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Figure 1. Left: Brute-force 4×4 supersampling result. Right: Comparable quality result
produced using fewer operations by our adaptive shading of a 4×4 supersampled G-Buffer.

Abstract

We present a novel approach to perform anti-aliasing in a deferred-rendering context. Our
approach is based on supersampling; the scene is rasterized into an enlarged geometry buffer,
i.e., each pixel of the final image corresponds to a window of attributes within this buffer. For
the final image, we sample this window adaptively based on different metrics accounting for
geometry and appearance to derive the pixel shading. Further, we use anisotropic filtering to
avoid texturing artifacts. Our approach concentrates the workload where needed and allows
faster shading in various supersampling scenarios, especially when the shading cost per pixel
is high.
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1. Introduction

The process of applying lighting effects to the surface of an object is commonly
called shading. Shading in real-time applications can be performed using a forward-

rendering approach, which sends the scene’s geometry to the GPU and performs light-
ing calculations for each rasterized pixel. During this process, the scene’s information
resides only temporarily in GPU memory. Consequently, shading has to be computed
right away, even for pixels that might end up hidden. Performance falls when shad-
ing dominates the rendering cost. For complex scenes it is unavoidable that shading
dominates, since, even under a simple shading algorithm, forward-rendering shading
is necessarily linear in the number of light sources. It thus becomes arbitrarily expen-
sive as the number of lights grows. To avoid shading hidden fragments, we populate
the z-buffer with depth values by rendering the scene once without shading (i.e., an
early-depth pass). In a subsequent pass, the geometry is transformed and rendered
again, but only fragments surviving the depth test are shaded. Nonetheless, even then,
the computations do not map perfectly to the GPU when triangles are pixel-sized or
very small and an overhead is added.

Deferred shading is an alternative and better approach. Instead of lighting each
fragment directly, a deferred-shading renderer writes each fragment’s attributes to
a geometry buffer (G-buffer). The attributes commonly include normals, positions,
depth values, and material properties. Pixels of the final image are then shaded by
making one pass per light over the regions of the screen affected by the light. Each
pass makes use of the captured data in the G-buffer. This results in higher shading per-
formance (provided the overhead of reading the values multiple times is significantly
smaller than the cost of shading; a variation called tiled deferred shading addresses
this).

Because a single G-buffer pixel will result in a single pixel in the final output,
aliasing can become a severe problem under deferred shading. One can address this
issue by supersampling. However, supersampling is expensive, because it shades
substantially more samples than either forward shading with analytic or multisample
anti-aliasing would, even in regions where no anti-aliasing would have been required.

In this paper, we propose a solution that is faster than brute-force supersampling
and delivers high-quality results. Our method makes use of an adaptive sampling
algorithm and a supersampled G-buffer, leading to an anti-aliasing solution for a de-
ferred rendering context. This paper describes the key contributing elements of this
method:

• adaptive sampling for deferred shading,

• two orthogonal metrics for driving that adaptation, and

• efficient anisotropic filtering for deferred shading.
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2. Previous Work

For anti-aliasing (AA), multiple samples per pixels are needed. This implies many
shading evaluations in forward rendering, e.g., MSAA (multi-sample AA) is a very
common approach. Here, coverage (visiblity) is sampled finely, while shading is
evaluated coarsely. Thibieroz [2009] showed that MSAA can be combined with
deferred shading using a customized resolve operation to achieve plausible results.
However, the stored samples are derived from MSAA samples, i.e., not all samples
correspond to actual surface samples. Further, a fixed shading rate is used for edges
instead of a variable one. Surface-based anti-aliasing (SBAA) [Salvi and Vidimče
2012] can be used to reduce storage costs in these scenarios by limiting the amount of
per-pixel surface information considered for shading. This involves discarding prim-
itives with small coverage to trade accuracy for a smaller memory footprint. A large
body of work on real-time post-process anti-aliasing seeks to ameliorate image qual-
ity by adjusting the values in the color buffer after shading a low-resolution buffer.
See Jimenez et al. [2011] for a survey of these methods. In contrast, we aim at pro-
viding an adaptive strategy for deferred shading to add samples where needed. Here,
we will review the most recent methods that we believe are all currently in production
use.

Fast approximate anti-aliasing (FXAA) [Lottes 2009], morphological anti-aliasing
(MLAA) [Reshetov 2009], and directionally localized anti-aliasing (DLAA)
[Andreev 2011] are purely RGB-based post-process filters and can be used to get
rid of some type of aliasing artifacts. They resample the input texture with a slight
offset for edge regions, thus effectively blurring the edges. Although this can remove
some of the deficiencies, it can lead to an overall blur. Further, false positives for
non-edge regions can appear, and the approach is not temporally coherent. Some of
those filters are known to work in supersampling modes, but an academic description
and the way samples are selected are, however, not available.

Subpixel reconstruction anti-aliasing (SRAA) [Chajdas et al. 2011] is similar to
MLAA but relies on a super-resolution depth (and optional normal) buffer. Sub-
pixel shading values are reconstructed using bilateral upsampling involving weights
defined from neighboring pixels based on depth/normal information. In contrast
to our method, they use a fixed subset of normal and depth values that is chosen
blindly.

Valient’s [2007] multi-sample anti-aliasing (MSAA) x2 averages the result of two
samples. This leads to shading artifacts at boundaries of objects with different materi-
als. Coverage-sampled anti-aliasing (CSAA) [Young 2007] cannot be combined with
deferred shading at all.

Low-resolution rendering and careful upsampling can help to increase rendering
speed. Yang et al. [2008], the authors render the image in low resolution and use
bilateral upsampling for the final pass based on normal and depth information. A
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similar idea is known from the demo scene [Swoboda 2009] for multi-sample anti-
aliasing.

For inferred lighting [Engel 2009], an additional attribute combining a normal-
group-id and an object-id is added to a low-resolution G-buffer. The unique id and
depth are used to efficiently reject pixels from different objects and thus, non-edge-
regions can be shaded with fewer samples. Nonetheless, aliasing artifacts can occur
where brightly lit and dark surfaces meet due to the upsampling strategy. Additionally,
the z-prepass optimization described above cannot be used because the initial depth
buffer (first pass) is rendered at a lower resolution.

Finally, Lauritzen [2010] uses a tile-based deferred shading approach combined
with quad-based light culling. Indeed, they offer an adaptive shading rate using nor-
mal and depth information with additional G-buffer storage cost for depth derivatives.
However, this metric neglects shading discontinuities and does not offer anisotropic
texture filtering.

3. Our Method

The idea of our algorithm is to produce a high-resolution G-buffer, but to perform
shading only on a selected subset of these pixels. This subset is chosen via our metric
that predicts where more samples are required.

At first, the scene’s information is rendered into an enlarged G-buffer of size
(m ·w)× (m ·h), where w and h are the width and height of the window, and m ∈ N.
Each pixel of the final image corresponds to a sampling window of size m×m in the
large G-buffer.

Then, we shade one sample for each pixel and store the result in a separate
buffer S , which has, therefore, a resolution of w×h.

Finally, we will derive the number of additional samples k that should be involved
in shading a given pixel via two metrics. The first metric analyzes the contents of the
G-buffer within a sampling window, and the second one looks at the actual shading
values in S .

3.1. Determining the Required Sample Number

For a sampling window of size m×m, a maximum of n = m
2 samples per pixel is

possible. Each metric has a user-defined constant c to scale the resulting value that
should be adapted according to the scene. As aliasing occurs either at geometric dis-
continuities or discontinuities caused by shading, we propose the following metrics:

Geometry based metric. First, we compute the variance of the depth values in the
sampling window for the corresponding pixel to deduce a first estimate of the required
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number of samples; a higher variance results in more samples:

kd = c× (
∑d

2
i

n
− (

∑di

n
)2).

Next, we investigate the normals and compute the cone spanned by them in the
sampling window. We compute the average normal n̄ from the sampling window and
compare all other normals �ni j against it, effectively computing the conservative cone
centered around the mean normal. The resulting number of samples is given by

kn = c×
�

1.0− (min
i j

(abs((n̄ · �ni j)))).

The total sample count is
k = max(kd ,kn).

Shading-based metric. The second metric is based on the shading texture S . For
each pixel the range r of luminance values is computed by looking at the four direct

Figure 2. Overview of our method. Our deferred shading pass renders to an enlarged G-
buffer, i.e., each pixel of the final image corresponds to a window of this buffer. Then, the
G-buffer is evaluated using our geometric metric. The first sample for each pixel is shaded
and our shading metric is applied. For the final image, we shade each pixel adaptively based
on the result of our metrics and the previously rendered image with one sample per pixel.
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neighboring pixels, resulting in r = lmax − lmin. The final sample count is

ks =

�
0 if r < max(tminThreshold, lmax ∗ tedgeThreshold),

c× r, otherwise.

This is similar to metrics found in RGB-filter-based AA methods such as FXAA [Lottes
2009].

The presented metrics are orthogonal to each other as they rely on different at-
tributes of the scene. The result of the geometric metric and the shading metric are
combined using a max filter. Notwithstanding, depending on the usage scenario (e.g.,
pure geometric aliasing), one could omit the shading metric. Furthermore, even other
sampling methods based on the BRDF [Bagher et al. 2012] could be integrated, but
the above solution is faster to compute and sufficed in all experiments.

3.2. Sampling the Window

Once the required sample count has been computed, we use k samples from the G-
buffer of the pixel’s corresponding sampling window to compute the final shading.
We distribute the k samples according to an index matrix known from ordered dither-
ing [Bayer 1973] (see Figure 3). These matrices are constructed such that the average
distance between two consecutive numbers is maximized. Thus, we can ensure a good
distribution of the samples that are taken from the supersampled G-buffer.

�
0 2
3 1

�


2 6 3
5 0 8
1 7 4









1 8 2 10
12 4 14 6
3 11 0 9
15 7 13 5





Figure 3. Index matrices for sizes m = 2,3,4 that are used to sample the large G-buffer.

4. Implementation

For our implementation, we chose a G-buffer format (Figure 4) that is similar to those
found in games [Valient 2007]. Additionally, we store all textures of the scene in a
3D-array. This allows us to delay the albedo lookup until the final shading pass where
texture aliasing artifacts can be removed by using anisotropic filtering.

We implemented our algorithm using multiple passes (see Listing 1). The first
pass is a deferred shading pass where the destination G-buffer is m

2 times larger.
One important element is that it will not store albedo-texture values but rather the
corresponding texture-layer indices and texture coordinates.

The next pass computes the required number of samples per pixel by evaluating
the sampling window with our metric. The final pass combines the result of the shade-
first texture S and performs adaptive shading using the rest of the G-buffer; samples
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Figure 4. Our G-buffer format. Each channel has 8 bits.

GBuffer g = RenderToGBuffer();
Tex oneSample = ShadeFirstSample();

// evaluation using our two metrics
Tex samplecount = Evaluate( g, oneSample );

ShadeRestAdaptively( samplecount, oneSample, g );

Listing 1. Pseudocode for our algorithm.

are picked from the sampling window for each pixel according to the sample count
and following the dither matrices (Figure 3).

4.1. Shading a Sample

Each sample that contributes to the final pixel is shaded by evaluating the BRDF and
performing a texture lookup into the scene’s array texture. Although our metric does
incorporate shading, we have to avoid texture artifacts. By computing the derivatives
of the texture coordinates in the G-buffer and taking into account the number of used
samples in the window, we can use anisotropic texture lookups to better approximate
the underlying texture footprint of the sample. The derivative computation is available
through the dFdx/dFdy functions in GLSL. The anisotropic texture lookup is then
performed using the textureGrad function.

Such a filtering would fail at the boundary of two different materials. Fortunately,
we can detect these discontinuities because they usually appear at a high-order deriva-
tive in the texture layer/coordinates. The influence of the anisotropic texture lookups
on the result are shown in Figure 5.

4.2. Evaluating Several Samples

There are several possibilities to evaluate multiple samples for a given pixel and our
approach can employ several alternatives—the choice depends on the hardware spec-
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Figure 5. Left: Reference using full 3× 3 supersampling with anisotropic filtering; Middle:
our approach with anisotropic filtering; Right: our approach without anisotropic filtering.

ifications.
The easiest solution is to read out the number of needed samples and use a loop in

a shader to evaluate and accumulate the result of the samples taken from the window.
In practice, this often proved most efficient, despite potential divergence between the
different threads.

Another solution is to write out the required number of needed samples per pixel
into a stencil target. For the final shading pass, the stencil test is enabled and a full-
screen quad is drawn for each possible sample count k ∈ 2, . . . ,m2 where the stencil
test discards all fragments different from k. This effectively groups all pixels with the
same sample count during shading but requires the stencil mask to hold the correct
number of samples and, thus, stencil-write capabilities from within a shader. At the
time of writing, this extension has not been integrated into the OpenGL standard
(GL_ARB_shader_stencil_export). Similarly, the sample count can be written
to the depth buffer using gl_FragDepth followed by an evaluation using multiple
screen-sized quads which are set to the corresponding depth and a depth comparison

Figure 6. (a) Sample count per pixel as heatmap; (b) sorted sample counts (mostly zero); (c)
low-resolution sample count using a max filter on a 6 × 6 window
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with GL_EQUAL. However, this resulted in roughly 20% slower performance in all
of our tests. The sample count values can benefit from bucketing by dynamically
computing a histogram of the values and reducing the co-domain. Such a strategy,
however, involves further investigation to avoid compromising quality and is left for
future work.

We also experimented (see Figure 6(b)) with sorting the pixels according to their
computed sample count, inspired by Hoberock et al. [2009]. Unfortunately, a group
of pixels with the same sample count (e.g., all pixels with k = 4) does not necessar-
ily have a high image-space coherence (see Figure 6(a) and Figure 7), so that tex-
ture accesses within this group are usually incoherent, thereby, limiting performance.
Sorting samples was three times slower than our presented solution.

Also, we tried using a low-resolution sample count texture by applying a max-
filter to the original sample count texture. This filter preserves high sample counts on
edges that require AA. Now, each texel of this low-resolution sample count texture
corresponds to a group of pixels in the image. Unfortunately, this increases the total
number of samples drastically because high sample counts “leak” into regions that
would only require a low number of samples (Figure 6(c)). Again, sorting the low-
resolution sample count values did not improve performance (also roughly three times
slower).

5. Results

In this section, we present the results of our algorithm. We compare our method to a
reference solution that evaluates all n samples for all pixels with anisotropic filtering
enabled. The reference solution and our algorithm are based on an ordered-grid su-

Supersampling Method ms/frame stalled MSE (×10−5) PSNR dB Samples %

1×1 Default 12.91 28.91 – – –
FXAA 13.28 29.24 – – –

2×2 Reference 26.0 78.7 – – 100
Ours 22.9 72.2 5.0 91.14 57.8

3×3 Reference 34.9 158.36 – – 100
Ours 30.69 143.77 3.08 93.24 53.40

4×4 Reference 57.48 317.76 – – 100
Ours 51.68 268.35 3.79 92.34 53.14

Table 1. Performance of our algorithm for the Sponza scene. The reference solution evaluates
all samples for each pixel. PSNR (peak signal-to-noise ratio) and MSE (mean-squared error)
given regarding the reference, similarly the percentage of samples shaded in contrast to the
full evaluation is given. All timings are given in ms.
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Figure 7. Our method at different supersampling rates. The third column shows the difference
to the reference image at the same sampling rate whereas the last column compares to a 1×1
casual deferred shading. Both display the absolute error encoded as a heatmap. The difference
from the n×n solution is nearly zero everywhere because although faster to produce than the
reference solution, our results are nearly identical. Zoom into the figure to see the single-pixel
differences.

persampling AA implementation. Performance results are illustrated in Table 1. For
each version, we measured the performance of real-time shading as well as shading
that stalls the fragment shader (per sample), thus, effectively simulating a heavy and
complicated fragment shader as can be found in offline or interactive rendering.

We also calculated the mean-squared error (MSE), the peak signal-to-noise ratio
(PSNR), and the percentage of samples in comparison to the reference solution. The
timings were measured on an Intel Core i7 2.67 GHz with a GeForce GTX 480 with
1536 MB VRAM at a (application) resolution of 1024× 768 for our OpenGL-based
implementation. We used the Sponza scene with 280 K triangles and 194 K vertices
for our tests.

The impact of our geometric and shading term are shown separately in Figure 8.
Our geometric term also reduces the artifacts when small geometric details cannot be
captured by our shading texture S .

Our adaptive sampling algorithm outperforms the reference solution in all cases
while keeping the quality at a similar level. Even for real-time shading scenarios, with
low-cost fragment shaders, we can observe a gain in performance. Our metrics reduce
roughly by half the required number of samples to shade. However, when shading
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only half of the samples, a performance boost of a factor of two is not possible due to
the divergence of threads on the GPU and some incoherent texture accesses between
neighboring pixels.

Our metric gives only a small error (see Figure 7) as it is sensitive to changes in
depth and normal as well as shading discontinuities.

Overall, our algorithm proves to be particularly useful for supersampling scenar-
ios, especially, when the shading cost per pixel is high (see Table 1 (stalled versions)).

6. Discussion and Conclusion

We presented a method to increase performance of supersampling anti-aliasing sce-
narios in the context of deferred shading. Our results are usually close to the reference
but involve much less computation time. The proposed metrics provide a good trade-
off between performance and accuracy with a controllable error.

In the future, we would like to design light-source aware metrics in order to im-
prove shading near specular highlights, e.g., one could already combine our solution
with a light pre-pass [Engel 2008]. Further, we would like to address thread diver-
gence by using a tile-based approach similar to Lauritzen’s work [2010]. Also, as is
common for antialiasing methods, temporal coherence is an interesting problem, and
we would like to try to compensate for such artifacts by averaging the sample count
over several frames, in the spirit of Herzog et al. [2010].
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