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Smooth Probabilistic
Ambient Occlusion

for Volume Rendering
Thomas Kroes, Dirk Schut,

and Elmar Eisemann

1.1 Introduction

Ambient occlusion [Zhukov et al. 98] is a compelling approach to im-
prove depth and shape perception [Lindemann and Ropinski 11, Langer
and Bülthoff 99], to give the illusion of global illumination, and it is an
efficient way to approximate low-frequency outdoor lighting. In principle,
ambient occlusion computes the light accessibility of a point, i.e., it mea-
sures how much a point is exposed to its surrounding environment.

An efficient and often used version of ambient occlusion is Screen Space
Ambient Occlusion [Kajalin 09]. It uses the depth buffer to compute an
approximate visibility. This method is very appealing, since the compu-
tational overhead of this method is minimal. However it cannot be ap-
plied to direct volume rendering (DVR) because voxels are typically semi-
transparent (defined via a transfer function). Consequently, a depth buffer
would be ambiguous and is not useful in this context.

The first method to compute ambient occlusion in direct DVR, called
Vicinity Shading, was developed by Steward [Stewart 03]. This method
computes the ambient occlusion in each voxel by taking into account how
much the neighboring voxels obscure it. The resulting illumination is stored
in an additional volume, which needs to be recomputed after each scene
modification. Similarly, Hernell et al. [Hernell et al. 10] compute ambi-
ent occlusion by raytracing inside a small neighborhood around the voxel.
Kroes et al. extend this method by taking the entire volume into ac-
count [Kroes et al. 12].

Our approach tries to avoid costly ray tracing and casts the problem
into a filtering process. In this sense, it is similar in spirit to Penner et
al. [Penner and Mitchell 08], who use statistical information about the
neighborhood of the voxels to estimate ambient occlusion, as well as the
method by Ropinski et al. which is similar and also adds color bleed-
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2 1. Smooth Probabilistic Ambient Occlusion for Volume Rendering

Figure 1.1: Left: The hemisphere around a point which determines ambient
occlusion. The blue part is unoccluded. Right: Volumetric obscurance
relies on a full sphere.

ing [Ropinski et al. 08]. Furthermore, our approach relates to Crassin et
al. [Crassin et al. 10] who propose to use filtering for shadow and out-of-
focus computations.

Our Smooth Probabilistic Ambient Occlusion (SPAO) is a novel and
easy-to-implement solution for ambient occlusion in DVR. Instead of ap-
plying costly ray casting to determine the accessibility of a voxel, this
technique employs a probabilistic heuristic in concert with 3D image filter-
ing. In this way, ambient occlusion can be efficiently approximated and it
is possible to interactively modify the transfer function, which is critical in
many applications, such as medical and scientific DVR. Furthermore, our
method offers various quality trade-offs regarding memory, performance,
and visual quality. Only very few texture look-ups are needed in compar-
ison to ray-casting solutions and the interpretation as a filtering process
ensures a noise-free and smooth appearance.

1.2 Smooth Probabilistic Ambient Occlusion

There are various definitions for ambient occlusion. Here, we define it as
the part of a point that is accessible from the outside world. A 2D example
is given in Figure 1.1 and illustrates the ambient occlusion computation.
More formally the ambient-occlusion value A(p, n) is given by the integral
of the visibility function over the hemisphere Ω centered around a point p
in the direction of the normal n of that point:

A(p, n) :=
1

π

∫
Ω(n)

V (p, ω)dω,

where V is the visibility function. In other words, V stems from the volume
data itself after it was transformed by the transfer function. V (p, ω) is 0 if
the ray from point p in direction ω is blocked, 1 if it is unblocked, and an
intermediate value attenuates the ray. To simplify the description, we will
only use the notion of blocked and unblocked rays in the following. Please
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1.2. Smooth Probabilistic Ambient Occlusion 3

notice that we can interpret intermediate values of V as a probability for a
ray to be blocked. For example, if V returns a value of 0.5, there is a 50%
chance for a ray to be blocked.

It is also possible to integrate the visibility function over the whole
sphere around a point, making Ω a full sphere, instead of a hemisphere,
and making it independent of n. The result is called obscurance and de-
noted A(p), and produces similar effects. Calculating obscurance instead
of ambient occlusion has the advantage that it does not require a normal.
However, this definition will lead to parts of the volume that are located
behind the point to intervene in the computation. This property can be
a disadvantage for standard scenes, as the result might become too dark,
but in the context of DVR, it is sometimes even preferable, as it will unveil
information below the surface, which is often desired.

Both, ambient occlusion and obscurance, only depend on the geometry
of the volume. Therefore they can be stored in an additional volume that
is then used to modulate the original volume’s illumination. The occlusion
values can be calculated directly from the opacity of the original volume.
Nonetheless, the values have to be recomputed when the original volume
changes, for example when the user changes the transfer function. This
latter step can be very costly and makes it impossible to interact with
transfer functions, while maintaining a high visual fidelity. Our approach
is fast to compute and enables a user to quickly apply such modifications
without having to wait a long time for the result.

Initially, our solution will be explained in the context of obscurance, but
in Section 1.3, we will extend our algorithm to approach ambient occlusion
by making use of the normals to reduce the influence of the part of the
volume below the surface.

1.2.1 Overview

To approximate obscurance at a certain point in the volume, we avoid ray
casting. Instead, we introduce an approximation, which is based on the
probability of the rays being blocked by the volume. Instead of solving A(p)
and its integral entirely, we consider a limited region around p, formed by
volumes of increasing size. The volume between successive volumes forms
a layer of voxels, a so-called shell (Figure 1.2). We will show how to derive
the probability of a random ray to be blocked by a shell. From this result,
we deduce an approximation of the integral A(p) assuming that the entire
volume is represented by a single shell. Finally, the results for these various
shells are combined heuristically to yield our occlusion approximation for
the entire volume.

First, we consider shells being represented by a sphere with a one-voxel-
wide boundary S. These shells are formed by a set of successive spheres,
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4 1. Smooth Probabilistic Ambient Occlusion for Volume Rendering

Figure 1.2: A shell is a layer of voxels formed by the difference between
two differently-sized volumes. By creating a cascade of these volumes, a
set of shells is formed. For each shell, we approximate the probability of a
ray to be blocked and combine these probabilities heuristically to form the
final obscurance value.

which each grow in radius by one voxel. In this situation, if we consider
one independent shell, any random ray sent from its center will intersect
exactly one voxel. If all directions are equally likely the probability for a
ray to be blocked then boils down to an average of all voxel values in the
shell AverageS(p). Looking carefully at this definition, it turns out that
this probability is equivalent to solving for A in the presence of a single
shell.

If we now decompose the volume into such a set of shells around a point,
we can compute the probability of the rays to be blocked by each shell, but
still need to combine all these blocking contributions together. In order to
do so, we make use of a heuristic. We assume a statistical independence
between the value distributions in the various shells. The probability of
rays originating at p to be blocked by a set of n englobing shells {Si}ni=1

ordered from small to large is then given by:

n∏
i=1

(1−AverageSi
(p)).

To understand this formula, it helps considering only two layers {S1, S2}
. A random ray from p traverses S1 with probability (1 − AverageS1

(p)).
If this ray passed S1, it is again, potentially, stopped by S2, this time
with probability (1 − AverageS2

(p)), yielding a total probability of (1 −
AverageS1

(p))(1 − AverageS2
(p)). In the following, we will describe an

efficient and GPU-friendly approach to compute an approximation of this
solution.
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1.2. Smooth Probabilistic Ambient Occlusion 5

Figure 1.3: In this 2D illustration, the shell on the right is a one voxel thick
hull that is formed by subtracting the average opacity from level 1 in the
middle from level 2 on the left.

Figure 1.4: Cube shells used to approximate obscurance.

1.2.2 Approximating Obscurance for Cube Shells

In practice, we will use box-shaped shells instead of spheres (Figure 1.3).
We will show in the next section that this choice will allow us to benefit
from GPU texture filtering to compute AverageSi , making the algorithm
very efficient. The cubes are chosen to be of increasing size and centered
at each point p of the volume. The shells are then defined by hollowing
out these cubes by subtracting the next-smaller cube from its successor. In
reality, these cubes will never have to be explicitly constructed, but it is
helpful to think of them for illustrative purposes. The process is illustrated
in Figure 1.4.

Following the previously described steps, we need to deduce AverageSi

for each of the shells, which in our new situation corresponds to the average
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0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 1,0 0,0 0,0 0,1 0,1 0,1 0,0 0,0 0,0

0,0 0,3 0,3 0,0 0,0 0,1 0,1 0,0 0,0 0,0 0,0

0,0 0,1 0,1 0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0

0,0 1,0 0,0 0,0 0,1 0,3 0,1 0,0 0,0 0,0

0,0 0,5 0,5 0,0 0,1 0,2 0,2 0,1 0,0 0,0 0,0

0,0 0,1 0,1 0,1 0,1 0,0 0,1 0,1 0,0 0,0 0,0

0,0 1,0 1,0 1,0 1,0 0,3 0,3 0,3 0,1 0,0

0,0 0,5 0,8 0,5 0,5 0,4 0,3 0,2 0,1 0,0 0,0

0,0 0,2 0,3 0,3 0,4 0,3 0,2 0,2 0,1 0,1 0,0

0,5 1,0 1,0 1,0 1,0 0,5 0,3 0,3 0,3 0,1

0,1 0,6 1,0 1,0 1,0 0,7 0,4 0,3 0,3 0,1 0,0

0,0 0,3 0,4 0,5 0,6 0,5 0,4 0,3 0,2 0,1 0,1

0,5 0,5 0,5 1,0 1,0 0,5 0,3 0,3 0,3 0,1

0,3 0,6 0,8 0,9 1,0 0,8 0,4 0,3 0,3 0,2 0,1

0,1 0,3 0,4 0,6 0,8 0,6 0,5 0,4 0,3 0,2 0,1

0,0 0,5 0,5 1,0 1,0 0,5 1,0 0,3 0,1 0,0

0,1 0,4 0,5 0,8 1,0 0,8 0,6 0,5 0,3 0,1 0,0

0,1 0,3 0,4 0,7 0,9 0,8 0,7 0,6 0,4 0,3 0,1

0,0 0,5 0,0 0,0 1,0 1,0 1,0 0,1 0,0 0,0

0,0 0,3 0,4 0,4 0,8 0,9 0,9 0,6 0,1 0,0 0,0

0,1 0,2 0,3 0,5 0,7 0,7 0,8 0,6 0,4 0,3 0,1

0,0 0,0 0,0 0,0 0,0 0,3 0,3 0,0 0,0 0,0

0,0 0,1 0,1 0,0 0,3 0,6 0,7 0,4 0,0 0,0 0,0

0,0 0,1 0,2 0,3 0,5 0,5 0,6 0,5 0,4 0,2 0,1

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,1 0,2 0,1 0,0 0,0 0,0

0,0 0,1 0,1 0,2 0,3 0,3 0,4 0,4 0,3 0,2 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,1 0,1 0,2 0,2 0,2 0,1 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Figure 1.5: 2D Example of how N-buffers are calculated. A dataset is
shown on the left, with the first two n buffer levels next to it. In each level
the average of four values of the previous level is combined into one value.

of all voxel values between two successive cubes. If we assume for now that
we have a quick way of determining the average inside of a complete cube,
we can rapidly determine AverageSi . To illustrate this computation, we
will assume that we want to determine AverageS of a shell S defined two
cubes C1 and C2, with voxel-value averages A1 and A2 and number of
voxels S1, S2 (S1 < S2), respectively. The solution is then given by:

AverageS = (S2A2 − S1A1)/(S2 − S1)

In other words, we can subtract from the total voxel sum of one cube S2A2,
the total voxel sum of the next-smaller one (S2A2) and normalize the result
by the number of voxels in the shell between both (Figure 1.3, lower row).

Please notice, that the above formula can be rewritten to: AverageS =
1/(1−S1/S2)(A2− (S1/S2)A1) - in consequence, only the average and the
relative change in size (S1/S2) is needed to deduce Average(S), which fa-
cilitates computations further. Imagine, each cube is obtained by doubling
the length of each edge of the predecessor. Then the ratio would be 1 : 8,
resulting in AverageS = 8/7(A2 − 1/8 A1).

1.2.3 Fast Cube Averages

In the previous section, we assumed to have a quick method to determine
the average inside of a cube. Here, we will propose two possible solutions
to this problem. Our observation is that, for a given cube size, the averages
are equivalent to a box-filtering of the volume.

Determining averages of various kernel sizes is a common problem in
computer graphics in the context of texture mapping. These techniques
translate to corresponding operations in a 3D volume. The most common
such approximation is mipmapping, but we will also present N-Buffers [Décoret 05],
which deliver higher quality filtering at an additional cost.
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(a) (b) (c)

Figure 1.6: Volumetric obscurance using a) raytacing (256 rays/voxel) b)
Mipmap filtering c) N-buffer filtering

As mipmaps are rather standard, we will only focus on N-buffers here.
Like mipmaps, they consist of multiple levels l, each representing the aver-
age values of the original volume inside cubes of width 2l. Unlike mipmaps,
the resolution of N-buffers is not reduced in each level. In consequence, it
is possible to retrieve the exact filled part of a cube at every position in
the volume, whereas for a mipmap linear interpolation can provide only an
approximation based on the eight closest voxels, which reduces the quality
(Figure 1.6).

The N-Buffer construction is efficient, as each new level can be com-
puted from the previous using only 8 lookups. A 2D example of the cal-
culation is shown in Figure 1.5. Nonetheless, N-Buffers result in higher
memory consumption, so it can be useful to apply a few mipmap levels
before processing the rest using N-Buffers.

1.3 Approximating Ambient Occlusion

In Section 1.2, we explained that ambient occlusion in comparison with
obscurance can provide cues that are closer to realistic lighting because
voxels behind the point of interest are not taken into account. To reduce
this effect, we can offset the lookup operations in the direction of the nor-
mal. When choosing the offset carefully, the increase in size of the cubes
and the offset can be correlated to obtain shells that correspond now to
hemispheres. This goal can be achieved by multiplying the normal vector
by half the size of the box. An example with a shorter vector is illustrated
in Figure 1.7.

However, in DVR a normal is not always clearly defined, e.g., inside
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8 1. Smooth Probabilistic Ambient Occlusion for Volume Rendering

Figure 1.7: The lookups of the cubes from a point with a normal of length
0.75 in the upwards direction.

(a) Factor 0.0 (No
normal correction)

(b) Factor 0.5 (c) Factor 1.0 (d) Factor 2.0

Figure 1.8: Effect of the normal factor

a homogeneous semi-transparent volume, e.g., a jelly pudding. Similarly,
between two different semi-transparent voxels it might be less clear how to
define a normal at the interface between opaque and transparent materials.
In consequence, we propose to scale the cube offset based on how strong
the gradient is. Interestingly, while most techniques derive normals from
the normalized gradient via central differences, we can use the gradient
magnitude to determine if a normal is clearly defined. Hence, we propose to
remove the normalization operation and instead normalize the voxel values
themselves to the range [0,1], which will lead to the gradient becoming
an appropriately-scaled normal. Additionally, we allow the user to specify
a global scale to either pronounce or reduce the impact of this ambient-
occlusion approximation (Figure 1.8).
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1.4. Results 9

N-buffers Mipmaps Raytaced, 512 rays
Level 0 30.93 ms 33.00 ms -
Level 1 33.99 ms 4.58 ms -
Level 2 40.13 ms 0.66 ms -
Level 3 41.16 ms 0.17 ms -
Level 4 42.69 ms 0.14 ms -
Level 5 38.09 ms 0.13 ms -
Level 6 41.91 ms 0.12 ms -
Levels Total 268.90 ms 38.8 ms -
AO Computation 63.24 ms 110.39 ms 425.36 sec
Total 332.14 ms 149.19 ms 425.36 sec

Table 1.1: Performance measurements for the Macoessix data set (512 x
512 x 512) for N-buffers and mipmaps based SPAO. For each technique
we show the time it takes to compute the individual levels and to combine
them into an ambient occlusion volume.

1.4 Results

Our method has been implemented in a CUDA-based stand-alone software
program for direct DVR. The program and its source code are available
under the original BSD license. It is shipped with sample data sets. The
transfer function and, thus, the visual representation can be changed on-
the-fly. Also, the user can select from three different methods of ambient
occlusion computation: mipmaps, N-buffers, and ray tracing. Our program
makes use of CUDA 3.0 texture objects and will not support lower CUDA
versions.

We tested the performance of our technique using the publicly available
Macoessix data set from the Osirix Website 1, see Table 1.1. All tests
were peformed on an Intel(r) Xeon(r) W3530 (2.80 GHz) workstation with
12 GB RAM and a GeForce GTX TITAN Graphics Card with 4 GB of
RAM. N-buffers are slightly more costly than Mipmaps, but both are orders
of magnitude faster than a volumetric ambient-occlusion ray tracer. The
latter takes more than four minutes, see Table 1.1.

Figure 1.9 shows some results of our approach on the Backpack and
Manix data sets.

1http://www.osirix-viewer.com/datasets/
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10 1. Smooth Probabilistic Ambient Occlusion for Volume Rendering

(a) Backpack data set (b) Manix data set

Figure 1.9: SPAO applied to the Backpack (512 x 512 x 461) and Manix
(512 x 512 x 460) data sets.

1.5 Conclusion

This chapter presents a novel approach to compute ambient occlusion for
direct DVR. We demonstrate that, by considering the ambient-occlusion
computation as a filtering process, we can significantly improve efficiency
and make it usable in a real-time DVR application. Such an approach
is useful for medical visualization applications were transfer functions are
very often subject to change.

Our approach is simple to implement and efficient and leads to a very
good quality/performance tradeoff. Nonetheless, we also experimented
with more complex combinations of the shells, especially, as the assump-
tion of independence of the occlusion probabilities is usually not true in
most data sets. In practice, it turns out that our solution seems to be a
good choice and any increase in complexity also led to a significant per-
formance impact. Nonetheless, this topic remains interesting future work.
Further, we would like to investigate to approximate physically-plausible
light transport, such as global illumination, with our filtering technique,
which could further enhance the volume depiction.
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