

Designing Procedurally Generated Levels

Roland van der Linden, Ricardo Lopes and Rafael Bidarra

Computer Graphics and Visualization Group, Delft University of Technology, The Netherlands
roland.vanderlinden@gmail.com, r.lopes@tudelft.nl, r.bidarra@tudelft.nl

Abstract

There is an increasing demand to improve the procedural
generation of game levels. Our approach empowers game
designers to author and control level generators, by
expressing gameplay-related design constraints. Graph
grammars, resulting from these designer-expressed
constraints, can generate sequences of desired player actions
as well as their associated target content. These action
graphs are used to determine layouts and content for game
levels. We showcase this approach with a case study on a
dungeon crawler game. Results allow us to conclude that
our control mechanisms are both expressive and powerful,
effectively supporting designers to procedurally generate
levels.

Introduction

It would be great if computer-generated levels could also

be somehow designed. Procedural content generation

(PCG) concerns itself with the algorithmic creation of

content. The potential benefits of using PCG in games are

already well established: (i) the rapid reliable generation of

game content (Smith and Mateas 2011), (ii) the increased

variability of the generated content (Hastings, Guha, and

Stanley 2009; Smith et al. 2011), and (iii) its use to support

player-centered adaptive games (Lopes and Bidarra 2011;

Yannakakis and Togelius 2011). However, these benefits

highly depend on an essential feature of any generative

method: the degree of control over the generator.

 Proper control over generative methods ensures that the

created content contains the features designers envision. In

other words, control determines what a generation

algorithm can and cannot design. Therefore, the lack of

intuitive control over generators can partially explain the

absence of procedural generation in commercial products

(Smelik et al. 2011).

The aim of this research is to improve on this control,

and particularly, to find out how designers can use

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

gameplay as the vocabulary to control the procedural

generation of game levels. We argue that the geometry,

topology and content of a game level should mostly follow

from the specific ways in which a player can interact with

a game (gameplay), and not the other way round. In this

paper, we propose a generic method for designing

procedurally generated levels by specifying their expected

gameplay. A gameplay grammar, resulting from designer-

expressed constraints, generates graphs of player actions,

as well as their associated content. This action graph can

be then used to determine a game level layout.

 To showcase our method, we apply it to a specific form

of levels: dungeons. These are a type of game level often

encountered in Role Playing Games, and mostly consist of

sequences of challenges in enclosed space structures (e.g.

caves, cellars). Dungeons are of particular interest since

they heavily rely on player-centered gameplay. In contrast,

in more open and active game levels (e.g. cities), player

interaction is just one type of the many events occurring.

In the next section, we survey previous work on

procedural level generation. The following two sections

introduce our method. First, by proposing our gameplay

grammar and then by discussing its integration in an

existing game. The subsequent section discusses results

and evaluation of our control method, before conclusions

are outlined in the final section.

Related Work

Research in the procedural generation of game levels has

advanced significantly. Most related work has a focus

other than effective gameplay-based control over

generative methods. Johnson, Yannakakis, and Togelius

(2010) use the self-organization capabilities of cellular

automata to generate natural and chaotic infinite cave

levels. For platform games, Mawhorter and Mateas (2010)

propose a mixed-initiative approach, where level chunks

are assembled to generate level sections in between

manually designed ones. Search-based evolutionary

Action 1: Acquire key

Sub-actions: Kill an enemy → Loot key from body

Action 2: Enter locked chamber

Sub-actions: (Acquire key → Unlock related door → Move

through doorway) || (Climb on roof → Enter chimney)

algorithms were investigated for the generation of game

levels. In one example, Valtchanov and Brown (2012) use

their fitness function to optimize topology generation, by

specifying a strong preference for dungeons composed of

small, tightly packed clusters of rooms, inter-connected by

hallways. Roden and Parberry (2004) proposed a pipeline

for generating underground levels. The authors also use

constraints to control graph (level) generation. However,

their constraints directly relate to the topology and

geometry of a level, and not to gameplay.

For our purposes, gameplay-based control over

generative methods is more interesting and relevant, as it

has allowed player-based rhythm, game narratives and

game missions to steer level generation. Smith et al. (2009)

propose a two-layered grammar-based approach to

generate platform levels. Player actions (like jumping) are

also used, but only to define desired interaction rhythms,

which then constrain level generation. Hartsook et al.

(2011) use a genetic algorithm to create 2D role playing

game worlds. The initial genetic representation captures

linked narrative events and the fitness function optimizes

correct sequencing. This way, narratives that are

meaningful to the player steer the generation.

Dormans' (2010, 2011) work on grammars to generate

dungeons shares most similarities with our research.

Missions are generated through a graph grammar,

representing sequential player tasks. This mission graph is

then used by a shape grammar to create a corresponding

game space. Recipes are created by designers to instruct

the generator how to re-write grammar rules. Our generic

approach aims for a wider range of application, to both

games and genres, than done before. The main distinct and

novel contributions are: (i) tasks can be created from

scratch, with associated game content, (ii) parameters to

control the generative grammar can be freely specified and

manipulated, and (iii) additional spatial relationships,

beyond “key-lock” pairs, can be specified and controlled.

Gameplay Grammars

Typically, the geometry and content of a designed game

level follow from gameplay requirements, not the other

way round. This happens because gameplay naturally

determines which unique content is required, whereas

content can be ambiguous as to which gameplay it sustains.

Optimizing content to match gameplay is more natural,

since it is more appropriate in the level design setting.

 Our approach allows designers to author procedurally

generated levels, empowering them with intuitive control

over the generative methods. Control is realized a priori,

by specifying all the design constraints, expressed in a

gameplay design-oriented vocabulary. Player actions to

perform in game (e.g. fighting), their sequencing,

relationships and content (e.g. fighting a dragon) can be

expressed as (design) constraints. These designer-authored

constraints directly result in a generative graph grammar,

i.e. a gameplay grammar, and multiple grammars can be

expressed through different sets of constraints. A grammar

is thus tailored by a designer to fit a specific game. It is

able to generate graphs of player actions which

subsequently determine layouts for game levels. For each

generated graph, specific content should be synthesized by

following the graph’s constraints, for example, by placing

in a game level the objects required by each action, in the

appropriate sequence.

Expressing Design Constraints

In our grammar-based method, designers author level

generators by expressing their design constraints, specified

as player actions, their relationships and related content. A

player action, also considered by Smith et al. and

Dormans, describes gameplay by inherently indicating

what a player can do in a level. There is no universal set of

actions, so for each game, designers have to specify their

own. Constraints were implemented into Entika (Kessing,

Tutenel and Bidarra 2012), a semantic library editor used

to express semantic attributes and relationships as

constraints to layout solving.

 Individual player actions are specified as a verb and a

target, e.g. kill a dragon. Targets typically relate to game

content, e.g. the dragon in kill a dragon. Content refers to

the objects, non-playing characters (NPC) and their

relationships. Entika allows you to directly specify this

target as a semantic entity linked to content (e.g. a 3D

model, a procedure). This can even be expressed in more

abstract terms, like other constraints to be solved later (e.g.

“some animal with scales”).

 Player actions are most interesting and useful if they are

considered in logical groups and not individually.

Sequences of actions, and even branching sequences

(representing player choices), can capture more complex

and intricate gameplay. As such, player actions can also be

grouped and specified as a compound, where the whole

composition of sub-actions is represented by a single

name. For example, as seen below, acquiring a key can be

fulfilled by killing an enemy and then looting the key from

its body. Furthermore, each sub-action can itself be a single

or compound action. Sequences of actions can also include

branching, to capture player choices or alternatives

(resembling the logical ‘or’ operator, ||). Below we see an

example, with two alternatives of action sequences to

fulfill entering a locked chamber.

Action 1: Acquire key

Sub-actions:

 Option 1: if Difficulty == 25 and Length > 25

 1.1: Kill an enemy → Loot key from body

 1.2: Distract enemy → Steal key

 Option 2: else

 Look under doormat → Pickup key

Additionally, there may exist totally disjoint alternatives

of fulfilling a compound action, which depend on designer

choice, rather than on player choice. In other words, at

design and generation time, and not at game time, several

options for fulfilling a compound action may be specified.

Selecting one option among them (i.e. re-writing that

player action) can increase variability and flexibility. This

selection can be done randomly or controlled by the

designer. For the latter, designers steer selection by (i)

making re-writing options dependent on given conditions,

and (ii) by specifying, for each generation, a set of global

parameter values to evaluate against those conditions. For

example, and as shown below for re-writing Acquire key, if

values for Difficulty and Length are met, then option 1 is

chosen, with random selection between option 1.1 and 1.2.

 Expressing all these design constraints enables designers

to author how gameplay should progress in a level. To

increase this expressive power, we defined two types of

explicit relationships: (a) co-located actions (e.g. killing an

enemy, and looting a key from his body), and (b)

semantically connected action pairs (e.g. a key and its lock,

like in Dormans’ work).

 Action co-location is a special example of spatial

relationships. Game spaces refer to the bounded areas in

which the player can navigate, and in which the content is

located. Typically, determining spaces is highly game

dependent. Furthermore, the link between spaces and

actions can be unclear (a dragon can be killed in different

spaces). Therefore, our approach does not include

constraints on the spaces where actions (and their target

content) should occur. However, this does not preclude

that, as mentioned above, some actions must be together in

the same space, whatever that space may be. For example,

two individual actions targeting the same object instance.

This object exists in a single space, and therefore those

actions are also required to be in that same space (e.g.

killing a dragon and looting a dragon). This is why the co-

location of two individual player actions can be expressed

as a constraint.

Graph Generation

Once a designer has expressed all design constraints, they

result in an instance of a gameplay grammar, able to re-

write a set of initial action(s) into an action graph. Nodes in

that graph represent (groups of) player actions and edges

indicate their order. Eventually, this information in the

graph will determine a game level layout.

 Different sets of designer-specified constraints result in

distinct gameplay grammars, which is a first way of

controlling generation. Additionally, generation can also be

controlled by setting the initial parameter values of a single

grammar which, as explained before, will steer the

selection of the corresponding re-writing options.

 The initial graph is composed of a set of start action

node(s). The generative algorithm re-writes compound

actions into a sub-graph of linked actions. It takes the

following steps while a single compound action still exists:

1. Select the first compound action in the graph

2. Select an option based on parameter values

(randomly, if no conditions are set)

3. If needed, randomly select sub-options

4. Convert the selected rewriting option to a graph of

sub-action nodes (sub-graph).

5. Add the compound action as the parent of all sub-

graph nodes

6. Replace the compound action with the subgraph.

Connect all the predecessors of the compound action

with the first nodes in the subgraph. Connect all the

successors of the compound action with the last nodes

in the subgraph.

 The next step is to group actions into the same space, i.e.

solve co-location of actions. New group nodes are created

from merging the individual nodes which must be co-

located. These new nodes are groups of actions which

represent a space. Aggregating nodes has some

particularities. If either or both nodes were already in a

group, all nodes are merged into a new group. Merging

must occur because part of a longer co-location sequence

may be cut in half due to branching combined with depth-

first recursion. If the two nodes to be merged exist in the

same tree level (they share a parent or a child node), more

duplicates of one of them might theoretically occur in that

same level. The algorithm inspects all the stored parent

compound actions (step 5 above) which originated each

node. Merging only occurs within these compound actions

hierarchies. Finally, semantically connected pairs are

marked by inspecting all actions and backtracking their

compound action parent-hierarchy. Figure 1(a) displays an

example of a generated action graph, where a co-located

group node for Fight Melee Enemy and Loot Key can be

observed.

 With this generative algorithm, multiple grammars and

parameters can generate a variety of action graphs. These

not only indicate the sequence of actions that must occur

in-game, but also other requirements as e.g. their target

content, the groups where some actions must occur in the

same space, as well as semantically connected action pairs.

Case Study: Dwarf Quest

With the approach described so far, designers can express

gameplay-related constraints which ultimately result in

action graphs describing game level requirements. This

approach can be considered generic, in the sense that, once

created, player actions and related design constraints can

be manipulated across different games. Furthermore,

generated graphs can even be made re-usable and game

independent as long as the target content of each action is

abstract and ‘portable’ enough.

 However, the full realization of our approach still needs

that such abstract action graphs be converted into an actual

specific game level. For use in a game, those action graphs

should be integrated with a dedicated level generator.

Designers working with Entika and player actions still

need algorithms to actually synthesize levels. Given the

information stored in the graph, these algorithms can be,

for example, simple layout solving techniques (Tutenel et

al. 2010).

For our case study, we used Dwarf Quest1, a typical

dungeon crawler game in which the player explores

dungeons, fighting enemies, solving key-lock challenges,

finding treasures and boosting skills. Dungeons are

composed of rooms, in which the main content is located,

and hallways, connecting rooms.

1(Wild Card Games) http://www.dwarfquestgame.com/

We implemented a Dwarf Quest generator, which

converts action graphs, generated by a gameplay grammar,

into dungeon levels. Several Dwarf Quest features were

essential for constraining this dedicated generator. First,

the rooms and hallways have to be orthogonally placed on

a 2D grid, with a maximum of four connections (doors) per

room. Second, due to game engine and camera reasons,

rooms cannot be made too large, implying that spaces

cannot hold too many actions. Full details on the

algorithms of the dedicated generator are outside the scope

of this paper and can be found elsewhere (Van der Linden

2013).

The Dwarf Quest generator takes an action graph as

input and yields a room graph. The algorithm takes the

following steps:

1. space assignment converts nodes of the action graph

into rooms and edges into hallways;

2. layout pre-processing converts the graph into a planar

graph (without overlapping edges) and reduces edges

per node to four by adding new intermediate nodes

(i.e. rooms);

3. layout solving converts the planar graph into an

orthogonal graph mapped onto the 2D grid map;

4. layout post-processing still needs to optimize the

resulting layout. As with other orthogonal planar

graph drawing techniques, excessively long edges

(i.e. hallways) are a side-effect. Long hallways are

then compressed, and rooms added into the ones

which cannot be further compressed.

Fig. 1. (a) Graph of player actions for an example generated dungeon, (b) Dwarf Quest dungeon layout, generated for (a), (c) 'Loot

Treasure' room, generated for (a), (d) another (unrelated) example of a dungeon layout (colors are only decorative).

(a)

(c)

(b)

(d)

Finally, the geometry of rooms, hallways, objects and

NPCs is actually created and placed. Dwarf Quest’s

designer had already randomly generated levels as a basis

which he then manually finished for inclusion in the game.

We extended this generator with our control layer.

Predefined room configurations indicate size, entrances

and possible object locations. Configurations are selected

according to the original action graph, matching the target

content of an actions node (i.e. the content associated to

that action) to a possible room configuration. Room

configurations instruct the generator to instantiate rooms

(geometry, lights, doors) and content (objects, and NPC) in

the location defined with the layout solving steps. To

maintain player immersion, decorations, thematically

related to the created objects, are instantiated. Finally,

semantically connected pairs are marked so the game

engine knows how to deal with them, so that e.g. a lever

actually lowers a closed bridge. Figure 1 displays examples

of generated dungeons (b, d), and one of their rooms (c).

Results and Discussion

The aim of this research is to provide a more intuitive

control over procedurally generated levels, through a

gameplay-based vocabulary. Before evaluating our

approach with designers, we sought to measure the

responsiveness and effectiveness of our generation control

mechanisms. For this, we analyzed the expressive range of

its generative space (i.e. the variety of generated levels and

the impact of changing parameters), as introduced by

Smith and Whitehead (2010).

The generative space can be shaped by our control tools,

i.e. the gameplay grammars and the parameters created by

designers (in this case for Dwarf Quest). We represent the

generative space by a 2D histogram, where the axes are

defined by the range of metric scores measuring level

features. This allows to view peaks of commonly created

content and possible holes in the generative space (Smith

and Whitehead 2010). As metrics we use graph complexity

and danger, as we believe that these indicate important

gameplay features of a designed Dwarf Quest level.

Fig. 2. Histograms for graph complexity and danger, measured for 1000 generated dungeons. Graph complexity is the number of

sub-graphs in the final level layout. Danger is the total amount of damage points a level can inflict. Results are displayed for: (a) a

grammar without parameters. Another grammar was created with control parameters for dungeon length and challenge difficulty,

expressed in a designer-created scale (0 to 100). Results are displayed for parameter inputs of, respectively, length and difficulty:

(b) 12-48 and 20-50 (c) 40 and 100 (d) 70 and 40 (e) 90 and 5-25 (f) 90 and 60. As an indication of performance, the average

processing times for the levels generated in (b) and (f) are 1 and 2 seconds, respectively.

(f) (e) (d)

(c) (b) (a)

Graph complexity indicates the structural complexity of

the generated level. It captures the duration of the level, as

well as the amount of choices a player can face. Previously

used for molecular complexity in chemistry (Bertz and

Sommer 1997), for our purposes, graph complexity is the

number of subgraphs of the final rooms graph.

Danger quantifies the capacity of the whole level to

inflict harm to the health of the player character. Like in

Smith et al., it captures how the level can potentially kill

players. We have based danger on Valve’s game intensity

metric (Tremblay and Verbrugge 2013), which measures

the amount of player health lost during two intensity

updates. Danger is an estimate of the expected game

intensity for a generated level. For our purposes, it is

calculated by summing the average amount of damage

dealt to the player, for all damage-dealing components.

The histograms in figure 2 show the measurements

performed on dungeons from two different grammars. For

each histogram, 1000 dungeons were generated. Figure

2(a) plots generated levels from a first grammar, featuring

no parameters. This grammar yields a dungeon with a

simple structure, each challenge belonging to the harder

segment of Dwarf Quest’s challenges spectrum (e.g. fight a

boss). The resulting dungeons have a rather linear

structure, but do pose a challenging experience. With such

a grammar, designers can control all generated levels to

these features while allowing for some variation, as seen in

the figure. This shows they can create highly specialized

level generators, to be used, for example, in games where a

very consistent gameplay experience is desired.

Figures 2(b) through 2(f) show levels generated from a

second grammar, featuring control parameters. The

parameters dungeon length and challenge difficulty were

specified for this grammar, with a designer created scale

ranging from 0 to 100. As explained before, parameters are

added to compound player actions to constrain which

options are available to rewrite them. In this second

grammar, higher length values correspond to rewriting

options with longer action sequences. And challenge

difficulty values correspond to the difficulty a designer

perceived for that option. As outlined in figures 2(b) – 2(f),

different input parameter values were used to generate

levels. This resulted in the following dungeon features:

(2b) a simple structure and minor danger, (2c) a simple

structure and very high danger, (2d) a medium complex

structure and medium danger, (2e) a complex structure and

low danger, and (2f) a complex structure and high danger.

Parameters add flexibility to this second grammar,

allowing fine-grained control over dungeon features. The

grammar can potentially create any level in the generative

space visible in figures 2b through 2f always with

abundant variation, as observed. Parameters add control

over what and when level generators can specialize in. This

functionality can be used by designers: (i) as a design tool,

to select a number of generated levels with specific

features and include them in their game, (ii) to give away

some of that control to players, where the parameters can

be used as game options, and (iii) for adaptive games,

where the parameters are derived by some algorithm, e.g.

based on some player model (Lopes et al. 2012).

Conclusions and Future Work

We proposed an approach that enables designers to

exercise fine-grained control over the procedural

generation of game levels by means of a gameplay

vocabulary. With our approach, procedurally generated

levels can be designed by specifying a gameplay grammar,

expressed in terms of design constraints, which ultimately

steer content generation.

 Through our case study, we conclude that these design

constraints are expressive enough, able to cover a wide

generative space of possible Dwarf Quest game levels.

Furthermore, we conclude that this degree of control is

powerful enough to precisely steer generation into distinct

sets of desired Dwarf Quest level features. This control

opens up a variety of possibilities of new game design

applications. We believe these conclusions hold for other

action games beyond our case study.

As for future work, our next step is to evaluate how

intuitive this method is for game designers, by conducting

user studies. On a longer term, we consider our approach

eligible for adaptivity, where level generation is based on

the performance of the player. Our grammar parameters,

once specified by the designers, can be adjusted between

generation sessions. As such, the performance of the player

in a single dungeon may determine the parameter values

for the next generated dungeon. Our focus on gameplay, as

the vocabulary to design procedurally generated levels,

supports control over generated interactive content.

However, it does not fully support control over all aesthetic

content (e.g. decorations). We believe that storytelling

would provide an interesting extension atop our action-

based vocabulary. Not only is storytelling an even more

natural concept for game designers, but it can also capture

both gameplay and aesthetic features.

 In short, gameplay grammar-based level generation is

already quite expressive and powerful to significantly

improve the design of procedurally generated levels.

Acknowledgements

We gratefully acknowledge Dylan Nagel for giving us

valuable feedback in several occasions, as well as full

access to Dwarf Quest’s source code. This work was

supported by the Portuguese Foundation for Science and

Technology under grant SFRH/BD/62463/2009.

References

Bertz, S.H.; Sommer, T.J. 1997. Rigorous Mathematical
Approaches to Strategic Bonds and Synthetic Analysis Based on
Conceptually Simple New Complexity Indices. Chemical
Communications (24): 2409-2410.

Dormans, J. 2010. Adventures in Level Design: Generating
Missions and Spaces for Action Adventure Games. Proceedings
of the 2010 Workshop on Procedural Content Generation in
Games: 1:1-1:8.

Dormans, J. 2011. Level Design as Model Transformation: a
Strategy for Automated Content Generation. Proceedings of the
2011 Workshop on Procedural Content Generation in Games:
2:1-2:8.

Hastings, E.; Guha, R.; Stanley, K. 2009. Automatic Content
Generation in the Galactic Arms Race Video Game. IEEE
Transactions on Computational Intelligence and AI in Games (1):
245-263.

Hartsook, K.; Zook, A.; Das, A.; Riedl, M.O. 2011. Toward
Supporting Stories with Procedurally Generated Game Worlds.
IEEE Conference on Computational Intelligence and Games:
297-304.

Johnson, L.; Yannakakis, G.N.; Togelius, J. 2010. Cellular
Automata for Real-Time Generation of Infinite Cave Levels.
Proceedings of the 2010 Workshop on Procedural Content
Generation in Games: 10:1 - 10:4.

Kessing, J.; Tutenel, T.; Bidarra, R. 2012. Designing Semantic
Game Worlds. Proceedings of the third workshop on Procedural
Content Generation in Games.

Van der Linden, R. 2013. Designing Procedurally Generated
Levels. MSc Thesis, Delft University of Technology.

Lopes, R.; Bidarra, R. 2011. Adaptivity Challenges in Games and
Simulations: A Survey. IEEE Transactions on Computational
Intelligence and AI in Games (3): 85-99.

Lopes, R.; Tutenel, T; Bidarra, R. 2012. Using Gameplay
Semantics to Procedurally Generate Player-Matching Game
Worlds. Proceedings of the 2012 Workshop on Procedural
Content Generation in Games.

Mawhorter, P.; Mateas, M. 2010. Procedural Level Generation
Using Occupancy-Regulated Extension. IEEE Symposium on
Computational Intelligence and Games: 351-358.

Roden, T.; Parberry, I. 2004. From Artistry to Automation: A
Structured Methodology for Procedural Content Creation.
Proceedings of the 3rd International Conference on
Entertainment Computing: 151-156.

Smelik, R.M.; Tutenel, T.; de Kraker, K.J.; Bidarra, R. 2011. A
Declarative Approach to Procedural Modelling of Virtual Worlds.
Computer & Graphics (35): 352-363.

Smith, G.; Gan, E.; Othenin-Girard, A.; Whitehead, J. 2011. PCG
Based Game Design: Enabling New Play Experiences through
Procedural Content Generation. Second International Workshop
on Procedural Content Generation in Games.

Smith, A.M.; and Mateas, M. 2011. Answer Set Programming for
Procedural Content Generation: A Design Space Approach. IEEE
Transactions on Computational Intelligence and AI in Games (3):
187-200.

Smith, G.; Whitehead, J. 2010. Analyzing the Expressive Range
of a Level Generator. Proceedings of the 2010 Workshop on
Procedural Content Generation in Games.

Smith, G.; Treanor, M.; Whitehead, J.; Mateas, M. 2009.
Rhythm-Based Level Generation for 2D Platformers.
Proceedings of the 4th International Conference on Foundations
of Digital Games: 175-182.

Tremblay, J.; Verbrugge, C. 2013. Adaptive Companions in FPS
Games. Proceedings of the 8th International Conference on
Foundations of Digital Games: 229-236.

Tutenel, T.; Smelik, R.M.; Bidarra, R.; de Kraker, K.J. 2010. A
Semantic Scene Description Language for Procedural Layout
Solving Problems. Proceedings of the Sixth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment.

Valtchanov, V.; Brown, J.A. 2012. Evolving Dungeon Crawler
Levels With Relative Placement. Proceedings of the Fifth
International C* Conference on Computer Science and Software
Engineering: 27-35.

Yannakakis, G.N.; Togelius, J. 2011. Experience-Driven
Procedural Content Generation. IEEE Transactions on Affective
Computing (99): 147-161.

