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ABSTRACT
We present an automated algorithm which classifies peripros-

thetic tissues in CT scans of patients with loosened hip pros-

theses. To our knowledge this is the first application of CT

voxel classification to periprosthetic tissues of the hip. We use

several image features including multi-scale image intensity,

multi-scale image gradient and distance metrics. Seven classi-

fier types were trained using five manually segmented clinical

CT datasets, and their classification performance compared to

manual segmentations using a leave-one-out scheme. Using

this technique we are able to correctly segment the majority

of each of the six tissue categories, in spite of low bone densi-

ties, metal-induced CT imaging artefacts and inter-patient and

inter-scan variation. Our automated classifier forms a prag-

matic first step towards eventual automatic tissue segmenta-

tion.

Index Terms— Automatic, classification, segmentation,

computed tomography, periprosthetic, osteolysis.

1. INTRODUCTION

The most significant complication that threatens the long-

term survival of a total hip arthroplasty (THA) is peripros-

thetic osteolysis [1, 2] which involves resorption of bone and

replacement by soft fibrotic tissue. Once osteolysis devel-

ops it usually progresses, eventually leading to mechanical

instability and prosthesis loosening.

Minimally invasive refixation of loosened prostheses is

possible [3] but requires the location and extent of fibrotic

lesions to be known pre-operatively. Recent studies have

shown that CT is more sensitive and accurate than tradi-

tional radiographs in detecting and measuring such lesions

[2, 4]. However, the steady increase in resolution offered by

modern CT scanners make traditional manual segmentation

extremely time-consuming, thereby limiting users’ utilization

of the available data.
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CT of suffers from metal-induced artefacts [5] which

drastically complicate automatic segmentation near prosthe-

ses. To make things worse patients suffering from prosthetic

loosening often have very poor bone quality yielding low

CT image contrast with intensity values overlapping those

of other tissues. Statistical Shape Models are useful for

segmenting objects from low quality image data, but fare

badly when modelling pathological tissues (such as fibrotic

lesions) with no generalizable geometry [6] and/or consisting

of several small isolated regions.

Several papers have been published describing automatic

statistical pixel- or voxel segmentation of clinical data. By

combining several complementary image features, voxel clas-

sifiers deliver reasonable classification performance in spite

of metal-induced CT imaging artefacts, and without resort-

ing to explicit geometrical modelling or human intervention.

Radiographs [7], MRI [8] and CT [9] have been subjected

to pixel/voxel classification. Standard approaches generally

make use of multi-scale image intensity as well as higher or-

der spatial derivatives to describe local image variations and

“texture”. Image intensity variation between scans can com-

plicate X-ray and MRI feature selection, but CT scanners are

largely immune to this due to their well defined and calibrated

output measured in Hounsfield Units (HU). The geometric

position of the image pixels or voxels can be omitted [7] or in-

corporated [9] into the classifier’s feature space, although care

must be taken so that the chosen features remain invariant to

inter-scan orientation and scaling offsets.

The aim of this study was to develop an automated voxel

classifier that can serve as the first step in a segmentation

pipeline, eventually leading to patient-specific mechanical

modelling. We are interested in the 3D distribution of bone,

cement and fibrotic tissue around the prosthesis, which de-

fines the hip’s mechanical stability. In this paper we present

statistical voxel classifiers that classify periprosthetic tissues

into six possible tissue categories, namely cement, fibrotic
lesion, trabecular bone, cortical bone, intramedullary canal
and exterior. To our knowledge this is the first time that such

a 3D statistical voxel classifier has been applied to peripros-

thetic CT image data. The classifiers are trained on manually

segmented CT scans of five patients with clinically loose

prostheses, and evaluated in a (per patient) leave-one-out
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scheme. Image features are chosen so that they can be com-

puted fully automatically. Once trained, tissue classification

can be performed automatically, delivering an approximate

tissue distribution as output. This initial classification forms

a good foundation for further post-processing and eventual

automatic segmentation.

2. METHOD

2.1. Image parameters

We obtained data from five different patients diagnosed with

loose femoral prostheses causing pain and immobility. Each

patient was scanned in a Toshiba Aquilion CT scanner using

its FC30 “bone kernel”, yielding the highest possible resolu-

tion, at the cost of increased noise. All scans were performed

with a peak tube voltage of 135kV. Since we obtained the clin-

ical data retrospectively there was some inter-scan variation,

most notably tube current (150mA to 400mA) and in-slice

voxel spacing (0.44mm to 0.59mm). All scans had a slice

thickness of 1mm. The scanner was set to include a single hip

in its reconstruction field of view.

In addition to normal between-patient anatomical differ-

ences we also note that different prosthesis designs and sizes

were used. All prostheses were of cobalt-chrome, thereby

presenting a worst case scenario, since titanium implants

yield fewer artefacts.

2.2. Choosing image features

As pre-processing step we selected the upper part of each fe-

mur as a region of interest (ROI). Thanks to the artificial joint

we have good separation between bony structures of the fe-

mur and pelvis. ROI extraction can therefore be performed

automatically, although this falls outside the scope of this ar-

ticle.

We decided on using eleven image features at every voxel

location. Following an approach similar to that in [7, 8, 9] we

used CT grayscale values at multiple scales as our first four

features. These features describe the native in-slice voxel

resolution (0.5mm x 0.5mm x 1mm) along with Gaussian-

smoothed versions having spherical standard deviations of

1mm, 2mm and 5mm. Features five to eight consist of the

image gradient magnitude computed from at the same scales

as the grayscale features.

The rationale behind using a Gaussian multi-scale ap-

proach is twofold. Firstly, by combining neighbouring pixel

values, we tend to average out individual voxel noise (at

the cost of resolution). Secondly, by adding information

of neighbouring voxels we include neighbourhood informa-

tion to every voxel (for example we can discern between an

isolated bright voxel and a bright voxel in a bright neigh-

bourhood, without doing explicit neighbourhood searches).

Similarly to [10] and in constrast to [8] we decided against us-

ing second-order and higher derivatives as feature descriptors,

Fig. 1. Projection of the six tissue categories represented in

feature space

arguing that these are excessively sensitive to image noise and

contribute little additional information to our model.

The last three features (numbers nine to eleven) are dis-

tance metrics, chosen to be automatically computable and

insensitive to rotational and translational offsets. In each

of these three cases we compute the signed distance in mil-

limeters, so as to be independent of the scan resolution and

anisotropies.

Firstly, we compute the distance from the metal prosthe-

sis. Metal has such a high contrast in CT that it can easily be

found by performing a simple threshold at e.g. 5000 HU. This

feature gives us useful information as to the “centredness” of

any given voxel, which is useful since periprosthetic tissues

are approximately radially distributed.

The second distance metric is computed along the scan

(Z) axis from the centre of the prosthesis head. This can au-

tomatically be computed by the mean voxel location of the

prosthesis head, which is easily recognizable from the pre-

viously mentioned threshold due to its increased diameter at

one extremity. Due to the geometrical constraint of a patient

lying on the CT gantry the prosthesis’s long axis is always

aligned with the scan direction, giving this distance a consis-

tent interpretation.

Lastly we compute the the signed distance from the con-

vex hull formed by the femur. We note that this adds infor-

mation because femoral tissues have said radial distribution,

with cortical bone being closest to the outer hull of the fe-

mur. We compute this feature by first thresholding the vol-

ume of interest (at 600 HU). The threshold of 600 HU was

chosen so that only cortical bone, cement and the metal pros-

thesis fall above the threshold. We then subtract a per slice
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7x7x1 voxel dilated mask of the metal prosthesis, thereby re-

taining only cortical bone and cement, along with possibly

isolated metal-induced imaging artefacts. Next, we perform

a cascaded 3x1x1 + 1x3x1 morphological opening to remove

remaining metal-induced noise voxels. The result is a thresh-

olded mask containing many islands and holes, caused by the

CT shadow of the prosthesis, trabecular bone, fibrous tissue,

intramedullary canal and zones of low bone density. Com-

puting the slice-by-slice convex hull of this mask gives us a

reasonable approximation to the convex hull of the femur’s

cortical shell.

2.3. Training the voxel classifiers

To provide training and validation labels to the image vox-

els, an experienced user manually segmented each femur us-

ing the interactive MITK software tool [11]. The segmented

masks were then used to select the relevant voxels for the

eleven image feaures. The statistical classifiers were con-

structed and trained on these features using PRTools [12], a

pattern recognition toolbox for MATLAB.

Our classification task involves separating six distinct tis-

sue types as collections of points in an eleven-dimensional

space. Figure 1 shows a 2D projection along the computed

axes of greatest separation of the 11 dimensional training

voxel feature space. We see poor separation between classes

indicating a very challenging classification problem. Select-

ing an appropriate classifier for this task is not a straight-

forward choice. Authors of recently published medical

voxel classifiers have opted for a colourful mix of k-nearest-

neighbour (kNN) [10, 8], linear- and quadratic discriminant

(LDC & QDC) [9], decision trees [13] and neural networks,

to name a few. In this paper we chose to compare several

available classifiers namely LDC, QDC, Parzen, kNN, back-

propagation neural network as well as a combined “voting”

classifier composed of simple LDC and kNN classifiers.

The five different patient CTs were use to test the clas-

sifiers in a rotating leave-one-out scheme, where each time

the classifiers were trained on four of the CT datasets and

tested on the remaining set. At each step in the leave-one-

out scheme we transform all features such that the training

features have a zero mean and unit variance. Depending on

the classifier we use a suitable sized random subset of train-

ing voxels. We use a subset of all available training voxels to

keep the training time in check – a kNN classifier, for exam-

ple, needs to store all training data internally. For each clas-

sifier we use an equal number of training samples per tissue

class, along with equal priors.

3. RESULTS & DISCUSSION

The different classifiers’ performance is shown in fig. 2. We

see that the very fast LDC and QDC classifiers are generally

less capable than the more complex alternatives. We were sur-

prised at the relatively poor results obtained with the 3-layer

back propagation neural network. The combined classifier

delivered good classification results, although we found the

Parzen classifier to have the most stable response across all

tissue classes and test cases.

Our small dataset of five patients is a limitation in assess-

ing the true potential of these methods. The limitation lies

not in the number of data points available during training,

but rather in their ability to represent the variation in human

femora and scan parameters. However, it can be expected that

segmentation performance will increase as larger and there-

fore more general training sets become available.

Fig. 2. Median classification error for different tissues and

classifiers.

Figure 3 illustrates that automatic voxel segmentation cor-

rectly identifies the general distribution of the separate tis-

sues, even before any additional post-processing. Looking

at table 1, we see that the most problems occur when classi-

fying cement and fibrotic tissue. Both of these exist close to

the metal prosthesis where they are strongly affected by metal

artefacts. Voting between each voxel and its neighbours’ soft

(continuous) classification can improve filtering of misclassi-

fications by incorporating more geometrical coherence.

Manual Automatic classification

seg. Canal Cem Cort Ext Fibr Trab

Canal 98.5 0.4 0.3 0.0 0.8 0.0

Cem 1.8 67.3 6.3 0.4 21.5 2.7

Cort 1.5 6.0 78.2 1.1 6.1 7.0

Ext 0.2 2.0 1.7 78.4 4.9 12.8

Fibr 1.6 15.9 6.4 2.0 61.4 12.7

Trab 0.0 1.6 3.8 12.8 9.7 72.0

Table 1. Confusion matrix for the Parzen classifier over all

test femora. (see also fig. 2).

1343



Fig. 3. a) Sagittal CT slice and tissue classification using b)

manual segmentation and c) our automatic Parzen classifier

4. CONCLUSION & FUTURE WORK

The voxel classifier presented in this paper offers an auto-

matic tool for performing an initial segmentation of 3D CT

scans of loosened hip prostheses. We achieve a correct clas-

sification rate ranging between 66% and 70% for fibrotic le-

sions, bone and cement, the tissues we are most interested in.

The result obtained represents a useful first step towards au-

tomated segmentation, and a significant improvement above

simple threshold-based segmentation. Future work will in-

clude post-processing the initial classification result by incor-

porating neighbourhood voting and the the classification cer-

tainty associated with each voxel. We see this solution as the

first step in a fully automatic tissue segmentation pipeline.
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