Fast and Accurate Gaussian Derivatives
Based on B-Splines

Henri Bouma'*, Anna Vilanova', Javier Olivan Bescés?,

Bart M. ter Haar Romeny!, and Frans A. Gerritsen'+?

! Biomedical Image Analysis, Technische Universiteit Eindhoven,
The Netherlands
henri.bouma@tno.nl, {a.vilanova,b.m.terhaarromeny}@tue.nl
2 Advanced Development, Healthcare Informatics, Philips Medical Systems, Best
The Netherlands
{javier.olivan.bescos,frans.gerritsen}@philips.com

Abstract. Gaussian derivatives are often used as differential operators
to analyze the structure in images. In this paper, we will analyze the ac-
curacy and computational cost of the most common implementations for
differentiation and interpolation of Gaussian-blurred multi-dimensional
data. We show that — for the computation of multiple Gaussian deriv-
atives — the method based on B-splines obtains a higher accuracy than
the truncated Gaussian at equal computational cost.

1 Introduction

Computer vision aims at the automatic interpretation of structures in an im-
age. The low-level image structure is often analyzed with differential opera-
tors, which are used to calculate (partial) derivatives. In mathematical analysis,
the derivative expresses the slope of a continuous function at a point (aggcm) =
limy, o f(x+h}2_f(x)). However, differentiation is an ill-posed operation, since the
derivatives do not continuously depend on the input data [I]. The problem of an
ill-posed differentiation on a discrete image F' is solved through a replacement of
the derivative by a (well-posed) convolution with the derivative of a regularizing

test function ¢ [213].

@ F = 9)a) = (-1 [PO 01y b+ €)de
= [P00~ 9 = (F 5 04, 0)) W

The Gaussian is the only regularizing function that is smooth, self-similar, causal,
separable and rotation invariant [3l4]. The convolution of an image with a
Gaussian is called blurring, which allows the analysis at a higher scale where
small structures (e.g., noise) are removed.

* Henri Bouma recently joined TNO, The Hague, The Netherlands.

F. Sgallari, A. Murli, and N. Paragios (Eds.): SSVM 2007, LNCS 4485, pp. 406@, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Fast and Accurate Gaussian Derivatives Based on B-Splines 407

Thanks to the mentioned properties, the Gaussian derivatives are often ap-
plied in the fields of image processing and computer vision as differential oper-
ators [0]. They are used to implement differential invariant operators — such as
edge detectors, shape descriptors and motion estimators. In the medical field,
the Gaussian derivatives are used to compute features in huge multi-dimensional
images for a computer-aided interpretation of the data, sometimes even at mul-
tiple scales [6]. This processing requires an efficient and accurate implementation
of the Gaussian derivatives.

The naive approach to obtain the blurred derivatives of an image, is to con-
volve a multi-dimensional image with a multi-dimensional truncated Gaussian
(derivative) kernel. The same result can be obtain with lower computational
cost by using separability, because the rotation-invariant multivariate Gaussian
is equal to a product of univariate Gaussians. However, the cost of both ap-
proaches increases as the scale gets larger. Therefore, many techniques are pro-
posed for an efficient implementation at large scales or at multiple scales.

The FFT [7] allows the replacement of an expensive convolution in the spatial
domain by a cheaper multiplication in the Fourier domain. Usually, the cost of an
FFT is only acceptable for large scales [8]. A recursive implementation [QJT0JIT]
of the Gaussian (derivative) is even cheaper than the FFT [12], and the costs
are — like the FFT — independent of the scale. However, this implementation
lacks high accuracy, especially for small scales [I3] and derivatives cannot be
computed between voxels (e.g., for rendering) or locally at some voxels (e.g., to
save time and memory for the computation of isophote curvature on a sparse
surface). The low-pass pyramid technique [T4/T5] uses down-sampling at coarser
scales to reduce the computational cost. Especially analysis at multiple or higher
scales can benefit from this approach.

However, the use of large-scale Gaussian derivatives can be avoided because
the Gaussian is a self-similar convolution operation. This means that a cascade
application of two Gaussian kernels with standard deviation o; and o3, results
in a broader Gaussian function with oy; = /0% + 02 (semi-group property).
Therefore, Lindeberg [16] proposed to first blur an image once with a large
Gaussian G(o1), and then obtain all partial derivatives at lower cost with smaller
Gaussian derivative kernels g(o2). In this paper, we will compare the accuracy
and computational cost of several approaches to obtain these derivatives.

Figure [Tl shows four ways to obtain a Gaussian derivative. One way is to con-
volve an image in one pass with a truncated Gaussian derivative for each partial
derivative. The second way is the approach of Lindeberg [I6] that first blurs
an image once and then obtains all the partial derivatives with small truncated
Gaussian derivative kernels. Due to truncation, the Gaussian is not continuous
and smooth anymore, although the error of this exponential function rapidly
approaches zero. In the third way, which is similar to the second way, the small
Gaussian derivative is replaced by a B-spline derivative [T4T7/I8]. The higher-
order B-spline § converges to a Gaussian as a consequence of the central-limit
theorem. An advantage of the B-spline of order n is that it is a compact ker-
nel that guarantees C™~! continuity. The fourth way to compute the Gaussian

408 H. Bouma et al.

9(cn) !
2 Blurred
Input Blurred | 9(0,) | perivative
Image | G(o,)|Image (o) | 3 | of image

\’ Blurred

G(oy) | Image (o)

< \A ™

Fig. 1. Four ways to obtain the blurred derivative of an image. The first way performs
one convolution with the derivative of a Gaussian g(oot). The second and third way
convolve the image with a Gaussian G(o1) for most of the blurring and then with
a smaller derivative of a Gaussian g(o2) or a B-spline derivative [3; where oot =
\/0? + 02. The fourth way convolves the image with a Gaussian G(o0:) for all the
blurring and then with the derivative of an interpolator ¢ for differentiation.

derivatives makes a separation between blurring and differentiation. After blur-
ring the image — an operation that can benefit from the mentioned optimizations
— the derivative is computed without blurring.

Many operators have been proposed to compute the derivative in an image
(e.g., the Roberts, Prewitt and Sobel operators [T920/21]). However, they do not
compute the derivative without adding extra blur and they are very inaccurate.

The unblurred derivative of an image can be computed as a convolution with
the derivative of an interpolation function ¢ (4th way in Fig.[l). A quantitative
comparison of several interpolation methods can be found in papers by Meijering
et al. [2324], Jacobs et al. [25] and Lehmann et al. [26]. The comparisons show
that for each of the methods for differentiation and interpolation there is a trade-
off between accuracy, continuity and kernel size, and that B-spline interpolation
[27128] appears to be superior in many cases. Therefore, we used the derivative
of a B-spline interpolator to implement the unblurred derivative (4th way in
Fig.).

In the last decades, we have seen a growing competition between Gaussian-
and spline-based image-analysis techniques, which are both frequently used.
To our knowledge, a comparison between the truncated Gaussian and the ap-
proaches based on B-spline approximation and B-spline interpolation (Fig. [)
for a fast and accurate implementation of Gaussian derivatives has not been
published before. In this paper, we will compare the accuracy (Sec.[2)) and com-
putational cost (Sec. B]) of the four strategies.

2 Accuracy of Methods

In this section, the true Gaussian derivatives are compared to their approxima-
tions to analyze the accuracy of these approximations on one-dimensional data.

Fast and Accurate Gaussian Derivatives Based on B-Splines 409

Thanks to the separability of the Gaussian G, this analysis is also valid for higher
dimensions.

22

G(x,0) 202 (2)

1 _
= e
0'\/ 2T
The error € of an approximation gy of the true continuous signal y is computed
as the normalized RMS-value, which is directly related to the energy.

I i) — (o) do

I (e o)da ¥
— 0o)
For the normalized RMS-value, the error of the impulse response of a Gaussian-
derivative kernel that is truncated at x = ao is independent of the standard devi-
ation. For example, the normalized RMS-error of a Gaussian is € = /1 — erf(a),
and for a first-order Gaussian derivative: € = \/1 +2ae="/\/m — erf(a).

2.1 Aliasing and Truncation of the Gaussian

Small-scale Gaussian operators may suffer from sampling artifacts. According to
the Nyquist theorem, the sampling frequency must be at least twice the band-
width in order to avoid overlap of the copied bands (aliasing) [5]. If the copies do
not overlap, then perfect reconstruction is possible. For a small amount of blur-
ring (e.g., o < 1 pixel) limitation of the bandwidth of the reconstructed signal is
not guaranteed and serious aliasing artifacts may be the result. Band-limitation
is enforced by a convolution with a sinc function [I3]. If high-frequencies are
(almost) absent in the stop band, then aliasing is negligible and the signals with
and without band-limitation (g * ¢sinc(x) and g(x) respectively) are (approxi-
mately) equal. Figure Bh shows that sampling causes serious aliasing artifacts
for a small-scale zeroth-order derivative of a Gaussian, and it shows that a first-
or second- order derivative requires even more blurring for the same reduction of
the aliasing effects. To avoid aliasing artifacts, second-order derivatives are often
computed at o = 2.0 pixels. Therefore, we will mainly focus further analysis on
this amount of blurring (o40+ = 2.0 px).

For a fixed kernel size N, small scales will lead to aliasing artifacts but large
scales will lead to truncation artifacts. The optimal trade-off between aliasing
and truncation is selected by minimizing the difference between a band-limited
Gaussian (g * @sinc) and a truncated Gaussian. Figure b shows that the error
is minimal at o ~ (N/6.25)%-%0 ~ \/N/6. If the truncated kernel is applied to a
blurred input signal — e.g. blurred by the PSF or pre-filtering with o1 — so that
the total blurring is oo = \/0% + 02 = 2.0 px, the optimal scale can even be
reduced to approximately o2 =~ (N/9.9)°°0 ~ \/N/10, as shown in Figure 2.
The scale with a minimal error is used to implement the second approach in
Figure [

410 H. Bouma et al.

108(5) log(e)

N/o'l's
7 8 9 10111213 14
4

Fig. 2. (a) The normalized RMS-error € due to aliasing for a zeroth-, first- and second-
order derivative of a Gaussian at o = [0.5 — 2.0]. (b) The difference between a band-
limited Gaussian and a truncated Gaussian is minimal at ¢ = (N/6.25)°°°, where
the kernel size N = [4,8,12,16]. (¢c) On a blurred signal, the normalized RMS-error is
minimal at o = (N/9.9)%-6.

2.2 B-Spline Approximation

The B-spline approximator is used to implement the third approach in Figure[Il
A high-order B-spline [I8], or a cascade application of kernels [I7JT4], will con-
verge to a Gaussian (central-limit theorem). The B-spline approximator 5" (z)
of order n is:

) = ;(”“) o (e-ie "3t @)

where p™(z) is 2™ for x > 0 and zero for other values, and where ("jl) is the
binomial coefficient. The derivatives of the B-spline can be obtained analytically
in a recursive fashion based on the following property:

) N

The z-transform [29] is commonly used in digital signal processing to represent
filters in the complex frequency domain. For example, for cubic (n = 3) spline
filtering, the z-transform is:

—1 0 1

BS(Z): 1z +46z +1z o e é$i71+2$¢+é$¢+1 (6)
The output y; of this digital filter only depends on the inputs x, which makes it
a finite impulse response (FIR) filter.

The derivative of a B-spline approximator §"(z) can be used as a small-
scale Gaussian derivative. Figure Bl shows the normalized RMS-error between
a Gaussian and a B-spline is minimal for the standard deviation o = /N/12
[30]. Although the B-spline converges to a Gaussian for higher orders, the error
is not reduced for higher orders (Fig.[Bb) when it is applied to a blurred signal
(to obtain oy = 2.0 px). The scale with a minimal error is used to analyze the
accuracy of this approach.

Fast and Accurate Gaussian Derivatives Based on B-Splines 411

log(e) log(s)

N/o? N/o?

9 10 11 12 13 14 15 -0.5/9 10 11 12 13 14
-1
-1.5 16
-2
-2.5
-3 4
-3.5

(a) (0)

Fig. 3. The normalized RMS-error between a Gaussian and a B-spline approximator
is minimal at o = \/N/12, for kernel size N = 4,8,12,16. (b) The same relation can
be found on a blurred signal.

2.3 B-Spline Interpolation

The B-spline interpolator is used to implement the fourth approach in Figure[Il
In order to perform B-spline interpolation of the blurred image H with the ap-

proximating B-spline kernels (3" in Eq.H), an inverse operation B, is required.

h=H x B}, * 3" (7)

The inverse operator can easily be calculated in the z-domain as B"(z)~!. To
obtain a stable filter, this inverse operator can be decomposed by its negative
roots with magnitude smaller than one [27]. For example, the root of the inverse
of a cubic B-spline (Equations [and {) is A = —2 + /3.

-1 1 6 1 1

= — —6) 8)

B o) T ot a4 o (I=2z7) (1= Az

Multiplication of two parts in the z-domain is equivalent to a cascade convolution
with both parts in the spatial domain. The last part in Equation (&), with 2%,
can be applied backward, so that it also becomes a z~! operation. This results
in a stable and fast filter, which should be applied forward and backward:

1

el & Ui =z + Ayi—1 9)

The output y; of this digital filter does not only depend on the input xz;, but
also on the output y;_1, which makes it a recursive — or infinite impulse response
(ITR) — filter. The recursive inverse operation makes the B-spline interpolator
computationally more expensive than the B-spline approximator at equal or-
der n. For more information about B-Spline interpolation, we refer to the work

of Unser et al. [27128].

2.4 Comparison of Accuracy

An experiment was performed to estimate the normalized RMS-error between
the impulse response of a continuous Gaussian derivative (o, = 2.0 px to avoid

412 H. Bouma et al.

aliasing) and each of the four approaches (Fig.[Il). Measuring for each approach
the error of the impulse response gives an indication of the accuracy in general,
because a discrete image can be modelled as a sum of impulses with varying
amplitude. The first approach, which is based on a one-pass truncated Gaussian
of 0 = 2.0 pixels, used an unblurred impulse as input signal. The second and
third approach, which are based on a small-scale truncated Gaussian and on a
B-spline approximator, used a sampled Gaussian as an input signal to obtain a
total blurring of o = 2.0 pixels. The fourth approach, which is based on B-spline
interpolation, used a sampled Gaussian of o = 2.0 pixels as input signal.

Truncation of the one-pass Gaussian is often performed at 30 or 4o, which
corresponds to a kernel size of 12 or 16 pixels for ¢ = 2.0 pixels. Figure @l
shows that for these kernel sizes the normalized RMS-error in the second-order
derivative is 5.0 - 1072 or 2.4 - 1073 respectively. The results show that B-spline
approximation requires much smaller kernels to obtain the same accuracy as the
truncated Gaussian (4 or 6 px respectively). The figure also shows that B-spline
interpolation and cascade application of small-scale Gaussians may be interesting
if higher accuracies are required, but for most applications the approach based
on B-spline approximation will be sufficiently accurate.

log(e) N log(e) N log(e) N
4..6 8 10 12 14 16 E"s..e 10 12 14 16 Q"O--S. 10 12 14 16
_ .. B Seq . . Seo
* el 6@ . T G2 N A
~§~ . ‘Q .Q
-2 . -2 . . -2 B-spl.A e
. e B-spl.A *
=37 s B-spl.A ‘s -3 _3

Oth order 1st order 2nd order

Fig. 4. The normalized RMS-error € in estimating the zeroth-, first- and second-order
Gaussian derivative (o = 2.0px) for the four approaches based on the one-pass truncated
Gaussian (G(2), dashed), the cascade application Gaussians (G(1/N/10), dashed), the
B-spline approximator (B-spl. A, solid) and the B-spline interpolator (B-spl. 1, solid). The
first approach requires much larger kernels than the others to obtain the same accuracy.

3 Computational Cost

Our comparison of computational cost will focus on the calculation of first- and
second-order derivatives at a low scale (0 = 2.0 px) in three-dimensional (3D)
data, because these derivatives are frequently used in the medical field. For these
parameters, we will show that — in most cases — it is beneficial to use the B-
spline approximator. For larger scales, more derivatives or higher-dimensionality
it will be even more beneficial to make a separation between the blurring and
differentiation. Therefore, our analysis can easily be extended to the computation
of an arbitrary number of derivatives at higher scales on multi-dimensional data.

Fast and Accurate Gaussian Derivatives Based on B-Splines 413

Figure (] showed that the truncated Gaussian requires 12 or 16 pixels to ob-
tain the same accuracy as the B-spline approximator of 4 or 6 pixels respec-
tively. For these sizes the B-spline approximator (B-spl. A) is more accurate than
the cascaded Gaussians (G(1/N/10)) and computationally cheaper than the B-
spline interpolator (B-spl.I) because no inverse is required (Eq. [7). Therefore,
we will focus on the comparison of the B-spline approximator with the truncated
Gaussian. Despite its small kernel, the B-spline is not always cheaper than the
truncated Gaussian because it requires preprocessing to obtain the same amount
of blur. The computational cost of this global blurring step can be reduced —
especially for large scales — by using a recursive implementation [IT].

The estimation of the computational cost C' is based on the number of multi-
plications, which is equal to the kernel size. Three approaches are distinguished
to analyze the performance for different purposes (Table[d]). In the first approach,
all volume-elements (voxels) are processed in a 3D volume. In the second, the
derivatives are computed at some voxel-locations, and in the third, interpolation
and differentiation is allowed at arbitrary (sub-voxel) locations in the volume.
Finally, our estimation of the computational cost is verified with an experiment.

Table 1. The computational cost C' in a 3D volume of d derivatives based on the
truncated Gaussian (kernel size k) and B-spline approximation (order n)

Blur All Voxels Some Voxels Some Points
Trunc. Gauss - 3d(k+1) d(k+1)> d(k)?
B-spline approx. 3(k+1) 3d(n) d(n)® d(n+1)>3

3.1 Cost of Differentiation on All Voxels

The computation of Gaussian derivatives on all voxels allows the use of a sep-
arable implementation with discrete one-dimensional filters. The continuous B-
spline of order n with kernel size n + 1 is zero at the positions —(n + 1)/2 and
(n+1)/2. Therefore, the number of non-zero elements in a discrete B-spline ker-
nel is n. The truncated Gaussian with kernel size k is not zero at its end points
and therefore it requires k + 1 elements in the discrete kernel to avoid the loss
of accuracy.

For a ‘fast’ computation (n = 3,k = 12) of three first-order derivatives
on all voxels, the B-spline approximator is 1.8 times faster than the truncated
Gaussian despite the required preprocessing. For the nine first- and second-order
derivatives, the B-spline is 2.9 times faster. For a ‘more-accurate’ computation
(n = 5, k = 16) of three or nine derivatives, the B-spline approximator is 1.6
resp. 2.5 times faster than the truncated Gaussian (horizontal lines in Fig. [).

3.2 Cost of Differentiation on Some Voxels

If only a small percentage p of the volume needs to be processed (e.g, to com-
pute shape descriptors on the surface of an object) — or if storage of multiple

414 H. Bouma et al.

derivatives of the whole image consumes too much memory — the non-separable
implementation may be more efficient to compute the derivatives than the sep-
arable implementation. However, in 3D data, the cost of a non-separable local
operation increases with a power of three instead of a factor of three (Tab. [).

The non-separable implementation is more efficient than the separable for
the ‘fast’ B-spline approximator (n = 3) if less than p = 33% of the volume is
processed, and for the ‘more-accurate’ (n = 5) if less than p = 12% is processed
(Fig. B).

Figure [also shows that the B-spline implementation (n = 3, d = 3) is more
efficient than the truncated Gaussian if more than p = 0.6% of the voxels is
processed (d = 9 reduces the trade-off point to p = 0.2%). For example, the B-
spline (n =3, d = 9) is 8 times faster than the truncated Gaussian at p = 2.0%.

If we would have assumed that the blurring for the B-splines was incorpo-
rated in the preprocessing, then the B-spline approximator would even have
been 81 times faster than the truncated Gaussian for each voxel.

More accurate (n =5, k = 16)

C C
1000 . 1000, o

Fig. 5. The curves show the computational cost C' for processing a percentage p of the
voxels with a non-separable implementation in a 3D volume with a truncated Gaussian
(dashed) and the B-spline (solid) for d derivatives. The horizontal lines show the cost of
processing all voxels with a separable implementation. The plots show that the B-spline
is expected to be more efficient if more than p = 0.6% of the data is processed.

3.3 Cost of Interpolation and Differentiation on Arbitrary Points

To interpolate and differentiate at arbitrary (sub-voxel) points in the volume
continuous kernels are needed and a separable implementation cannot be used.
The n-th order B-spline has a continuous kernel size of n + 1 (Table [J).
FigureBlshows that if more than p = 0.8% of the data is processed the B-spline
is more efficient than the truncated Gaussian. For example, if nine derivatives are
computed at a number of points that equals p = 10% of the voxels, the B-spline
(n=3) is more than 16 times faster than the truncated Gaussian (k = 12).

3.4 Validation of Cost of Differentiation on Voxels

To validate our estimation of the computational cost, we measured the time
that was required to compute the nine first- and second-order derivatives on
a 3D volume of 512x512x498 voxels with a Pentium Xeon 3.2 GHz processor.
In this experiment, we compared the implementations based on the truncated

Fast and Accurate Gaussian Derivatives Based on B-Splines 415

More accurate (n =5, k = 16)
c

1000
300 °

o
100

Fig. 6. The computational cost C for processing arbitrary points as a percentage p of
the voxels in a 3D volume with a truncated Gaussian (dashed) and the B-spline (solid)
for d derivatives. The plots show that the B-spline is expected to be more efficient if
more than p = 0.8% of the data is processed.

Gaussian (k = 12) and the B-spline approximator (n = 3) as an example to
show that our assumptions are valid. The measured results in Figure [are in
good agreement with our analysis. The measurements show that the B-spline
is more efficient if more than 0.3% of the data is processed (estimated 0.2%).
The B-spline appears to be 6 times faster than the truncated Gaussian if 2%
of the volume is processed with a non-separable implementation (estimated 8
times faster). And if all voxels are processed with a separable implementation
the B-spline appears to be 2.1 times faster (estimated 2.9 times faster).

1 s
g
B
,
.
P A R
B
K
Tor
R
K
B
—_—
K
.
L 1 (%
0.1 1 10 1oop (0)

Fig. 7. The measured computation time ¢ in seconds for processing a percentage p of
the voxels in a 3D volume (512x512x498 voxels) with a truncated Gaussian (k = 12,
dashed) and a B-spline approximator (n = 3, solid) for 9 derivatives. The horizontal
lines show the cost of processing all voxels with a separable implementation. The plot
shows that, for equivalent accuracy, the B-spline is more efficient if more than p = 0.3%
of the data is processed.

4 Conclusions

We analyzed the accuracy and computational cost of several common implemen-
tations for differentiation and interpolation of Gaussian blurred multi-
dimensional data. An efficient implementation is extremely important for all
fields that use Gaussian derivatives to analyze the structure in data. A compari-
son between an implementation based on the truncated Gaussian and alternative

416 H. Bouma et al.

approaches based on B-spline approximation and B-spline interpolation has not
been published before, to the best of our knowledge.

If the vesselness or isophote curvature of a data set needs to be computed (re-
quiring six or nine derivatives respectively), the B-spline approach will perform
much faster than the approach based on truncated Gaussians. These operators
are very important in the field of medical imaging for shape analysis. Our analysis
shows that, for the computation of first- and second-order Gaussian derivatives
on three-dimensional data, the B-spline approximator is faster than the trun-
cated Gaussian at equal accuracy, provided that more than 1% of the data is
processed. For example, if 2% of a 3D volume is processed, B-spline approxima-
tion is more than 5 times faster than the truncated Gaussian at equal accuracy.
Our analysis can be extended easily to an arbitrary number of derivatives on
multi-dimensional data.

Higher accuracy will not always lead to better results. However, in many cases,
the same accuracy can be obtained at lower computational cost, as was shown in
this paper. Another advantage of the B-spline of order n is that C"~! continuity
is guaranteed, whereas the truncated Gaussian is not even C° continuous.

References

1. J. Hadamard: Sur les problemes aux Dérivées Partielles et leur Signification
Physique. Bulletin, Princeton University 13 (1902) 49-62

2. L. Schwartz: Théorie des distributions. In: Actualités Scientifiques et Industrielles,
Institut de Mathématique, Université de Strasbourg. Vol. 1,2. (1951) 1091-1122

3. L.M.J. Florack: Image Structure. Kluwer Academic Publ., The Netherlands (1997)

4. R. Duits, L.M.J. Florack, J. de Graaf and B.M. ter Haar Romeny: On the axioms
of scale-space theory. J. Mathematical Imaging and Vision 20(3) (2004) 267298

5. B.M. ter Haar Romeny: Front-End Vision and Multi-Scale Image Analysis. Kluwer
Academic Publ., The Netherlands (2003)

6. Y. Masutani, H. MacMahon and K. Doi: Computerized detection of pulmonary
embolism in spiral CT angiography based on volumetric image analysis. IEEE
Trans. Medical Imaging 21(12) (2002) 1517-1523

7. M. Frigo and S.G. Johnson: An FFT compiler. Proc. IEEE 93(2) (2005) 216231

8. L.M.J. Florack: A spatio-frequency trade-off scale for scale-space filtering. IEEE
Trans. Pattern Analysis and Machine Intelligence 22(9) (2000) 1050-1055

9. M. Abramowitz and I.A. Stegun: Handbook of Mathematical Functions. Dover,
New York, USA (1965)

10. R. Deriche: Fast algorithms for low-level vision. IEEE Trans. Pattern Analysis
and Machine Intelligence 12(1) (1990) 78-87

11. L.J. van Vliet, I.T. Young and P.W. Verbeek: Recursive Gaussian derivative filters.
In: Proc. Int. Conf. Pattern Recognition (ICPR). Vol. 1. (1998) 509-514

12. I.'T. Young and L.J. van Vliet: Recursive implementation of the Gaussian filter.
Signal Processing, Elsevier 44 (1995) 139-151

13. R. van den Boomgaard and R. van der Weij: Gaussian convolutions, numerical
approximations based on interpolation. In: Proc. Scale Space. LNCS 2106 (2001)
205214

14. P.J. Burt and E.H. Adelson: The Laplacian pyramid as a compact image code.
IEEE Trans. Communications 31(4) (1983) 532-540

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Fast and Accurate Gaussian Derivatives Based on B-Splines 417

J.L. Crowley and R.M. Stern: Computation of the difference of low-pass transform.
IEEE Trans. Pattern Analysis and Machine Intelligence 6(2) (1984) 212-222

T. Lindeberg: Discrete derivative approximations with scale-space properties: A
basis for low-level feature extraction. J. Mathematical Imaging and Vision 3(4)
(1993) 349-376

M. Wells: Efficient synthesis of Gaussian filters by cascaded uniform filters. IEEE
Trans. Pattern Analysis and Machine Intelligence 8(2) (1986) 234-239

Y.P. Wang and S.L. Lee: Scale space derived from B-splines. IEEE Trans. Pattern
Analysis and Machine Intelligence 20(10) (1998) 1040-1055

ILE. Abdou and W.K. Pratt: Quantitative design and evaluation of enhance-
ment /thresholding edge detectors. Proc. IEEE 67(5) (1979) 753-763

V.S. Nalwa and T.O. Binford: On detecting edges. IEEE Trans. Pattern Analysis
and Machine Intelligence 8(6) (1986) 699-714

V. Torre and T.A. Poggio: On edge detection. IEEE Trans. Pattern Analysis and
Machine Intelligence 8(2) (1986) 147-163

S.R. Marschner and R.J. Lobb: An evaluation of reconstruction filters for volume
rendering. In: Proc. IEEE Visualization. (1994) 100-107

E.H.W. Meijering, W.J. Niessen and M.A. Viergever: The sinc-approximating
kernels of classical polynomial interpolation. In: Proc. IEEE Int. Conf. Image
Processing. Vol. 3. (1999) 652656

E.H.W. Meijering, W.J. Niessen and M.A. Viergever: Quantitative evaluation
of convolution-based methods for medical image interpolation. Medical Image
Processing 5(2) (2001) 111-126

M. Jacob, T. Blu and M. Unser: Sampling of periodic signals: A quantitative error
analysis. IEEE Trans. Signal Processing 50(5) (2002) 1153-1159

T.M. Lehmann, C. Goénner and K. Spitzer: Survey: Interpolation methods in med-
ical image processing. IEEE Trans. Medical Imaging 18(11) (1999) 1049-1075

M. Unser, A. Aldroubi and M. Eden: B-spline signal processing: Part I: Theory,
and Part II: Efficient design and applications. IEEE Trans. Signal Processing 41(2)
(1993) 821-848

M. Unser: Splines, a perfect fit for signal and image processing. IEEE Signal
Processing Magazine (1999) 22-38

E.I. Jury: Theory and Application of the Z-Transform Method. John Wiley and
Sons, New York, USA (1964)

M. Unser, A. Aldroubi and M. Eden: On the asymptotic convergence of B-spline
wavelets to Gabor functions. IEEE Trans. Inf. Theory 38(2) (1992) 864872

	Introduction
	Accuracy of Methods
	Aliasing and Truncation of the Gaussian
	B-Spline Approximation
	B-Spline Interpolation
	Comparison of Accuracy

	Computational Cost
	Cost of Differentiation on All Voxels
	Cost of Differentiation on Some Voxels
	Cost of Interpolation and Differentiation on Arbitrary Points
	Validation of Cost of Differentiation on Voxels

	Conclusions

