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Abstract
We present an efficient Graphics Processing Unit GPU-based implementation of the Projected Tetrahedra (PT)
algorithm. By reducing most of the CPU–GPU data transfer, the algorithm achieves interactive frame rates (up
to 2.0 M Tets/s) on current graphics hardware. Since no topology information is stored, it requires substantially
less memory than recent interactive ray casting approaches. The method uses a two-pass GPU approach with two
fragment shaders. This work includes extended volume inspection capabilities by supporting interactive transfer
function editing and isosurface highlighting using a Phong illumination model.
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1. Introduction

The volume rendering field has many useful and important

applications, such as inspection of medical images, visualiza-

tion of geological data and fluid simulation, among other. The

input is three-dimensional (3D) data (possibly time-varying)

representing a particular attribute of a given volume, such as

density, heat, velocity, etc. In this paper, we are interested in

volumes defined as scalar fields, decomposed in tetrahedra,

where the field samples are attached to mesh vertices.

Volume data contains 3D information acquired from dif-

ferent source types: sampling, simulation and modeling. For

instance, images sequences obtained from Magnetic Reso-

nance Imaging (MRI) or Computed Tomography (CT) are

real material samplings, while the second type may come

from fluid or geological simulation results. The last source
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Farias and Claudio Esperança, which appeared in Proceed-
ings of SIGRAPI 2006: XIX Brazilian Symposium on Com-
puter Graphics and Image Processing, Manual M. Oliveira
and Rodrigo L. Carceroni (Eds.), Manaus, AM, Brazil, 8–10
October 2006, IEEE Computer Society Press. c© 2006 IEEE.

comes from the area of volume graphics, where the volume

visualization techniques are used for modeling and manipu-

lating instead of visualizing.

Recently, new algorithms were developed [WKME03b,

WKME03a, CRZP04] aiming to exploit programmable

graphics hardware. The so-called Graphics Processing Units

(GPUs) are vectorial processing devices that allow a single

code to be applied to multiple data in parallel. With this,

common computers can be turned into vectorial machines

specifically designed for volume rendering.

We present a GPU-based implementation of a well-known

algorithm – the Projected Tetrahedra (PT) of Shirley and

Tuchman [ST90] – for interactive volume visualization and

manipulation. This work builds upon an earlier implementa-

tion (see [MMFE06]) by adding two key features: a rationale

for discarding tetrahedra that do not contribute to the final im-

age and the ability to blend Phong-lighted isosurfaces with

the standard PT-based volume visualization.

The rest of this paper is divided as follows. In Section 2,

we discuss related work on volume rendering techniques and

corresponding GPU approaches. Next, we review the PT al-

gorithm in Section 3. We present our algorithm in Section 4
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and its results in Section 5. Finally, in Section 6, conclusions

and future work directions are provided.

2. Related Work

Volume rendering consists of a series of techniques

for analysing volumetric data and extracting significant

information [KM05]. These can be roughly divided in three

categories: object-order, image-order and domain-based. In

the object-order algorithms, the contributions of each cell

are evaluated and combined to produce the final image. For

instance, the cell projection method projects each cell on

the image plane and composes them in visibility order. In

image-order methods, for example ray casting, rays are cast

from each pixel of the image through the volume data. In

the domain-based methods, spatial data is transformed into

another domain, for example, frequency domain and then the

final image is produced directly from the new domain.

One of the aspects which make volume visualization par-

ticularly challenging is the fact that 3D information must be

efficiently summarized in a 2D image. For this purpose, vol-

ume data represented in scalar fields is usually mapped to

color values by means of a transfer function [UK88]. The

opacity value computation is based on the extinction coeffi-

cient, which models the light absorption inside the volume

[Max95]. In the same manner as the color, the extinction

coefficient is also mapped by the transfer function.

The volume rendering integral evaluates the physical inter-

action of light rays with the volume. This integral is an equa-

tion that computes the light color traversing the volume, using

the ray’s entry and exit values as well as the traversed distance

inside each cell. Williams and Max [WM92] describe an exact

method for computing this equation. However, due to com-

putational limits, it is impractical for interactive applications.

Rather than computing integrals precisely by using small

steps, a technique known as pre-integration uses a precom-

puted table which maps the volume rendering integral as a

function of length traversed by the ray and the scalar val-

ues at entry and exit points. Moreland and Angel [MA04]

introduced the partial pre-integration technique, where the

precomputation of the integral equation does not depend on

the transfer function and thus can be stored for future use. We

make use of the ψ table, generated by Moreland and Angel,

precompiled within our implementation. This table allows in-

teractive transfer function editing together with the benefits

of the pre-integration technique.

Lighting models play an important role in volume visual-

ization by illustrating isosurfaces. Lum and Ma [LM04] use

a multidimensional transfer function to enhance surfaces. As

all methods that use gradients for lighting, their method is

less effective for noisy data. Another problem arises near ho-

mogeneous regions where gradient directions are not well

defined.

Some early methods for volume rendering [DCH88,

Lev88, Sab88] describe a volume lighting algorithm which

approximates isosurface normals by the gradient of the scalar

field. In this paper, we use these concepts to achieve interac-

tive volume rendering with fast isosurface shading.

Many algorithms have been proposed for volume render-

ing in the past. Ray casting [KH84] is perhaps the most

common approach and several high-performance implemen-

tations have been developed. Most of these make use of

GPUs, such as the Hardware-Based Ray Casting (HARC)

[WKME03a, EC05]. Traditional cell projection algorithms

[FGR85, ST90] have also been reimplemented aided by GPU

programming [WMFC02, RKE00]. An interesting algorithm

which combines ray casting and cell projection is the View-

Independent Cell Projection (VICP) [WKME03b] of Weiler

et al. Other common approaches include splatting algorithms

[Wes90, CRZP04], sweeping [Gie92, SM97, FMS00] and 3D

textures [WVW94, KW03].

Our algorithm is based on the PT technique introduced

by Shirley and Tuchman [ST90]. The PT algorithm is a cell

projection approach where each tetrahedron cell is projected

and composed in the image plane. An overview of the PT

method is given on Section 3.

Wylie et al. [WMFC02] developed the GATOR algorithm,

an adaptation of the PT algorithm for GPU using a vertex

shader. By creating a basis graph, they were able to redefine

the different projection classes in a manner that one vertex

shader can treat all cases in the same way. The GATOR algo-

rithm is fast yet redundant, since for each vertex computation,

all of the other tetrahedron vertices must be made available.

Another issue of this method is that the final color is poorly

approximated.

The main drawback of the PT algorithm is the need of a

visibility ordering of the cells. This problem has been specif-

ically addressed on many references, e.g. [Wil92, SBM94,

CKM∗99, CICS05], and is not focused in this paper. Our main

contribution resides on a high performance realization of the

PT algorithm, which is executed almost entirely on GPU,

allowing interactive visualization of tetrahedral meshes. In

particular, our implementation performs on a par with re-

cently reported ray casting algorithms while being signifi-

cantly more thrifty in memory usage.

3. Projected Tetrahedra Algorithm

Basically, the PT algorithm consists of projecting the

tetrahedra to screen space and composing them in visibility

order. The first implication of this method is that the 3D data

must be tetrahedralated. In the case of regular volumes, this

can be accomplished by subdividing each lattice cell into

five tetrahedra.

The projected tetrahedra are decomposed into triangles

according to a classification scheme. For each of the four
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26 R. Marroquim et al. / Volume and Isosurface Rendering

different classes a tetrahedron is decomposed into a specific

number of triangles. For example, class 1 projections are de-

composed into three triangles while class 2 are decomposed

into four. It should be noted that classes 3 and 4 are degener-

ate cases of classes 1 and 2, where a vertex is projected onto

an edge or another vertex (see Figure 1).

The thick vertex is defined for each projection as the point

of the ray segment that traverses the maximum distance

through the tetrahedron. Analogously, the other vertices are

called thin vertices, since no distance is covered. For class 2

projections, the thick vertex is computed as the intersection

between the front and back edges, while for the other classes

it is one of the projected vertices. The scalar values of the

ray’s entry and exit points are named as s f and sb (see Figure

Figure 1: The different classifications of the projected tetra-
hedra algorithm, where vt is the thick vertex, and vi are the
projected vertices.

Figure 2: One example for each projection class illustrating the tetrahedron in 3D space and the viewing ray intersecting it.
The scalar value is defined as svi for each projected vertex vi , while s f and sb are the values at the ray’s entry and exit points
in the thick vertex, respectively.

2). Thin vertices have the same values for s f and sb, while

for thick vertices these values may have to be interpolated

from those of the thin vertices. The distance traversed by the

ray segment is defined as the thickness l of the cell.

Before rendering the triangles, color values must be as-

signed to each vertex. A transfer function is used to map

the scalar values into chromaticity and opacity values. For a

scalar value s, a table is looked up in order to obtain the RGB

chromaticity values [C(s)] and extinction coefficient [τ (s)],

which is directly associated with the opacity. Thin vertices

are rendered with zero opacity and the original chromaticity

from the transfer function. On the other hand, the thick vertex

is rendered with the average color between the front and back

scalar values and opacity α = 1 − e−τavgl , where τ avg is the

average of τ (s f ) and τ (sb).

Finally, the rendered triangles are rasterized into pixel frag-

ments by interpolating the thick and thin vertices color and

opacity values. The fragments are composited in back-to-

front order, and, for each new color added to the framebuffer,

the new final pixel color is computed by I new = αC + (1 −
α) I , where I is the previous color stored in the framebuffer,

and C and α are the interpolated color and opacity values.

4. A Two-Pass GPU Approach

The algorithm is executed mostly in the GPU and is divided

in two main parts. In the first step, all relevant information of

c© 2007 The Authors
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Figure 3: Vertex data retrieval in the first fragment shader. Each texel of the Tetrahedral Texture contains the indices of its four
vertices in the Vertex and Gradient Textures.

each tetrahedron is computed, that is, the projection class, the

thick vertex properties, and the z coordinate of the tetrahe-

dron’s centroid. During the second step, vertices’ scalar and

gradient values are interpolated to compute chromaticity and

opacity values for each fragment. If an isosurface is detected,

it is rendered with Phong shading using the gradient as the

normal vector, otherwise the volume ray integral is applied.

To increase the frame rates, we make use of vertex ar-

rays and the primitives are drawn as triangle fans. Each fan

is drawn according to an order and number of vertices de-

termined in the first step and passed on to the second, as

described later. In addition, a discard test is applied before-

hand to avoid rendering tetrahedra that do not contribute to

the final image.

4.1. First Pass – Projecting the Tetrahedra

The first pass consists of computing all data per tetrahedron

in the fragment shader. All relevant information has to be

made accessible to the shader. This is accomplished by storing

four different textures in the GPU memory: the Tetrahedral

Texture, the Vertex Texture, the Gradient Texture and the

Classification Texture. The first three textures have 32 bits

per component and the fourth has 8 bits per component. The

Gradient Texture has three components per texel, while the

others are RGBA textures with four components per texel.

Each tetrahedron is associated with one texel of the Tetra-

hedral Texture, which contains four index values for retriev-

ing data for the four vertices. The coordinates and associated

scalar value of each vertex are stored in the Vertex Texture as

one texel, where RGB fields store the x, y and z coordinates

and the A field stores the scalar s. The Gradient Texture has

the same size as the Vertex Texture and is accessed by the

same indices. Each of its texels stores the precomputed gra-

dient vector at the vertex (see Figure 3). These three texture

lookups eliminate the need for vertex attributes and reduce

the data transfer overhead from CPU to GPU. Even though

the cost of passing attributes is replaced by that of texture

fetches, it is still faster, since all operations remain exclu-

sively inside the GPU.

To execute the fragment shader once per tetrahedron, the

Tetrahedral Texture is rendered as a quadrilateral with the

same size as the screen space, so that the number of texels is

equal to the number of pixels (approximately the number of

tetrahedra). This method is often used in so-called General

Purpose GPU (GPGPU) algorithms. For each tetrahedron,

the following values are computed inside the shader:

� s f and sb: front and back scalar values.
� g f and gb: front and back gradient vectors.
� l: cell thickness.
� cz : cell centroid.
� Vertex order and number of triangles in the fan.

To determine the projection class of a tetrahedron, ver-

tex coordinates are first projected to screen space. With

four simple tests it is possible to determine not only the

c© 2007 The Authors
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projection class, but also how the vertices are layed out in

relation to each other. This classification process is very sim-

ilar to Wylie’s [WMFC02] method, except that we also treat

degenerate cases. In addition, our method avoids computa-

tional redundancy by performing the tests once per tetrahe-

dron rather than once per vertex.

Each test t i is an evaluation of a cross-product computed

with the projected vertices vproji (see Figure 4). For each

test there are three possible results (0, 1 or 2) depending on

whether the z coordinate of each cross-product is negative,

zero or positive, respectively. The test results are combined

together to produce an unique index to the Classification Tex-

ture. This 1D texture contains a Ternary Truth Table with all

possible test result permutations. On top of Wylie’s 14 class

1 and 2 cases, we have added 24 class 3 cases and 12 class

4 cases covering all degenerate projections. With one lookup

operation, the correct order to compute the intersection pa-

rameters is retrieved.

The number of triangles of the degenerate cases are di-

rectly associated with the number of results equal to 1. If

one such result is detected, then a class 3 tetrahedron is pro-

jected as two triangles. If two such results are detected, then a

vec1 = vpro j1
− vpro j0 t1 = sign((vec1 × vec2).z)+1

vec2 = vpro j2
− vpro j0 t2 = sign((vec1 × vec3).z)+1

vec3 = vpro j3
− vpro j0 t3 = sign((vec2 × vec3).z)+1

vec4 = vpro j1
− vpro j2 t4 = sign((vec4 × vec5).z)+1

vec5 = vpro j1
− vpro j3

Figure 4: Tests performed in fragment shader for projection
classification. The GLSL built-in function sign returns −1, 0
or 1 depending on whether the argument is less than, equal
to or greater than zero, respectively.

Figure 5: Fragment shader input/output scheme, where TTT is the Ternary Truth Table.

class 4 tetrahedron is projected as one triangle. Three or four

tests yielding 1 indicate degenerate tetrahedra which can be

discarded.

The first pass is also responsible for computing the scalar

values for the thick vertex as discussed in Section 3. Gradient

values for the entry and exit points (g f and gb) are interpo-

lated in much the same way.

Finally, all computed data is sent back to the CPU using

multiple render targets (MRT) with four frame buffer color

attachments. Each attachment is a 2D RGBA texture with 32

bits per component. The first texture receives the intersection

vertex coordinates xvi and yvi (used only for class 2), the cen-

troid of the tetrahedron cz , and the index to the Ternary Truth

Table idTTT . The second texture contains the scalar values s f

and sb, the thickness l and the number of triangles generated

by the projection count. The third and fourth textures holds

the front and back gradient vectors g f and gb, respectively.

This scheme is depicted in Figure 5.

4.2. Preparing the Arrays for Rendering

Before rendering the primitives, the data must be retrieved

from the output textures, sorted and stored in arrays. Our im-

plementation currently uses a simple bucket-based sort when

the model is being rotated and the STL-implemented merge-

sort for a static model. Triangle fans are rendered with the

optimized OpenGL function glMultiDrawElements, whose

arguments reference global arrays storing vertex information.

In particular, we make use of four different global arrays for

storing vertex coordinates, color values and gradient values

(see Figure 6).

The four global arrays contain the tetrahedra grouped in

five elements: the thick vertex plus the four original vertices.

Since for each change in the view direction only the position,

c© 2007 The Authors
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Figure 6: Arrays data structure. The indices illustrate a class 1 case, where the correct order to draw tetrahedron i is vi t −
vi0

− vi2
− vi3

− vi1
− vi0

.

color and gradients of the thick vertices are updated, most of

these arrays are constant. This implies that OpenGL is able

to maintain most of the information in the GPU memory,

avoiding data transfer overhead.

The vertex array contains the coordinates {x, y, z} of each

vertex. The color array contains values {s f , sb, l} rather than

actual colors, which will be computed on-the-fly by the sec-

ond fragment shader. Finally, gradients are stored in the nor-

mal and secondary color arrays. Note that for thin vertices s f

= sb, l = 0 and g f = gb.

The two arrays passed as arguments to glMultiDrawEle-
ments are constructed as follows. The indices array is di-

vided into n groups, where n is the number of tetrahedra. For

each tetrahedron, the correct order to render the triangle fan

is stored as six integers indexing its vertices. The cnt array

contains the number of vertices in each fan. Recall that the

maximum number of vertices in a fan is six (class 2) with four

triangles. For cases with less than six vertices the indices ar-

ray is only accessed up to position cnt. Refer to Figure 6 for

further details.

4.3. Second Pass – Rendering the Primitives

The second shader computes the final color of each fragment.

The vertex colors are linearly interpolated inside each trian-

gle using the values of a thick and two thin vertices. Since

the color is actually passed as {s f , sb, l}, these interpolated

values are used in the fragment shader to compute the final

color. The simplest way to compute the final color is using

the average scalar values as described in Section 3.

To compute the final opacity value, we make use of a 1D

texture. This texture contains values for e−u , where u is reg-

ularly sampled over interval [0, 1]. The lookup is done by

passing u = τ l to obtain the final exponential opacity value.

Our experiments show that using this 1D texture is slightly

faster than computing the exponential function in the frag-

ment shader.

4.4. Partial Pre-Integration

Rather than estimating the final color using average scalar

values, we used the so-called ψ table of the partial pre-

integration technique [MA04]. Since this table does not de-

pend on any attribute of the visualization, it is pre-compiled

within our implementation.

In the second fragment shader, the colors associated with

s f and sb are retrieved from a second 1D transfer function

texture. The C f and Cb together with the thickness value l
are used to compute the indices of the ψ table, stored in a

c© 2007 The Authors
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Figure 7: Foot data set with two different transfer functions.

2D texture. The value retrieved from this table is then used
to compute the final fragment color.

In contrast with the original PT method, the partial pre-
integration method is slower than computing the final color
using the average method, but faster than using full pre-
integration.

4.5. Transfer Function Editing

The use of the partial pre-integration method allows the trans-
fer function to be interactively edited. Every time a change
occurs, the transfer function texture is recomputed and up-
loaded again to the fragment shader.

Control points are placed over the color map to change
the opacity levels in the selected neighborhood. In addition,
the user can cycle through different colormaps varying from
gray-scale maps to multicolored maps. The brightness of the
image can also be adjusted and acts as a global opacity factor.
An example of two different transfer functions for the Foot
model is shown on Figure 7.

An early discard test is employed to bypass tetrahedra that
have zero opacity and will add no contribution to the final
image. Only tetrahedra with all vertices having zero opacity
are discarded, that is, their scalar values are mapped to colors
with zero opacity on the transfer function.

The arrays from Section 4.2 are recreated each time a con-
trol point of the transfer function either reaches or leaves the
zero opacity level. Even though this process reduces the in-
teractivity of the transfer function editing, it greatly increases
the rendering rates in terms of fps.

4.6. Rendering Isosurfaces

Apart from the transfer function interactive editing tool, the
user also has control over isosurfaces. An isovalue is as-
sociated with one scalar value as a function f (s). For each
fragment it is determined if the chosen isosurface crosses
the respective tetrahedron. Since each fragment contains the

Figure 8: (a) An isosurface crossing a tetrahedron. (b) The
projected tetrahedron with the rendered contribution of the
isosurface rendered.

front and back interpolated scalar values, the test consists
of simply checking if the isovalue is inside the given range.
If so, the surface cuts the current tetrahedron and the color
computation is managed differently (see Figure 8).

This approach is similar to [KSE04]. However, we are not
computing the isosurface per tetrahedron explicitly, but per
fragment taking advantage of our rendering pipeline. Hence,
there is no need to worry about different cases of how the
isosurface cuts a tetrahedron, as in the GPU based marching
tetrahedra algorithm [Pas04].

The isosurfaces are rendered using a Phong illumination
method. The interpolated gradients act as the normal vector
for computing the diffuse light reflection and specular high-
lights. Illumination controls permit the adjustment of diffuse,
specular and ambient coefficients. In addition, the opacity of
each rendered surface can also be controlled.

The front and back gradients are combined with weights
relative to the distance between the isosurface and the front
and back intersection points. This means that if the isosurface
is closer to the ray’s exit point, for example, the back gradient
has more weight on the normal vector computation than the
front gradient.

c© 2007 The Authors
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Table 1. Time comparison between our algorithm (PTINT) and oth-
ers approaches.

Algorithm Blunt Fin Oxygen Post

PTINT 11.30 fps 4.49 fps
GATOR 4.07 fps 1.51 fps
VICP (GPU) 5.20 fps 1.93 fps
VICP (CPU) 1.82 fps 0.57 fps
VICP (Balanced) 4.10 fps 1.11 fps
HARC 4.47 fps 8.63 fps
HARC (INT) 4.94 fps 5.93 fps
HAVIS 2.36 fps 0.79 fps
HAVS (k = 2) 6.09 fps 3.09 fps
HAVS (k = 6) 3.45 fps 2.09 fps

This technique allows a hybrid visualization of the volume

with multiple isosurfaces. The isosurfaces can be rendered

with fully opaque or semi-transparent fragments. Since all

isosurface computation is performed in the second fragment

shader, no additional rendering pass is needed. Furthermore,

if no isosurface or lighting are desired, the algorithm can

regain significant performance by leaving out all gradient

computations including: computing g f and gb and rendering

to framebuffers 2 and 3 on the first step, updating the two

gradient arrays on the intermediate CPU pass, and interpo-

lating the gradients and computing the normals on the second

pass.

5. Results

Our prototype was programmed in C++ using OpenGL 2.0

with GLSL under Linux. Performance measurements were

made on a Intel Pentium IV 3.6 GHz, 2 GB RAM, with

a nVidia GeForce 6800 256 MB graphics card and a PCI

Express 16x bus interface.

The data sets used were: Blunt Fin (blunt), Combustion

Chamber (comb), Liquid Oxygen Post (post), Super Phoenix

(spx), Fuel Injection (fuel) and Electron Distribution Proba-

bility (neghip).

The timings are given using a 5122 pixel viewport and con-

sidering that the model is constantly rotating. Table 1 com-

pares our algorithm (PTINT) with others volume rendering

algorithms:

� PTINT – The proposed approach: PT with partial pre-

integration.
� GATOR – GPU Accelerated Tetrahedra Renderer

[WMFC02].
� VICP – View-Independent Cell Projection (implemented

in GPU and CPU) [WKME03b];
� VICP (Balanced) – VICP with GPU-CPU balancing

[MA04].

Figure 9: Spx data set.

� HARC – Hardware-Based Ray Casting [WKME03a];
� HARC (INT) – HARC with partial pre-integration

[EC05].
� HAVIS – Hardware-Accelerated Volume and Isosurface

Rendering Based on Cell-Projection [RKE00].
� HAVS - Hardware Assisted Visibility Sorting [CICS05].

Table 2 further specifies the number of vertices (# Verts)

and tetrahedra (# Tet) for each data set, and the aver-

age number of frames per second (fps) and tetrahedra per

second (Tet/s) of our algorithm in three variants: average

scalar method (basic); partial pre-integration technique (pre-
integration); and using both partial pre-integration and iso-

surface rendering (isosurfaces).

The timings given in Table 1 consider the basic integration

approach but without the tetrahedra discard method, therefore

the fps is lower than the ones shown in Table 2. It is impor-

tant to note the differences between the tested data sets. For

the Blunt Fin, our algorithm performs better than all others

approaches. However, for the Oxygen Post data set, it loses

to the ray casting algorithms. This can be attributed to the

fact that, for some view points, the model has small pixel

area, while for cell projection approaches this pixel area size

is irrelevant.

The Spx data set is shown in Figure 9 rendered with the ba-

sic average scalar method. In Figure 11, the Oxygen Post (a)

image was generated with only the pre-integration technique

while for Neghip (b) pre-integration and volume shading was

used.
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Table 2: Data set sizes and average times of our algorithm in three variants: basic average scalar method;
partial pre-integration technique; and partial pre-integration and isosurface rendering.

Size Basic +Pre-integration +Isosurfaces
Data

sets # Verts # Tet fps M Tet/s fps M Tet/s fps M Tet/s

Blunt 40 K 187 K 12.75 2.38 10.76 2.01 4.97 0.93

Comb 47 K 215 K 11.12 2.38 8.98 1.92 3.71 0.79

Post 110 K 513 K 4.91 2.51 4.35 2.23 2.09 1.07

Spx 150 K 828 K 4.68 2.55 4.52 2.47 1.23 1.02

Fuel 262 K 1.25 M 26.01 2.10 22.99 1.86 9.95 0.80

Neghip 262 K 1.25 M 3.59 2.34 3.11 2.03 1.27 0.83

Figure 10: Data sets: Blunt Fin (a), Fuel Injection (b) and Combustion Chamber (c and d).

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.



R. Marroquim et al. / Volume and Isosurface Rendering 33

Figure 11: Liquid Oxygen Post (a) and Electron Distribution
Probability (b) data sets.

Three models rendered with our algorithm are shown in

Figure 10. The Blunt Fin (a) and Comb (d) data sets were

rendered with only the pre-integration technique. While the

Fuel Injection (b) and Comb (c) data sets have been rendered

with isosurface highlighting.

6. Conclusions and Future work

We have presented a hybrid isosurface and cell projection vol-

ume rendering method that takes full advantage of modern

graphics hardware. The algorithm achieves interactive frame

rates by eliminating much of the bus transfer overhead. By

keeping the whole model in GPU memory, we limit the data

access to internal texture fetches. Further performance im-

provements were obtained by employing an early tetrahedral

discard test.

By mixing direct volume rendering with isosurface render-

ing, more comprehensive visualizations can be obtained. For

example, by making some isosurfaces fully opaque, underly-

ing volumes can be hidden. On the other hand, superimposing

layers can be enhanced with other isosurfaces while still al-

lowing other details to be shown by means of direct volume

rendering.

Better visualization of the isosurfaces is possible using a

Phong shading model. Diffuse, specular and ambient coef-

ficients can be controlled for better model inspection. The

only drawback being the considerable performance loss due

to gradient computation and interpolation.

Furthermore, the interactive transfer function and illumi-

nation control tools give the user a fast way to manipu-

late and inspect the model. It is possible to cycle through

different color maps and manipulate a varying number of

controls points. The isosurface inspection is made simple

with slide controls for determining the isovalues and their

respective opacity values, as well the Phong illumination

coefficients.

Finally, our implementation requires less storage space

than Ray-Casting algorithms. This is mainly due to the fact

that no cell connectivity is needed, freeing the GPU memory

of heavy data structures. In our implementation, each texture

element occupies 16 bytes, which means that a data set with

n vertices and m tetrahedra will require 16(2n + m) texture

bytes. Assuming an average of 4 tets per vertex, the storage

space needed per tet is 24 bytes. Roughly, one million cells

occupy 24 MB of GPU memory (20 MB without illumina-

tion). While, the HARC PPI [EC05] requires 96 bytes/tet and

the original HARC implementation requires 144 bytes/tet.

As one improvement for the current work, we are currently

researching semi-automatic transfer functions design ideas.

Even though interactive control over the transfer function

is desirable, it is important to allow more intuitive ways to

manipulate and generate them.

Another topic of interest is the improvement of the sorting

algorithm, as none of the two used in this work guarantee

a correct visibility order for all cases. This can be accom-

plished by using algorithms such as the Hardware-Assisted

Visibility Sorting (HAVS) by Callahan et al. [CICS05]. How-

ever, merging this approach with our algorithm is not triv-

ial. As a faster alternative for the current implementation,

there are other GPU-based sorting approaches such as the

bitonic merge sort [PDC∗03] or Govindaraju et al’s. algo-

rithm [GHLM05]. The latter claims to order the cells in close

to linear time when taking advantage of spatial coherence.

However, it has not yet been tested with volume rendering

applications to our knowledge.
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