On Families of Objects and Their Semantics

Rafael Bidarra and Willem F. Bronsvoort
Faculty of Information Technology and Systems
Delft University of Technology
Zuidplantsoen 4, NL-2628 BZ Delfi, The Netherlands
email: (Bidarra/Bronsvoort)@cs.tudelft.nl

Abstract

An approach is presented to define a family of objects in
parametric modelling. It avoids an inherent problem of
boundary re-evaluation in current parametric modelling
systems. Even more important, it offers an effective way to
define the properties, or semantics, of a family of objects.
A family of objects is defined by a prototype feature
model, including several types of constraints to precisely
specify its semantics. A family membership test is used to
check whether an instance corresponding to a particular
set of parameter values belongs to a family. The underly-
ing geometric representation is a non-manifold cellular
model.

Keywords: parametric modelling, families of objects,
semantics, feature modelling, cellular model

1. Introduction

In a parametric modelling system, once an object has
been modelled, a user can easily create variants of that
object by changing its parameters. This approach has a
number of obvious advantages: it can be helpful in fine
tuning the shape of an object, several objects that differ
only in some details can be modelled with much less effort
than with traditional solid modelling techniques, and li-
braries of standard parts can be built (Anderl and
Mendgen 1995).

The set of possible variants of an object is called a
class or a family of objects. So a family of objects repre-
sents a set of objects with "similar" shape. The user can
create an instance from such a family by specifying values
for the parameters that characterise the family. Constraints
play an important role in the definition of parametric ob-
jects; these specify certain properties for the objects, for
example that some parameter value has to be within some

prescribed range. Each instance has to satisfy all con-
straints specified for the family.

Most current parametric modelling systems use a dual
representation for an instance of a family of objects: on
the one hand a model history and the set of values for the
parameters, on the other hand a boundary representation
of the resulting shape.

Shapiro and Vossler (1995) posed an interesting ques-
tion about parametric modelling: what is a good definition
for a parametric family of solids? Such a definition should
determine which objects are a member of a family, and
which objects are not. It has been shown that, in current
parametric modelling systems, such a definition is ham-
pered by certain peculiarities of boundary representations
(Raghothama and Shapiro 1998). Even more important,
specification mechanisms currently available for paramet-
ric objects, in particular the available constraint types, are
insufficient to adequately maintain the design intent of a
family in all its instances.

Therefore, in this paper it is argued that it would be
better to use an alternative definition and representation
for a parametric family of objects, in which the desirable
properties for its instances are more precisely specified,
and which avoids the pitfalls of the boundary representa-
tion. A family of objects here is defined by a semantic
feature model (Bidarra and Bronsvoort 2000). Such a
model contains features and constraints that explicitly
define the semantics of the family of objects. A family
membership test can be used to determine whether a given
set of parameter values specifies a valid instance of the
family. This test greatly benefits from the underlying non-
manifold geometric representation, a cellular model.

In Section 2, the problems with families of objects in
current parametric modelling systems will be illustrated.
In Section 3, the new mechanism for defining families of
objects will be introduced. In Section 4, the family mem-
bership test will be described. In Section 5, some results
and conclusions will be given.



2. Families of objects in current parametric
modelling systems

In most current parametric modelling systems, a user
can create a model of an object, sometimes called a pro-
totype, and then create variants of that object by specify-
ing different parameter values. The parameters may be
dimensions of basic shapes that constitute the object, or
user-defined parameters that specify other dimensions of
the combined shape. If the modelling system is a paramet-
ric feature modelling system, the basic shapes are feature
shapes. The set of possible variants is designated a family
of objects.

In the prototype, several constraints can occur, for ex-
ample to align two faces of two basic shapes of the object,
or to restrict the range of some parameter. The sequence
of modelling operations used to create the prototype, in-
cluding all its basic shapes and constraints, is called the
model history of the object. This is in fact a procedural
representation, used to re-compute the boundary repre-
sentation of the object whenever parameter values are
modified. Basically, this comes down to a stepwise
boundary re-evaluation of all basic shapes in the model
with their new parameter values.

Several researchers, for example Chen and Hoffmann
(1995), Lequette (1997) and Raghothama and Shapiro
(1998), have observed that unexpected, and even im-
proper, models can result from such a boundary re-
evaluation process in commercial modelling systems.
Shapiro and Vossler (1995) related this problem to the
question on how to define families of objects in paramet-
ric modelling. The main issue in the latter is to determine
which objects belong to a family and which do not. It may
happen that, even if all constraints defined for the proto-
type are satisfied for some set of parameter values, the
corresponding instance of the object does not belong to
the family of objects as intended by the user.

An example of getting an unexpected model is given in
Figure 1, inspired by examples in the references given
above. The model consists of a block, a protrusion and a
slot. The protrusion has been attached to the block so that
their coplanar top faces are merged into one face, fj, see
Figure l.a. The through slot, which intersects both the
block and the protrusion, has been attached to face fj,
causing it to be split into two faces, f,, and f,, see Figure
1.b. By modifying a positioning parameter, the protrusion
is displaced downwards. When the model history is re-
executed, after this parameter modification, the user will
probably expect the model of Figure I.c, but, in at least
one current commercial system, he obtains the model of
Figure 1.d instead. Although this model is a valid model,
it is apparently not according to the user intent. It is there-
fore questionable whether it should be a member of the

fq

l!l‘

foa fob

AN
e

(b)

N
R

S

(c) (d)

i

Figure 1 — Obtaining an unexpected model after
boundary re-evaluation

family of objects represented by the prototype model in
Figure 1.b.

However, boundary re-evaluation can even behave
worse, as the resulting boundary model may become dis-
connected. An example of this, inspired by an example in
Raghothama and Shapiro (1998), is given in Figure 2. The
model in Figure 2.a has a cylindrical through slot, posi-
tioned at a distance a from the indicated edge, causing the
top face of the block to be split into faces f; and f,. Arib is
then attached to face f,, at a distance b of the slot edge
indicated in Figure 2.b. The slot position is now modified,
making the parameter value a equal to the radius of the
slot, by which face f in Figure 2.a collapses into an edge.
According to the positioning constraints specified, the
user would most likely expect the model in Figure 2.c as
the result of this parameter modification. However, some
current parametric modelling systems produce the model



(c) (d)

Figure 2 — Obtaining an improper model after
boundary re-evaluation

in Figure 2.d, and other systems the model in Figure 2.e,
where the rib is flipped across the slot and becomes dis-
connected from the object. In this last case, although the
new set of parameters seems to define a "reasonable" vari-

ant of the original object, the modelling system produces
an improper solid. So the only possible conclusion is that
the variant should not be in the family of objects defined
by the prototype, because it is definitely not in line with
the user intent.

The underlying problem in both examples is the so-
called persistent naming problem. At each modelling step
in the model history, references can be made to topologic
entities in the intermediate boundary representation, which
is the result of all previous modelling steps. However,
these entities may have been split, merged or deleted as a
result of previous modelling operations, depending on the
parameter values. As a result, references can be made to
entities of intermediate boundary representations that are
no longer there. In the example of Figure 1, face f; re-
sulted from merging the coplanar block and protrusion top
faces. When these are no longer coplanar, one of them is
selected by the system as the reference for attaching the
through slot. In the example of Figure 2, the slot edge
used to position the rib (Figure 2.b) is merged with an-
other edge, and the system selects the merged edge
(Figure 2.c), another edge (Figure 2.d), or the merged
edge but the other side of it (Figure 2.e), to position the
rib.

Several schemes have been proposed to solve the per-
sistent naming problem (Kripac 1995, Capoyleas et al
1996, Lequette 1997), so that the boundary re-evaluation
can at least be consistently executed, and in a determinis-
tic way. However, the fundamental problem remains that
the resulting model is not always as expected by the user:
most users probably expect the model of Figure 1.c, but
some users may nevertheless expect the model of Figure
1.d. Depending on how the persistent naming scheme
works, the user will get one of them, but this one may not
be according to his intent. One might also say that the
semantics of the family of objects is not well defined.

Raghothama and Shapiro (1998) have introduced
boundary representation deformations as a first step to
come to a sounder definition of a parametric family of
objects. Basically it is argued that as long as there is a
continuous boundary deformation from the prototype
model to the new instance possible, the new instance is
considered to be a member of the family. However, as
Raghothama and Shapiro also admit, continuous deforma-
tions seem to be too restrictive, and operations like split-
ting and merging of model entities have to be dealt with,
in order to allow topological changes such as the elimina-
tion of holes, but this has not been elaborated. A major
problem here seems to be that such operations can only be
generically allowed or disallowed, e.g. for all holes in an
object or for no holes at all. And, again, which objects
belong to a family is determined, at least partly, by how
the modelling system works, in particular which opera-
tions are available to allow discontinuous deformations.



(a) (b)

Figure 3 - Changing semantics with a parameter
modification

An even more important shortcoming in current paramet-
ric modelling systems, which makes it difficult to come to
a sound definition of a family of objects, is that currently
available constraint types are not always expressive
enough to adequately specify the design intent of a proto-
type object, and thus of the corresponding family of ob-
jects.

As an example, Figure 3.a shows a prototype model
consisting of a block and, on its top face, a protrusion and
a blind pocket. By modifying a positioning parameter for
the protrusion, the variant given in Figure 3.b can be cre-
ated. In this model, the pocket is partially closed by the
protrusion, which might well be against the design intent
of the prototype, in which case the variant should not be in
the corresponding family of objects.

With currently available constraint types, the variant of
Figure 3.b can only be excluded by setting distance con-
straints, for example, between the side faces of the pocket
and of the protrusion. However, if there would be more
than one protrusion on top of the block, separate distance
constraints would have to be specified for each protrusion
and the pocket to guarantee that the latter would never be
closed for any variant.

For a somewhat complicated model, it is obviously un-
feasible to specify the full design intent by such mutual
constraints between pairs of faces. Another solution to
accept or reject a variant would be to have the user inspect
the resulting shape and decide. But that can be rather
awkward, and might even be undesirable, in particular if
the family of objects has been defined as a standard.

What is needed in the example of Figure 3 is a type of
constraint that specifies that the pocket should remain
open in all cases, i.e. that the top face of its shape should
never be on the boundary of a variant. More in general, a
set of constraint types is needed to explicitly specify
which topological variations are allowed. Such a set of
constraints, in combination with the more traditional geo-
metric and algebraic constraints, can effectively specify
the design intent, or semantics, of a prototype object, and
therefore also of the corresponding family of objects. In
addition, an automatic family membership test is needed

that accepts a variant as a member of a family if and only
if all its specified constraints are satisfied.

In this paper, the use of such a set of constraints is pro-
posed to enhance the specification of a family of objects.
All variants that satisfy the constraints specified for the
prototype are said to belong to the corresponding family
of objects. More specifically, a prototype object is defined
by a semantic feature model, which consists of a set of
features and a set of constraints; this is elaborated in Sec-
tion 3. All objects are represented by a feature graph and a
non-manifold cellular model, not only avoiding the prob-
lems of evaluation with a boundary representation, but
also enabling a family membership test; this is elaborated
in Section 4.

3. Defining semantics for a family of objects

This section presents the framework within which se-
mantics is effectively incorporated in the definition of a
family of objects. First, a variety of constraint types is
defined, each of which can capture specific aspects of
design intent. Next, these are integrated in the definition
of a feature class. Finally, a formal definition for a seman-
tic feature model is presented, providing the basis for a
comprehensive definition of a family of objects.

3.1. Constraints

Constraints offer a convenient means to specify prop-
erties which the user requires in a feature model. Gener-
ally speaking, these properties may be classified as geo-
metric or topologic.

Geometric properties

Two types of constraints can be used to specify geometric
properties in and among features of a model: geometric
constraints and algebraic constraints.

Geometric constraints: specify geometric relations
(e.g. parallelism, perpendicularity or distance)
between feature entities;

Algebraic constraints: specify expressions (equali-
ties or inequalities) among feature parameters.

Geometric constraints can be used to specify geometric
properties both within a feature instance or between enti-
ties of different feature instances. An example of the for-
mer is the requirement that the sides faces of a slot should
be parallel, and an example of the latter is that the axes of
two holes should be at a specified distance.

An essential property of geometric constraints is that
they operate on entities of features in the model, e.g. their
faces or axes, rather than on topologic entities of its geo-
metric representation. This is crucial because, as described



Table 1 — Classification of interactions

Splitting

Splits the boundary of a feature into two (or more) disconnected subsets.

Disconnection

Causes the volume of an additive feature (or part of it) to become disconnected from the model.

Boundary clearance | Causes (partial) obstruction of a closure face of a subtractive feature.

Volume clearance

Causes partial obstruction of the volume of a subtractive feature.

Closure Causes some subtractive feature volume(s) to become a closed void inside the model.
Absorption Causes a feature to cease completely its contribution to the model shape.

Geometric Causes a mismatch between a nominal parameter value and the actual feature geometry.
Transmutation Causes a feature instance to exhibit the shape imprint characteristic of another feature class.
Topologic Corresponds to the violation of a boundary constraint in a given feature.

in the previous section, topologic entities can have an
ephemeral existence in the geometric model, and are
therefore unsuitable for being referenced in a persistent
manner. References to feature entities, instead, remain
valid as long as the respective feature instances remain in
the model. By using them, the persistent naming problem
outlined in the previous section is avoided.

Algebraic constraints can be used to specify parameter
relations within a feature instance, e.g. an equality be-
tween the width and the length of a square-section passage
feature, or among parameters of different features, e.g.
requiring the depth of a pocket to be twice the diameter of
a hole. Another use of algebraic constraints is for the
specification of the allowable range of values for a feature
parameter, by means of inequality relations.

Topologic properties

Topologic properties can be specified on features in a
model by using two types of constraints: boundary con-
straints and interaction constraints. Both types of con-
straints, generally designated as topologic constraints,
specify which topologic variants of a feature instance are
allowed:

Boundary constraints: specify the extent to which
its feature faces should be on the model bound-
ary;

Interaction constraints: specify that a particular
feature interaction type is not allowed for the
feature instance.

Boundary constraints are of two types: onBoundary,
which means the feature face should be present on the
model boundary, and notOnBoundary, which means the
feature face should not be present on the model boundary.
Furthermore, both types of boundary constraints are pa-

rameterised, stating whether the presence or absence on
the model boundary is completely or only partly required.
An example of this is a blind hole class for which the top
face has a notOnBoundary(completely) constraint, the side
face has an onBoundary(partly) constraint, and the bottom
face has an onBoundary(completely) constraint.

Several functional aspects of feature semantics, how-
ever, cannot be fully specified by boundary constraints
alone. Those are better described in terms of the topology
of the feature volume and/or of the feature boundary as a
whole, and therefore require a higher-level specification,
not directly based on feature entities. Such functional re-
quirements can be violated by feature interactions, which
are modifications of the shape aspects represented by a
feature that affect its functional meaning. Examples of this
are a transmutation interaction of a blind hole into a
through hole, or an absorption interaction that causes a
feature to cease completely its contribution to the model
shape. A non-exhaustive classification of feature interac-
tions can be found in (Bidarra 1999). For completeness, it
is briefly summarised in Table 1. Topologic interaction,
corresponding to the violation of a boundary constraint, is
by definition always disallowed.

3.2. Definition of a feature class

Features can be defined as “representations of shape
aspects of a product that are mappable to a generic shape
and are functionally significant for some product life-cycle
phase”. In other words, each feature has a well-defined
meaning, expressed through its geometric and topologic
properties. A feature class is a structured description of all
such properties, defining a template for all instances of a
given feature type. These properties include the validity
conditions that all feature instances of that type should



satisfy. These conditions, as well as the feature shape and
its parameters, are specified using the constraint types
presented in the previous subsection.

The basis of a feature class is a parameterised shape.
For a simple feature, this is a basic shape, e.g. a cylinder
for a hole. A basic shape encapsulates a set of geometric
constraints that relate its parameters to the corresponding
shape entities. For a compound feature, the shape is a
combination of several, possibly overlapping, basic
shapes, e.g. two cylinders for a stepped hole.

The geometry of a feature, designated the feature’s
shape extent, accounts for the bounded region of space
comprised by its volumetric shape. Moreover, its bound-
ary is decomposed into functionally meaningful subsets,
the shape faces, each one labelled with its own generic
name, to be used in modelling operations. For example, a
cylinder shape has a top, a bottom and a side face.

A feature class comprises also the notion of feature
nature, indicating whether its feature instances represent
material added to or removed from the model (respec-
tively additive and subtractive natures).

Creation of an instance of a given feature class typi-
cally requires assigning numeric values to a set of scalar
parameters Pr = {pi, ps, ..., ps} —so-called feature pa-
rameters— for determining its shape, and specifying some
references to entities of other features for positioning it.

3.3. Definition of a semantic feature model

The two previous subsections described the specifica-
tion of feature semantics by means of constraints. The use
of such constraints should now be distinguished, accord-
ing to whether they are specified within a feature class,
thus holding for all its feature instances, or they are speci-
fied by the designer among (or on a) feature instance(s).
The former are called feature constraints, as they are
members of a feature class, whereas the latter are called
model constraints. A model constraint instance, just like a
feature instance, may require assigning numeric values to
its scalar comstraint parameters Pc = {pi, p2, ..., Pc}, @S
well as specification of any feature entities/parameters
which it refers to.

Considering » features in a model, together with its £
model constraints, we can define the set of model pa-
rameters, Py, as

n k
PM: {pb p25 ceey pm} = UPFi o UPCi
i=1 i=1

Each sequence, p, of m numeric values assigned to the
model parameters p;, j=1,...,m, defines a point in the pa-
rameter space R™. Such a sequence fully determines the
shape and position of all features, and thus also the set of
points of E’ that is represented by the solid model.

A semantic feature model can then be defined accord-
ing to the following:

Definition: a semantic feature model is a triple
7l =<FE C, p>
where

F is a set of interrelated feature instances, each one
with its own set of feature constraints;

C is a set of model constraints applied on features of
F; and

P is a sequence of numeric values for the model pa-
rameters that fully determines the geometry of all
feature instances of F.

Typically, not all points in R™ correspond to a meaningful
object representation; for example, some parameters in
Py, in particular feature dimensions, will be limited to a
non-negative range of values. In general, the semantic
feature model is said to be valid if and only if the validity
conditions of all features in the model and all model con-
straints are satisfied; otherwise, it is an invalid model. In
other words, a valid semantic feature model satisfies all its
constraints or, formally, its sequence p of parameter values
is such that the feature constraints of all features f;eF, and
all model constraints in C, are satisfied.

3.4. Definition of a family of objects

Considering a semantic feature model M as the proto-
type model for a family of objects, F, we propose the
following definition:

Definition: the family of objects defined by the semantic
feature model 771 = <F, C, p> is the set of models

F={ W' 7'=<F C, p"™ is avalid model, p'e R" }

All instances of a family of objects have the same features
and the same model constraints as the prototype. Essential
in the definition is that a// constraints must be satisfied for
every member of the family.

The dimension of the parameter space of a family of
objects does not necessarily have to be the same as that of
the prototype. For example, a family parameter, say
throughHoleDiameter, might be mapped to the diameter
parameters of two through holes in the prototype. More
generally, the specification of the family of objects may
include a system of equations to map »n family parameters
to the m model parameters necessary to fully determine all
features in an instance of the family. Such a system can be
represented in the family specification by means of alge-



!

Constraint NL
solving parameter value out of range
4 L RE-
Boundary PARAMETER-
re-evaluation ISATION
Topologic —
validation L) E

<

Figure 4 - Phases of the membership test

braic constraints.

Family parameters provide a convenient interface
through which variants may easily be instantiated. In the
remainder of the paper, family parameters will be desig-
nated simply as parameters, without further reference to
any possible mapping between parameter spaces.

4. Family membership test

As mentioned in Section 2, a family membership test is
required to determine whether a given sequence of pa-
rameter values p’ specifies a valid instance of the family.
According to the definitions in the previous section,
checking membership comes down to assessing the valid-
ity of the resulting feature model.

A model validity maintenance process within the con-
text of building a semantic feature model was described in
detail by Bidarra and Bronsvoort (1999a). It has been im-
plemented in the SPIFF system, a prototype multiple-view
feature modelling system, developed at Delft University of
Technology (Bronsvoort et al. 1997). In this system, a
semantic feature model has a two-level structure that
clearly distinguishes modelling entities, i.e. the entities on
which all modelling operations are performed, from enti-
ties in the evaluated geometric model. The former are
kept in the first level of the model —the so-called Feature
Dependency Graph—, which contains all feature and
(model) constraint instances, interrelated by dependency
relations. The second level contains the evaluated geomet-
ric representation of the product in the so-called Cellular
Model. 1ts entities are kept internal, being only required to
“reflect” the geometry that results from the modelling op-
erations performed on the first level.

We now concentrate on validity checking in the family
membership test. This can be split into three phases, see
Figure 4: (i) constraint solving, (ii) boundary re-
evaluation and (iii) topologic validation, which will be

subsequently described. In the end, we briefly explain how
the user is assisted in re-parameterisation of an invalid
instance to make it a member of the family.

4.1. Constraint solving

The first phase of the membership test is the internal
geometric and algebraic constraint solving process. Its
goal is to update the model parameters, i.e. dimensions,
position and orientation of all features in the model, ac-
cording to the new parameter values p’ specified.

This task is performed by a Constraint Manager, which
invokes two dedicated constraint solvers: a geometric con-
straint solver based on extended 3D degrees of freedom
analysis (Kramer 1992), and a SkyBlue algebraic con-
straint solver (Sanella 1992). The iterative co-operation of
these solvers, under the control of the Constraint Manager,
is described by Dohmen (1997).

In this phase, the family membership test fails when-
ever some model parameter gets assigned a value out of
its range of allowable values (specified with algebraic
constraints, see Subsection 3.1). Such algebraic constraint
violations are passed to the re-parameterisation mecha-
nism for further processing, as depicted in Figure 4.

4.2. Boundary re-evaluation

When this second phase is reached, each feature in the
model has all its parameters successfully updated. In par-
ticular, all feature shape extents have their dimensions,
position and orientation fully determined. The Cellular
Model may thus be updated, so that the effects of the op-
eration are also reflected in the evaluated geometric
model.

In this subsection, the main characteristics of the Cel-
lular Model are first summarised, and then the two stages
of the boundary re-evaluation process are shortly de-
scribed: re-evaluation of the Cellular Model and its his-
tory-independent interpretation.

The Cellular Model
The Cellular Model is a non-manifold geometric repre-
sentation of the semantic feature model, integrating the
contributions from all its features. It has been described in
detail in (Bidarra et al. 1998).

The Cellular Model represents an object’s geometry as
a connected set of volumetric quasi-disjoint cells of arbi-
trary shape, in such a way that each cell lies either entirely
inside a shape extent or entirely outside it. The cells rep-
resent the point sets of the shape extents of all features in
the model. Each shape extent is, thus, represented in the
Cellular Model by a connected subset of cells.

Furthermore, the cellular decomposition is interaction-
driven, i.e. for any two overlapping shape extents, some of



{a} objeci
& ek | HindHokeTop
b pockallel m enaiBctRigh
o chamierLeft n cornarTopRight
d ribLah o prodrusion Right
& protresionLel p bbndHclaRighi
T bindHokeLat q rbRigh
@ cormarBollal I ehamlarfighi
fn comorToplLes 5 pocketRight 1
BlindHoleB ack I pockaiRighi2
| chamlerBack u ribFroms
i cylindncal Protnsion W BiindSol
(o) Pemlures

(b} Ciallular Modal

1 <hilnck>

& weyindncalP rotrusions

3 =cyfindricaiProfrusion, bindHcle Top=
d tdock. BlirdHoeTape:

8 =hioch. comerBotRights

B <hliock, comer TopRight=

T “griinsicrifigh-

B =prpinsicnfight. HindHoleghl=

9 <block, pockefRight >

10 sdiock, pockeiRightds

{d} sormie call owner isls

Figure 5 — Cell owner lists in the Cellular Model

their cells lie in both shape extents (and are called inter-
action cells), whereas the remaining cells lie in either of
them. As a consequence of this, two cells can never volu-
metrically overlap. They may, however, be adjacent, in
which case there is an interior cell face separating them.

As described in Subsection 3.2, the boundary of a fea-
ture’s shape extent is decomposed into functionally
meaningful subsets, the shape faces, each one labelled
with its own generic name. Each shape face is represented
by a connected set of cell faces. In order to be able to
search and analyse features and their faces in the Cellular
Model, each cell has an attribute —called owner list— indi-
cating which shape extents it belongs to, see Figure 5.
Similarly, each cell face has also an owner list, indicating
which shape faces it belongs to.

Just like for features, the nature of a cell expresses
whether its volume represents “material” of the object or
not. Similarly, the nature of a cell face expresses whether
it lies on the boundary of the object or not. Cell and cell
face natures are determined after Cellular Model re-
evaluation, in the interpretation stage.

The Cellular Model, including its attribute mechanism
to maintain and propagate the owner lists of cells and cell

faces, was implemented using the Cellular Topology husk
of the Acis Geometric Modeller (Spatial 1999).

Re-evaluation of the Cellular Model
In contrast with most parametric systems, which use two
non-associative set operations (union and difference) to
evaluate the geometric model, in our approach only one
set operation is used to evaluate the Cellular Model: it is
computed by performing the non-regular cellular union of
the shape extents of all features. Because it is a union op-
eration, the order in which the shape extents are processed
is now irrelevant for the final Cellular Model obtained. By
these non-regular cellular operations, the cellular decom-
position described above is computed. Essential in this
process is the correct propagation of the owner lists of
each cell and cell face when these are further decomposed.
Typically, when some model parameters are modified,
only a few feature shapes are actually geometrically af-
fected (i.e., in their dimensions, position and/or orienta-
tion). Consequently, only the shape imprint of those fea-
tures needs to be updated. For this, their shapes are re-
moved from the Cellular Model and then re-added with
their new parameter values.



@—. throughSiot.leftSide: onBoundary(completely)

blindSlot1: no transmutation interaction

blindHolePattern: no boundary clearance interaction

Figure 6 — Prototype model and three of its topologic constraints

History-independent interpretation

Interpretation of the re-evaluated Cellular Model consists
of determining whether the point set represented by each
cell does belong to (or represent “material” of) the object,
i.e. determining the nature of that cell. Interpretation of
the Cellular Model requires deciding which of the features
in its owner list “prevails”, either as additive or as sub-
tractive.

For this, precedence relations among features are de-
termined, based on dependencies between features and on
possible overlap between independent features. Once all
precedence relations have been established, a global or-
dering of the set F of all features in the model can be eas-
ily performed by a classical topological sorting algorithm.
The features in the resulting sorted sequence are then as-
signed unique, increasing precedence numbers. Eventu-
ally, every cell owner list (a subset of F) is sorted accord-
ing to these precedence numbers, and each cell’s nature
becomes therefore automatically determined: it is the na-
ture of the last feature in its owner list, i.e. the feature with
the highest precedence number. This scheme always yields
an interpretation of the Cellular Model that is unambigu-
ously determined, independent of the model history. For
details on the precedence criteria and sorting algorithms
involved in Cellular Model interpretation, as well as for a
discussion on the advantages of history-independent
boundary evaluation, the reader is referred to (Bidarra and
Bronsvoort 1999b; Bidarra and Bronsvoort 2000).

4.3. Topologic validation
Once the model boundary has been re-evaluated, the

shape imprint of all modified features exhibits their up-
dated geometry and topology, and detection of violations

in topologic constraints can take place. In this third phase,
the model is considered invalid, and thus the family mem-
bership test fails, if any boundary or interaction constraint
is violated for some feature.

For checking each boundary constraint and each inter-
action constraint, see Table 1, topologic entities of the
Cellular Model are queried and analysed, using the feature
information maintained in their owner lists. Details on the
interaction detection algorithms can be found in (Bidarra
1999). Eventually, the set of constraint violations, if any,
is analysed, and their causes are identified and passed for
further processing to the re-parameterisation mechanism,
see Figure 4.

The re-parameterisation process includes reporting to the
user the constraint violations detected, documenting their
scope and causes, and, whenever possible, providing cor-
rective hints. In case of a parameter that has been assigned
a value out of its specified range, this is straightforward.
In case of a topologic constraint violation, re-parameter-
isation hints are presented to the user in terms of the rele-
vant parameter values causing the violation.

5. Results and conclusions

We have introduced a new approach to define a family
of objects, and to determine whether a particular instance
belongs to the family. A family of objects is defined by
creating a prototype semantic feature model (Bidarra and
Bronsvoort 2000), in which the semantics of the family
can be fully specified by several types of constraints, in a
relatively easy way. Given a set of parameter values, the
family membership test can be used to determine whether
the corresponding instance belongs to the family.

In Figures 6-8, we show an example of its application



in the SPIFF modelling system. In Figure 6 the geometry of
a prototype model is shown, together with three of its
topologic constraints relevant for the example. In Figure 7
three instances are shown that do belong to the family
defined by the prototype, and in Figure 8 three instances
that do not belong to the family.

The first advantage of the approach is that the instance
corresponding to a set of parameter values always has a
shape that may be expected on the basis of the prototype
and the parameter values. Unexpected results, which
regularly occur in current parametric modelling systems,
in particular because of the persistent naming problem in
boundary re-evaluation, do not occur. The reason for this
is that all references during modelling are made to persis-
tent feature entities instead of non-persistent entities in a
boundary representation.

The second advantage of the approach is illustrated by
the example given above. If one considers the shape of the
prototype in Figure 6 and of the instances in Figures 7 and
8 only, it is not obvious that the instances in Figure 7
should indeed belong to the family defined by the proto-
type, and the instances in Figure 8 not. In our approach,
the membership of these instances is determined by the
constraints in the definition of the prototype of the family.
More generally, the design intent, or semantics, of a fam-
ily of objects can be specified much more precisely than
in current parametric modelling systems, in particular with
the topologic constraints.

Regarding the implementation, it has been shown that a
cellular model can be very valuable to represent objects in
the context of defining families of objects, as has also
been suggested by Shapiro and Vossler (1995) and Rag-
hothama and Shapiro (1998). The cellular model is in
particular exploited by the family membership test; for
example, the model offers even the possibility to give, in
case an instance is not a member of the family, hints to the
user to re-parameterise the instance in a way to make it a
member of the family. Bidarra et al. (1998) already
showed that a cellular model can be very useful in several
other contexts too, e.g. multiple-view feature modelling.
So although cellular models are not used in current mod-
elling systems, they might well become more popular in
the future.

References

Anderl, R. and Mendgen, R. (1995) Parametric design and its
impact on solid modeling applications. In: Proceedings Solid
Modeling ‘95 — Third Symposium on Solid Modeling and Appli-
cations, 17-19 May, Salt Lake City, UT, US4, Hoffmann, C.M.
and Rossignac, J.R. (Eds.), ACM Press, New York, pp. 1-12

Bidarra, R. (1999) Validity maintenance in semantic feature
modeling. PhD Thesis, Delft University of Technology, The
Netherlands

height of
baseBlock

(a) height of baseBlock increased

' width of
; blindSlot3

(b) depth of blindSlot2 increased,;
width of blindSlot3 decreased

(c) width of pocket increased

Figure 7 — Examples of members



Bidarra, R. and Bronsvoort, W.F. (1999a) Validity maintenance
of semantic feature models. In: Proceedings of Solid Modeling
‘99 — Fifth Symposium on Solid Modeling and Applications, 9—
11 June, Ann Arbor, MI, USA, Bronsvoort, W.F. and Anderson,
D.C. (Eds.), ACM Press, New York, pp. 85-96

Bidarra, R. and Bronsvoort, W.F. (1999b) History-independent
boundary evaluation for feature modeling. In: CD-ROM Pro-
ceedings of the 1999 ASME Design Engineering Technical
Conferences, 12—15 September, Las Vegas, NV, US4, ASME,
New York

Bidarra, R. and Bronsvoort, W.F. (2000) Semantic feature mod-
elling. To be published in: Computer Aided-Design 32(3)

Bidarra, R., de Kraker, K.J. and Bronsvoort, W.F. (1998) Repre-
sentation and management of feature information in a cellular
model. Computer-Aided Design 30(4): 301-313

Bronsvoort, W.F., Bidarra, R., Dohmen, M., van Holland, W.
and de Kraker, K.J. (1997) Multiple-view feature modelling and
conversion. In: Geometric Modeling: Theory and Practice — The
State of the Art, Strasser, W., Klein, R. and Rau, R. (Eds.),
Springer, Berlin, pp. 159-174

Capoyleas, V., Chen, X. and Hoffmann, C.M. (1996) Generic
naming in generative, constraint-based design. Computer-Aided
Design 28(1): 17-26

Chen, X. and Hoffmann, C.M. (1995) On editability of feature
based design. Computer-Aided Design 27(12): 905-914

Dohmen, M. (1997) Constraint-based feature validation. PhD
Thesis, Delft University of Technology, The Netherlands

Kramer, GA. (1992) Solving geometric constraint systems: a
case study in kinematics. The MIT Press, Cambridge, MA

Kripac, J. (1995) A mechanism for persistently naming topo-
logical entities in history-based parametric solid models. In:
Proceedings Solid Modeling ‘95 — Third Symposium on Solid
Modeling and Applications, 17-19 May, Salt Lake City, UT,
USA, Hoffmann, C.M. and Rossignac, J.R. (Eds.), ACM Press,
New York, pp. 21-30. Also in: Computer-Aided Design 1997;
29(2): 113-122

Lequette, R. (1997) Considerations on topological naming. In:
Product Modeling for Computer Integrated Design and Manu-
facturing — Proceedings TC5/WGS.2 International Workshop on
Geometric Modeling in Computer Aided Design, 19-23 May
1996, Airlie, VA, USA, Pratt, M., Sriram, R.D. and Wozny, M.J.
(Eds.), Chapman & Hall, London, pp. 394-403

Raghothama, S. and Shapiro, V. (1998) Boundary representation
deformation in parametric solid modeling. ACM Transactions on
Graphics 17(4): 259-286

Sanella, M. (1992) The SkyBlue constraint solver. Technical
Report 92-07-02, University of Washington, WA, USA

Shapiro, V. and Vossler, D.L. (1995) What is a parametric family
of solids? In: Proceedings of Solid Modeling ‘95 — Third Sym-
posium on Solid Modeling and Applications, 17-19 May, Salt
Lake City, UT, USA, Hoffmann, C.M. and Rossignac, J.R.
(Eds.), ACM Press, New York, pp. 4354

Spatial (1999) Acis 3D Modeling Kernel, Version 5.3, Spatial
Technology Inc., Boulder, CO, USA

position of
blindSlot3

(a) position of blindSlot3 modified:
constraint ® violated

width of throughSlot

(b) width of throughSlot increased:
constraint @ violated

& of blindHolePattern

(c) diameter of blindHolePattern increased:
constraint ® violated

Figure 8 — Examples of non-members



