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ABSTRACT 
 

In most current feature modelling systems, blends are modelled as a kind of features too. These 
systems use a boundary representation (Brep) to describe the shape of a product. It is shown that 
the practice of basing specification of blends on conventional Breps is ineffective. 
A solution to this problem is introduced in which blends are described at a higher level. Blends are 
defined in a feature class, and instances of such a class can be added to a feature model containing 
relations between all features in the model. Such a semantic description of blends has several merits. 
In particular, constraints can be defined on them to specify important functional properties, and 
these properties can be maintained during the whole modelling process through validity 
maintenance. A new method to determine the shape of a blend, based on its properties, is also 
demonstrated. 
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1. INTRODUCTION 
Feature modelling has, in the past decade, become the most popular means of product modelling. Previously, a product 
model contained only geometric information, but with the increasing use in different application areas, e.g. design, 
manufacturing and assembly, the need for additional functional information became apparent. A feature is the fundamental 
design component of feature modelling. Example features include ridge, hole, pocket and blend. A feature model stores the 
different features and their associated information. It is imperative for a feature to have a well-defined meaning, or 
semantics, for a particular lifecycle activity [1]. 
Feature technology still lacks in several ways. A particular shortcoming that this paper addresses relates to semantics for the 
blend feature, or blend for short. A blend is a sheet or volume used to smooth an intersection between two adjacent face 
boundaries of one or more features. The problem is that semantics for the blend feature are poorly defined. This limits the 
capability of capturing design intent in the feature model. 
A blend feature is attached as a transition between one or more feature faces in the feature model. During modelling, 
features are modified and each change is associated with an evaluation of the model. A blend feature is always evaluated 
when a feature it is attached to is modified. This evaluation requires a good ‘book-keeping’ facility by means of which the 
semantics of the blend can be checked reliably whenever the feature model is going to change. Lack of such a facility 
disallows the feature modelling system to maintain the validity of the model. This has led to unreliable updates in blend 
features. In this paper, a new method to define blend features, in a way that facilitates specification of semantics and validity 
maintenance, is developed and demonstrated. Tests have been performed on SPIFF, a prototype feature modelling system 
developed at Delft University of Technology. 
The object-oriented concept of a feature class will be used to define blends. A feature class is a parameterized description of 
the shape and the properties of the feature, which should be satisfied by all instances of the class. All its properties are 
described as constraints in the corresponding feature class. Parameters (e.g. radius) specify the shape of the blend, and 
constraints are restraints declared on the shape, e.g. the maximum and minimum radius value permitted. Methods in the 
feature class define the functionality of the blend, e.g. how the shape of a blend instance is determined. The most popular 
method used to create blends is the classic rolling-ball technique, in which a notionally rolling ball generates a surface 
envelope describing the blend [2, 3]. In this paper, a new approach to create a blend is presented. The blend is determined 
from the information in the corresponding feature class. 
The remainder of the paper is outlined as follows. In Section 2, fundamental concepts on blending are reviewed. A blend as 
a feature is discussed in Section 3, and in Section 4 the new approach to modelling blends is introduced. In Section 5, the 
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definition of a blend feature class is presented, and in Section 6, the instantiation of blend features is demonstrated with 
examples based on the rolling-ball technique. Section 7 demonstrates other types of blends, and Section 8 concludes the 
paper. 
 
2. FUNDAMENTAL CONCEPTS 
Most industrial products have blends. A blend is a softened sharp edge or vertex that instates a smooth transition between 
faces to improve, for example, manufacturability, strength, and/or pleasing look. Different literature uses various terms to 
describe blends. This section reviews common terms and concepts that we use in this paper. 
Blends may be categorized by construction method, e.g. rolling-ball, spine-based or trimline-based. Fine surveys of these 
blending techniques, including various mathematical forms, can be found in [2] and [3]. In this section, we discuss the basic 
concepts of blends using the most widely used method of rolling-ball blends. Note that these concepts are sufficiently general 
and may be applied to other types of blends. 
An operation used to create a blend is known as blending. Blending may either remove or add material, depending on the 
convexity of the model local to the blend. A blend on a convex edge removes material from the model to round off the edge, 
whereas a blend on a concave edge adds material to the model. The former is known as a round whereas the latter is a fillet 
– see Fig. 1a. Another blend type, a chamfer, is also popular. The key difference is that a chamfer is planar, in contrast with 
curved faces used in fillets and rounds. In this paper, the term blend applies to any of these. 
A blend can be either an edge blend or vertex blend. An edge blend replaces an edge by a face tangent to the two faces 
adjoining the edge, except a chamfer in which the connection is non-tangential. A vertex blend replaces a vertex by a face 
connecting the faces adjoining the vertex. This kind of blend is obtained from blended edges that meet at the vertex to 
smoothly connect all neighbouring blends. Therefore, in this paper, the edge blend will be discussed in detail, and the term 
blend will be used for this unless explicitly stated otherwise. 
The geometry of an edge blend is determined using an imaginary rolling ball that maintains contact with the faces to be 
blended [2]. The blend face is the envelope of this ball as it rolls along the edge. Blend geometry is associated with four key 
elements: imaginary spine curve, support faces, spring (or rail) and terminating edges; see Fig. 1b. A spine curve describes 
the locus of points traced by the rolling ball’s centre. Support faces are the side faces, supporting the rolling ball, of the blend. 
Spring edges are the two edges of contact traced by the contact points between the rolling ball and the support faces. A 
terminating edge is the shortest line on the extremes along the blend face that connects the two support faces. This edge is a 
cross section of the blend face characterizing the shape of the blend. In addition, the blend radius refers to the radius of the 
imaginary rolling ball; this radius can be constant or variable. The former defines so-called constant radius blends, whereas 
the latter describes variable radius bends. 
During blending, it is not uncommon that a single operation generates many blend faces connected smoothly to each other 
to form the blend. A blend sheet is such a set of blend faces created in a single blending operation [4]; the set is referred to 
as a chain. For example, in Fig. 1c, the round is described by a blend sheet defined by a chain of 3 blend faces. Chains are 
usually generated when any of the adjoining support faces of the blend changes during blending [2], e.g. when a convex 
blend is created following a concave blend, as in Fig. 1c. Edges between blend faces in the same chain are known as cross 
edges. Note that a blend sheet can also have a single blend face. In this case, the blend sheet has no cross edge. 
Braid [3] summarizes the creation of blends, in current geometric modellers, into four stages. Firstly, blend attributes 
containing blending details, such as blend radius, are attached to each blend edge(s). Secondly, new blend faces needed for 
the blend sheet are created. When one examines a blend edge, one sees that the surfaces of the two support faces and the 
blend radius, together determine the blend sheet geometry. Next, a Boolean operation is used to find the intersection 
between the blend sheet and the original model being blended. This stage derives the extents of the blend sheet, i.e. the 
spring and terminating edges bounding the blend face(s). Finally, the blend sheet is created. 
Once a blend has been created, it is attached to the model at the specified location. Attaching the blend involves trimming 
the original faces, and replacing portions of these faces with the blend sheet. In the model, a number of blends may interact 

 

Fig. 1: Blend geometry description 
(a) (c) (b) 
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with each other to form a complex blend network. When a blend face is at the end of a blend chain, terminating edges get 
created. If a blend terminates on a single face, a single terminating edge results; say, between the top face and the round in 
Fig. 1a. However, if it terminates on multiple faces, multiple terminating edges are created, as in Fig. 1c. Braid [3] illustrates 
some of the many configurations that can occur with blends in a model. 
 
3. BLENDS AS FEATURES 
Most current commercial modelling systems are feature based. The user operates on features, and geometry is created on the 
basis of these features. He specifies a feature model in an interactive way, typically via a graphical user interface. Feature 
modelling permits users to associate functional with geometric information. A recent survey on feature modelling can be 
found in [5]. 
A feature is defined using a feature class, which is a structured description of all the properties of a given feature type, 
defining a template for all its instances. A feature class definition always includes a generic shape for the feature, and a 
number of parameters and constraints that characterize this shape. Constraints capture design intent in the shape, e.g. to fix 
the radius value range from 2.0 to 2.5 mm. 
When values of parameters have been specified, an instance of the feature class is created. The feature is then attached to 
one or more other features already in the model, i.e. one or more of the faces in the feature are coupled to one or more 
faces in one or more other features. The involved faces are called attach faces. 
Blends can be modelled as features too, but several problems are faced when doing this. Three major shortcomings are 
discussed here. 
Firstly, in most commercial systems, blends are specified on model boundary elements. In addition, most commercial 
systems are based on geometry kernels, such as ACIS® and Parasolid®. These are, in fact, Brep modellers. Blends are 
typically specified on a blend edge selected on the model (see Fig. 2a). Since the kernel modellers being used are Brep 
modellers, blending changes the model boundary, and the blends, and other features, are no longer represented at the 
parametric definition level. 
Consequently, because the explicit feature model can no longer be referred to directly during regeneration after an edit, 
current systems sometimes have to guess the matching element whenever ambiguity exists. If the guess is wrong, the model 
can exhibit unexpected, often undesirable, behaviour. As an example, consider the model shown in Fig. 2a. An edge was 
chosen for rounding; the result is shown in Fig. 2b. This model is now edited by altering the value of the side length X1. In a 
particular commercial system, when some value X2 is attained, the blend is surprisingly repositioned as shown in Fig. 2c. It 
seems reasonable to suspect that the system specifies the blend in terms of boundary elements, e.g. that in Fig. 2b the blend 
is specified on the face F1 and the face of the freeform ridge feature. By extending the face F2 in Fig. 2c, it becomes 
ambiguous where to place the blend now. The system’s guess corresponds to the same face F1, which is now only on the 
opposite side of the ridge as F2, thereby repositioning the blend as in Fig. 2c, even when the semantics is clearly different. 
In fact, blends are a victim of the so-called persistent naming problem, the source of which is generally attributed to 
deficiencies in the Brep. Hoffmann [6], Kripac [7], Middleditch and Reade [8] and Bidarra et al. [9] argue against basing the 
representation of features on a conventional Brep. A discussion on the persistent naming problem is not intended in this 
paper. Interested readers may consult [10] for a survey paper on the problem. Blends seem to suffer even more from the 
persistent naming problem than other types of features, because of their complex shapes and relations with other features. 
The second major shortcoming is that most commercial systems poorly describe properties of the blend feature at the 
parametric level, i.e. they are predominantly macros at the parametric definition level [5]. A macro is more advanced than 
explicit geometry, but lacks sufficient information to concisely represent the blend feature. As a consequence, the meaning of 
the blend feature is not well represented. 
The final major shortcoming is that feature modelling systems poorly maintain semantics of blends, if any. Once added to the 
product model, which is usually a Brep, the blend’s meaning is lost. This permits previous design intent to be overruled in 
certain edit operations. For example, the vertex blend added in Fig. 1b has overruled the properties of the previously created 

  

Fig. 2: Problem with specifying blends on the Brep 
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fillet in Fig. 1a. Such changes could also alter geometric properties, e.g. continuity between adjacent faces, specified during 
instantiation of the blend feature. These uncertainties are due to the fact that features are just considered as macro 
operations provided to the user to speed-up the traditional geometric modelling process. As a consequence, the only 
information stored in the model that can be used for further operations is still and just the geometric information. 
The main problem with systems deploying blends as macros is the lack of facilities to specify validity conditions on the blend 
feature. This limitation, and the use of a Brep, has retarded the development of tools to perform specific validity checks 
during the modelling process [1]. 
 
4. THE NEW APPROACH 
This section introduces the new approach to modelling blends. It is based on the concept of semantic feature modelling [1]. 
In semantic feature modelling, an essential aspect of a feature is that it has a well-defined meaning, or semantics, and this 
semantics is maintained during the whole modelling process. In this paper, the objective it to improve the definition of 
current blend features along these lines in three major ways.  
Firstly, properties of the blend are specified in a corresponding feature class. A new data structure is provided at a high 
abstraction level, on which parameters and constraints describe the shape of the blend feature.  
Secondly, a new, intuitive way to calculate the blend’s shape from the parameters and constraints is developed. The shape is 
calculated by a method from the blend feature class, and explicitly stored in a blend feature shape, independent of the kernel 
modeller data structure for the whole model.  
Finally, the concept of validity maintenance is introduced for blending, so that design intent can be specified and maintained 
by means of constraints on a blend feature. 
A general distinction can be made between a feature class definition and a feature model; see Fig. 3. The feature class 
declares all the generic information pertaining to the blend feature, whereas the feature model constitutes instances of the 
blend as well as other features. In addition, the feature model is made up of the unevaluated feature model and the 
evaluated model. The unevaluated feature model contains feature shapes (volumes) and a feature dependency graph, 
whereas the evaluated model is the geometric representation for the overall boundary, consisting of portions of all feature 
shapes. So, three levels of abstraction can be distinguished: a high-level blend feature class, an intermediate level 
unevaluated feature model, and a low-level evaluated feature model, labelled, respectively, as (a), (b) and (c) in Fig. 3. 
 
4.1 The blend feature class 
One of the main intentions of introducing a blend class definition is to make the blend independent of the kernel data 
structure. The blend feature class represents parameters, constraints and other generic entities as class member variables and 
describes the generic shape using methods of the feature class (see Fig. 3a). 
The parameters and constraints are used to specify the generic shape of the blend feature. Parameters are used to define the 
shape and size, e.g. radius, of the blend feature. Parameters are presented in Section 5.1. A constraint is a restraint imposed 
either on a parameter (parameter constraint) or shape (shape constraint). An example of a parameter constraint is a value 
constraint that is used to limit the range of a parameter value; an example of a shape constraint is a surface area constraint 
used to limit the value of the total surface area of all surfaces of a feature in the evaluated feature model. Constraints will be 
detailed in Section 5.2. 
The generic shape of the blend feature is defined in the blend feature class method. The geometry of the shape is described 
using generic entities called feature entities. What is new, contrary to existing definitions, is that feature entities are included 
in the blend class definition. This makes them explicit in the blend feature shape. A blend feature class can have an arbitrary 
number of feature entities. The entities are important since they provide an interface to parameterize the generic shape of the 
blend using the constraints. Two types of feature entities can be identified: feature geometry and feature topology entities 
(described in Section 5.3). Furthermore, the feature class defines attach and dependency relations for the blend feature; 
these are explained in Section 5.4. 
As mentioned in Section 2, various types of blends are known from literature, e.g. rolling-ball, spine-based and trimline-
based. A blend can be classified according to its characteristics, e.g. properties of its shape. The blend class depicted in Fig. 
3a is a generic abstract class definition [11], which implies it cannot be directly instantiated by simply assigning values to its 
parameters. Specific blend classes are derived from this abstract class definition in order to specialize the definition according 
to the intended blend feature type, e.g. in an edge-blend class based on the rolling-ball technique the method of the super-
class (the generic blend class) is redefined to implement the rolling-ball algorithm. This derived class is a generic specific 
blend feature class that can be instantiated, e.g. when parameter values are specified. 
 
4.2 The unevaluated feature model 
Each blend feature has its own shape derived from the generic shape in the corresponding class definition, called a blend 
feature shape. This shape is independent of the kernel geometry representation of the whole model, and thus provides an 
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invariant structure for subsequent modelling 
operations. The blend feature shape, therefore, 
defines a concrete interface to the blend; it can be 
intersected, its volume and surface area (in the 
evaluated model) can be precisely calculated, and 
so on, just like for other features. It represents the 
complete geometry and topology using feature 
entities. The determination of the blend feature 
shape is detailed in Section 6.2. The blend feature 
shape and the other feature shapes already in the 
feature model make up the unevaluated feature 
model (see Fig. 3b). 
Two essential properties can be identified with 
feature entities. Firstly, unlike a Brep element in the 
evaluated model, whose topology can change (see 
Section 4.3), a feature entity cannot be merged, 
split or deleted once instantiated, even if its 
geometry representation is [1]. Consequently, 
feature entities provide an invariant structure on 
which to specify the parameters and constraints for 
the blend feature shape. Secondly, a single feature 
entity may correspond to one or more geometry 
representations of the same dimension in the Brep, 
e.g. a spring feature edge may correspond to a 
chain of spring edges in the Brep. This structure is 
achieved by encapsulating the geometry 
representations, of the corresponding feature entity, 
in dynamic lists in that feature entity’s definition, in 
order to allow dynamic (de-)allocation of its 
geometry representations without otherwise 
changing the structure of the feature entity itself. 
The use of such lists is crucial here, because 
blending at the kernel level often causes a single 
edge to get split up into a set of connected edges 
(edge chain) or get merged to create a single edge 
to meet certain levels of continuity, e.g. 2nd order 
continuity. 
In addition, the unevaluated feature model 
maintains a feature dependency graph. This graph 
is used to describe the relationships among all 
feature instances in the model. Detailed discussion 
on the use of the feature dependency graph can be 
found in [1]. 
 
4.3 The evaluated feature model 
The evaluated feature model is depicted in Fig. 3c. 
Usually, in a geometric kernel, a Brep scheme is 
used to provide a description of the faces, edges 
and vertices that make up the complete feature model’s boundary, including the entities’ adjacency information. When one 
compares the feature shapes against the feature model (see Fig. 3b respectively, 3c) the feature model is a boundary 
description of the combination of all feature shapes. More advanced representations than a conventional Brep, particularly a 
cellular model [12], can be used for the feature model to provide additional functionality. 
 
4.4 Instantiating a blend feature class 
A blend feature instance can be created from the feature class definition once attachment information and parameter values 
are available. The required information is specified in the corresponding class definition, e.g. support feature faces and blend 

 

Fig. 3: Levels of abstraction for a blend feature 
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radius. Part of the information is derived from other features already in the feature model, e.g. attach feature faces; other 
information is directly input by the user, e.g. the value of the blend radius. 
During instantiation, firstly the user is prompted for attach feature faces, in the feature model, used to define support feature 
faces. For each parent feature, a dependency relation is defined between the parent and the blend. Also, the attach feature 
faces define attach relations for each coupled face-pair. 
Secondly, parameter values are requested. Depending on the blend type, different parameters may be required. Part of the 
supplied information is subsequently used to determine the position of the feature geometry entities, e.g. spring profiles, in 
the feature model from which the feature topology entities, e.g. spring feature edges, are instantiated. 
Thirdly, a record for the blend feature is created. It includes the dependency and attach relations specified in the first step. 
The same information is also fed into the feature dependency graph; see Fig. 3b. 
Finally, the blend feature is inserted into the evaluated model, see Fig. 3c, and the feature model is updated. The link 
between the feature entities and their corresponding representations is then created (see Section 5.3). 
Geometric, functional as well as technological properties of a feature make up its validity conditions, expressing design intent 
in the feature model. The technology to preserve these properties, in terms of conditions, is known as validity maintenance. 
Also, validity checks can be performed at various stages during creation and modification of the blend feature. Instantiation 
of a blend feature class is detailed in Section 6. 
 
5. BLEND FEATURE CLASS DEFINITION 
In this section, the blend feature class is described in more detail. In the class, parameters, constraints, relations and 
references to feature entities are represented as class member variables. Feature entities are used to describe the generic 
shape of the blend feature; the parameters, constraints and relations are specified on the feature entities. 
 
5.1 Parameters 
The types and number of parameters in a blend feature class depends on the type of blend. For example, one or several 
radius parameters are required for a rolling-ball blend; a single radius for a constant-radius blend and multiple radii for a 
variable-radius blend. The radius parameter specifies circular cross sections. In a variable-radius blend, every radius is 
associated with an offset distance along the blend edge, e.g. ‘a’, ‘b’ and ‘c’ in Fig. 4. These offset distances, called cross-
offset parameters, define the distance between two consecutive cross profiles along a spring profile, such that each cross 
profile has a corresponding point pair, one point on each spring profile. 
Moreover, this approach allows the size of the blend feature to be specified. This is new to blends in existing approaches 
where the extents are only implicitly derived from the attach faces. For instance, in most commercial systems an edge blend 
always spans the whole blend edge; single or a sequence of them (a chain). However, in this work, the blend shape can be 
specified to span only a portion of the blend edge. Powerful dimensioning techniques can be used that do not force the user 
to dimension the blend feature using explicit coordinate values, e.g. up-to, up-to-next, and so on, by referring to other 
feature entities, say, feature faces, or even to such references as datum planes. 
Parameters can be different for other types of blend than the rolling-ball blend. For example, a blend using trimline-based 
algorithm does not necessarily need the blend radius to be supplied, but instead the spring-offset and thumbweight 
parameters are required. A spring-offset parameter defines the extent of trimming back of the support faces along spring 
profiles, indicating how far each spring profile is locally from the blend profile. Fig. 5 indicates spring-offset parameters, 
detailed as d1 and d2. Blends can have symmetric or asymmetric cross profiles; in the former the values for spring-offset 
parameters are equal, whereas in the latter they are different. In addition, the shape of the cross profiles can be controlled by 
adjusting the so-called thumbweight [2]; see Fig. 5. The thumbweight is a measure of the closeness of a cross profile to the 
support regions: the higher the thumbweight is, the more closely the cross profile follows the shape of the support regions. In 
addition, the shape can be controlled by independently changing the continuity, between the blend and support feature 
faces, along the spring profiles. 
 
 

 

Fig. 4: Radius and cross-offset parameters 

 

Fig. 5: Cross profile properties 
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5.2 Constraints 
Constraints are part of the validity specification for the blend feature class. As earlier stated, a constraint can be either a 
parameter or a shape constraint. Parameter constraints include value and algebraic constraints, and shape constraints 
include surface area, volume, curvature and continuity. 
A value constraint limits the range of a parameter’s value, e.g. a maximum allowed radius of 2.2 mm. An algebraic 
constraint algebraically relates two parameter values, e.g. two spring-offset parameter values d1: d2, in Fig. 5 as 2.5:1. 
A surface area, volume and curvature constraint can be specified to set the property’s allowed range in the blend shape. 
Continuity can be specified on the blend feature, depending on the blending technique used. In the rolling-ball algorithm, G2 
continuity can be achieved, although G1 is usual. In the other types of blends, continuities higher than G2 are possible. 
 
5.3 The blend feature shape 
As mentioned in Section 4.1, the generic shape of the blend is described using feature entities. Feature entities are generic 
entities used to define geometry and topology of the blend feature shape, namely feature geometry, respectively, feature 
topology entities. Feature geometry entity types include point, profile and region and feature topology entity types include 
feature vertex, feature edge and feature face, see Fig. 6. Feature geometry entities describe the shape of the blend 
independent of the geometry representation in the kernel. Feature topology entities describe the boundary of the resulting 
blend feature shape. 
An instance of the blend feature has a concrete feature shape, see Fig. 3, that keeps reference to the generic shape in the 
class definition. In the feature shape, the feature geometry entities, point, profile and region, abstract the geometric point, 
curve and surface, respectively, in the kernel, as depicted in Fig. 6. For example, the spring profile pertains to the spring 
curve in the kernel. Analogously, feature topology entities, feature vertex, feature edge and feature face, abstract vertex, 
edge, face, respectively, in the kernel, e.g. a spring feature edge pertains to a spring edge in the kernel. At the kernel level, 
every topology element is associated with a geometry element, e.g. the vertex-point {v2, p2} in Fig. 7. 
As mentioned in Section 4.2, a feature entity never gets split, merged or deleted, even when the elements in the 
corresponding representation in the kernel do. Thus, a correct mapping is needed to define the correspondence between the 
feature topology entities, in the feature shape, and the topological elements in the underlying geometric kernel. To this end, 
whenever a kernel element gets split, e.g. a spring edge into a spring edge chain (Fig. 7), the corresponding feature geometry 
entity records the positions, as encapsulations of points in the feature shape, without the feature entity itself splitting, e.g. 
{p2} encapsulated in {P2’} of the spring profile. To record the one-to-many correspondence between feature and kernel 
edges and faces, each feature edge and feature face can encapsulate one or more topologic entities in the kernel through 
dynamic lists for the kernel entities included in its definition, see Fig. 6. Similarly, when kernel topology entities merge, the 
removed kernel entities are de-referenced by removing them from the lists in the definition. Thus, although the kernel’s data 
structure may change, the feature shape data structure persists. This new facility is explained in Section 6.2 where 
determination of the blend feature shape is detailed. 
 
5.4 Other information 
The feature blend class also defines dependency and attach relations. For example, in Fig. 3b, suppose feature faces {f1, f2} 
are selected to be the support feature faces. The features owning the attach faces define dependency relations, e.g. BLND-
(BLK and RDG). Also, the attach faces specify attach relations for each coupled face-pair. For instance, A1, in Fig. 3b, 
defines an attach relation between the support feature face, on the block feature (BLK), and the blend feature shape 
(BLND). Furthermore, the nature of the feature, also specified in the corresponding feature class definition, indicates whether 

 

Fig. 6: Feature and kernel entities 

 

Fig. 7: Mapping between feature and kernel entities 
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the instances of the class definition represent material added to or removed from the model: additive, respectively subtractive 
natures. For example, a fillet is additive, whereas rounding is subtractive. 
 
6. BLEND FEATURE CLASS INSTANTIATION 
This section details instantiation of a blend feature class definition. Instantiation of a blend is somewhat different from other 
features since most of the information for instantiation is obtained from features already in the model. For clarity, first, the 
well-known rolling-ball blend will be used to explain the new method. Note, however, that other types of blends, based on 
the generic class definition, in Section 5, can be handled as well. The following steps describe the instantiation process: 
specifying instantiation information, computing the shape of the blend, validating and attaching the blend, and determining 
the evaluated model.  
 
6.1 Specifying instantiation information 
First, attach and dependency relations should be defined. The support feature faces the user selects also identify the parent 
features for the blend, i.e. the features that own the support feature faces. For instance, the support feature faces for the 
simple blend in Fig. 8a are the top and front feature faces on the block feature; the block defines the parent. One unique 
aspect to note here is that instead of using Brep faces in the evaluated model to define the support faces, feature faces in the 
feature shape are used because they refer to the generic shape definition in the feature class, they are explicit and persistent 
at the parametric definition level (in the unevaluated feature model). Secondly, one or several blend radius parameters are 
specified:  a constant-radius blend (Figs. 8a, b) requires only one value, whereas in a variable-radius blend (Fig. 4) several 
radii and the associated cross-offset parameters are required. Finally, the blend extent can be defined by using our new 
approach (explained in Section 5), which allows the user to select one or several other feature faces in the feature model, or 
even datum planes, e.g. a zx-parallel plane in Fig. 8b. This is the information necessary to define the terminating regions for 
the blend volume. 
 
6.2 Computing the shape of the blend 
This section details the blend feature class method, wherein the blend feature shape is actually computed (created and 
evaluated). In the method, an external geometric kernel, ACIS®, is used to perform geometric computations through a 
selected set of Application Programming Interface (API) functions. 
Currently, the most attractive blending technique, from a modelling point of view, is the rolling-ball method, because it 
automatically generates some of the required shape information, e.g. spring and cross curves. But a major shortcoming with 
this technique is that the surface swept by the moving ball, the so-called canal surface, is of high algebraic degree, even in 
relatively simple cases, which often makes resulting blends unstable. Also, due to computational considerations, the 
representation of such surfaces in exact form is excluded, and generally approximate methods are used [2]. Hence, we take 
a generic approach that exploits some of the merits of the rolling-ball technique and extends the algorithm to allow other 
types of blends to be modelled. In this new approach, the shape is computed in four steps: determine profile positions, skin 
the profiles to determine the blend volume, extract feature topology, and link the feature entities with the kernel entities. 
 
6.2.1 Positioning the profiles 
Using the instantiation information, particularly the blend feature edge, support feature faces, and blend radius (or radii and 
the corresponding cross-offset parameters), the kernel is invoked to execute the rolling-ball blending procedure. As noted 
earlier, this procedure provides information that is later used to determine the blend volume, e.g. information for positioning 

 

Fig. 8: Specifying a blend feature shape 
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spring profiles, which can be modified for other blend types. Basically, a preliminary rolling-ball geometric blend is computed 
at Brep level only to provide specific information for positioning entities in the feature model. 
The interrogated entities are: blend, spring, terminating and cross (in variable radius blends) curves (and edges). The 
positions of the corresponding profiles for the feature shape are determined by interpolating the points on these curves, in 
the kernel, using NURBS. The number of points on each profile does not need to equal the number of control points on the 
NURBS, and in fact, the profiles do not interpolate control points but evaluated positions on the curves themselves [11]. 
Additional geometric properties for the NURBS are determined using constraints, e.g. continuity constraint, specified on the 
corresponding profile. If the extents of the blend were specified by the user using a datum plane, as in Fig. 8b, the geometric 
domains for the spring, blend and/or cross profiles would be trimmed to the plane. The terminating profiles would then be 
computed as the intersection curve between the canal surface and the plane. The same steps would be taken if feature faces 
were selected instead of a plane. Finally, the positions of the feature geometry entities, respectively blend, spring, terminating 
and cross profiles, are established. 
 
6.2.2 Determining the blend volume and feature topology 
With the feature geometry entities positioned, the blend volume is computed. The regions for the surfaces of the blend 
volume are determined by skinning the profiles (Figs. 3b and 4). Skinning is a technique used to create a surface fitting 
through a series of curves. The spring and terminating profiles are skinned to create the blend, respectively, terminating 
feature regions. The blend feature region connects to the support surfaces with tangent continuity, see Fig. 8. Closure regions 
are also created between each of the spring profiles and the blend profile, to complete the blend volume (Fig. 3b). These 
regions coincide with (part of) the support feature faces in each of the parent features (later used for attaching the blend). 
It should be noted that, in our approach, the blend shape is described differently from existing approaches. In particular, the 
blend feature has its own volume, which is used to imprint the blend shape in the evaluated model (see Fig. 8) as other 
standard features, e.g. slot and pocket do. On the contrary, current systems only describe blends in the evaluated (geometric) 
model as surface patches. This difference is crucial because, in the new approach, a blend is explicit in the unevaluated 
feature model, so that it can be selected, intersected, and so on. 
 
6.2.3 Linking feature and kernel entities 
The feature shape is then mapped to the geometric kernel. The link is established through the feature entities, as outlined in 
Section 5.3. This is accomplished by the dynamic lists, for kernel topology elements, in the corresponding feature entity 
definitions, and labels are assigned to each of these elements as attributes. One feature edge may correspond to several 
edges in the Brep. All such edges populate the list in the corresponding feature edge. For example, an edge split in the Brep 
introduces new bounding vertices that, together with the split edges, create an edge chain, e.g. the spring edge chain in Fig. 
7. All point-vertex pairs on the edge chains, e.g. {p2, v2} in the spring edge chain, are also determined by ACIS®. The 
positions, in the kernel, are recorded by the feature geometry entity (here, the spring profile) as encapsulations in points on 
the profile, without splitting the feature entity. They can become particularly important if the points are later used to further 
manipulate the blend or to specify other blend types, as will shortly become clear. Finally, the Brep topology elements are 
added to (e.g. after splitting) or removed from (e.g. after merging) the list in the feature topology entities for which they are 
representations. 
In this approach, we avoid the persistent naming problem by specifying the blend on the feature entities of other features 
instead of specifying it on Brep elements in the Brep as most current systems do [9]. The blend feature shape, like the other 
feature shapes [1], is therefore independent of the Brep data structure. 
 
6.3 Validating and attaching the blend 
The blend feature shape is validated when it is added to the feature model or when it is edited. The properties specified on 
the feature are verified at two levels: during feature class instantiation and shape computation. During instantiation, 
constraints are enforced, e.g. on the radius and spring-offset. Other constraints are verified during shape computation, e.g. a 
curvature constraint when generating the blend region. In case of violation, a validity recovery loop is entered to allow the 
user to interactively correct the problem. As an example, the fillet feature in Fig. 9 has a volume constraint of maximum and 
minimum values, respectively, 46.2 and 55.8 mm3. When the blend is edited such that the constraint is violated, the system 
notifies about that particular violation. Importantly, the blend is excluded from the evaluated model, see Fig. 10, until the 
problem is resolved. The concept of validity recovery for freeform feature modelling is detailed in [13]. 
 
6.4 Determining the evaluated model 
In the unevaluated feature model, the blend feature has an explicit volume, represented by its feature shape. All feature 
shapes in the unevaluated feature model, the dependency information and the nature of each shape are input to the 
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boundary evaluator. For example, if the blend is subtractive, e.g. the round in Fig. 9, its geometry is computed by a Boolean 
difference operation with its parent(s). 
 
7. OTHER TYPES OF BLENDS 
As mentioned in Section 4.2, other types of blends can be created from definitions derived from the abstract generic blend 
feature class (Fig. 3a). To implement other blend types, only the method in the abstract class, i.e. ‘determine_shape()’ in Fig. 
3a, should be overridden. Specifically, only one change is made: instead of executing the rolling-ball procedure in Section 
6.2.1, other procedures, e.g. spine-based and trimline-based procedures, are used. The instantiation information will depend 
on the blend type (see Section 5). 
A completely new blend type has also been developed. It exploits some of the merits in existing techniques. For instance, in 
the rolling-ball technique only minimal information, viz. support feature faces and radius (or radii and cross-offset 
parameters), is sufficient to instantiate the blend. This readily provides information to position the blend feature in the feature 
model. 
The method for the new type of blend therefore starts with the rolling-ball procedure for, mainly, positioning the blend in the 
model. In a rolling-ball blend, cross curves are always circular arcs (symmetric), as in Figs. 8a, b. The blend so determined 
can only be modified by changing the radius parameter. In our approach, the user is provided with additional parameters to 
manipulate the blend in the model, e.g. the thumbweight, spring-offset and cross-offset parameters and size (extents). Fig. 8 
demonstrates how the three parameters have been used, in our prototype system, to modify the blend feature within the 
feature model, from Fig. 8a to Figs. 8b and c. Furthermore, in the manipulation from Fig. 8b to Fig. 8c, the originally circular 
cross profile has intentionally been edited to asymmetric. This is possible because the geometry for a profile is a NURBS 
surface, which provides additional degrees of modelling freedom. Importantly, the resulting blend still maintains the tangency 
condition with its support faces in the feature model (Fig. 8c). 
In addition, the spring profiles can also be manipulated to create even more complex blends. To demonstrate the idea, we 
present complex blend shapes in Fig. 11. In these examples, the profiles can be interactively manipulated by means of the 
points in their definition, either directly or indirectly. Direct manipulation is achieved by using the explicit points in the spring 
profiles. The user can slide the points within each support feature face, such as ‘b’ in Fig. 11a has been used to reduce the 
spring offset ‘a’ from Fig. 11a to Fig. 11b. This facility also allows making straight spring profiles, e.g. in Fig. 8a, to have 
arbitrary shapes as in Fig 11. The profiles can as well be manipulated indirectly through parameters. For instance, in Fig. 
11b, different thumbweight parameters have been used to add smooth depressions in the same way sculptors use the thumb 
to mould clay. In addition, the figure demonstrates the new facility to specify the extents (size) of the complex blend even 
after it has already been created in Fig. 11a: here the blend is made to span only a portion of the support feature faces. 
Current feature modelling systems do not offer the user this option. Finally, observe that the tangency between the blend 
and the support feature faces is always maintained. 
 
8. CONCLUSIONS 
In this paper, a new approach to blending has been introduced and demonstrated. It includes three new concepts: the blend 
feature class concept, a new method to determine the blend shape, and validity maintenance to blending. It demonstrates 
how the new approach facilitates modelling blends as semantic features. 
The feature class provides the basis for high-level definition of the blend. All parameters, constraints and other design 
information are specified in the corresponding class. The methods of the class are used to determine the shape based on the 
parameters, constraints and the new shape calculation technique. Validity conditions specified on the blend feature are 
stored in feature models. This semantic information can be verified within the methods in the blend class definition whenever 

 

Fig. 9: Blends in a feature model 

 

Fig. 10: Validity maintenance facilities 
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an update of its shape is required. All the parametric information about the blend remains explicit to design, thereby making 
modelling with blends more intuitive and high-level. 
Using this generic approach, more complex blending is possible. The basic concept of a class and its methods can be easily 
extended to other types of blends. 
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Fig. 11: Other types of blends (a) (b) 


