game developer com-
panies, or established their own startup companies in the field, as is the case of most authors of
this article. Furthermore, the increasing reputation and popularity of the games project is being
very effectively exploited by the faculty for the urgent purposes of recruiting new CS students.

We believe that deploying adequate game technology, professionally crafted for this purpose,
within a carefully setup working environment is crucial for the academic success of any inte-
grated games project as the one described here. We also conclude that a streamlined collabora-
tion among students of related disciplines is a powerful catalyst that can significantly raise the
levels of knowledge, experience, and teamwork skills achieved by the students.

Games are, and have always been, all about fun. In pretty much the same way, our experi-
ence is that getting students in the position of making games can be even more fun. However, the
most fortunate of them are those who realize how much they have learned in that process.

March 2008 23

ACKNOWLEDGMENTS

The authors are very grateful to all their (former) students for their patient and invaluable feed-
back throughout the years, and to all colleagues who contributed to the success of this project with
their constructive ideas and criticism. Special thanks go to Natasha Tatarchuk and Alpana
Kaulgud, from ATI Inc., for generously equipping our CG Lab, and to Maarten-Jan Vermeulen,
from Microsoft Netherlands, for his enthusiastic and supportive involvement in our work.

REFERENCES

[Bates 2004] Bates, B. “C# as a First Language: a Comparison with C++.” Journal of Comput-
ing Sciences in Colleges, 19 (3): 89–95.

[Beck 2006] Beck, K. Extreme Programming Explained: Embrace Change, Addison-Wesley,
Boston, MA.

[Beck 2001] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,
Mellor, S., Schwaber, K., Sutherland, J., and Thomas, D. The Agile Manifesto. Available at
http://agilemanifesto.org.

[Bidarra 2003] Bidarra, R., van Dalen, R., van Zwieten, J. “A Computer Graphics Pioneer Pro-
ject on Computer Games.” Proceedings of CGME 2003—Workshop on Computer Graphics,
Multimedia and Education, 8 October, Porto, Portugal, pp. 61–65.

[Biggs 1999] Biggs, J. Teaching for Quality Learning at University, SRHE and Open University
Press, Buckingham, UK.

[Cannibal Experience 2007] Cannibal Game Studios Web site www.cannibalgamestudios.com/.
[CS248 2001] CS 248—Introduction to Computer Graphics Course. http://graphics.stanford.edu/

courses/cs248-videogame-competition/ Stanford Computer Graphics Laboratory, Stanford
University, CA.

[Fowler 1999] Fowler M., Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA.

[Laramée 2005] Laramée F. D. Secrets of the Game Business. Charles River Media, Boston, MA.
[Leuf 2001] Leuf, B. and Cunningham, W. The Wiki Way. Quick Collaboration on the Web.

Addison-Wesley, Boston, MA.
[Liu 2006] Liu, N-F. “Carless D Peer Feedback: the Learning Element of Peer Assessment.”

Teaching in Higher Education, 11(3): 279–290.
[Martin 2003] Martin, R. C., Agile Software Development: Principles, Patterns, and Practices.

Prentice Hall, Upper Saddle River, NJ.
[Miller 2003] Miller, T. Managed DirectX 9: Graphics and Game Programming, Sams. Indi-

anapolis, IN.
[MKT4 2007] MKT4 Project Web site. Delft University of Technology. http://graphics.

tudelft.nl/~mkt4/.

24 JOGD Volume 3 Issue 2

[OGRE 2007] www.ogre3d.org/.
[Pausch 2007] Pausch, R. and Marinelli, D. “Carnegie Mellon’s Entertainment Technology

Center: Combining the Left and Right Brain.” Communications of the ACM, 50 (7): 50–57.
[Pilato 2004] Pilato, M. Version Control with Subversion. O’Reilly & Associates, Inc.,

Sebastopol, CA.
[Roathe 1998] Roathe L. and Fregien, C. CGDC ’98 Roundtable Report www.gamasutra.

com/features/gdc_reports/cgdc_98/roathe_fregien.htm.
[Schaefer 2004] Schaefer S. and Warren J. “Teaching Computer Game Design and Construction.”

Computer-Aided Design 36 (2004): 1501–1510.
[Thibault 2007] Thibault R. W. Wii Console. www.uweb.ucsb.edu/~rwthibault/Tech_Report.pdf.
[XNA 2007] http://msdn.microsoft.com/xna/.

March 2008 25

