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Eye-tracking with gaze estimation is a key element in many applications, ranging from
foveated rendering and user interaction to behavioural analysis and usage metrics. For
virtual reality, eye-tracking typically relies on near-eye cameras that are mounted in the
VR headset. Such methods usually involve an initial calibration to create a mapping from
eye features to a gaze position. However, the accuracy based on the initial calibration
degrades when the position of the headset relative to the users’ head changes; this is
especially noticeable when users readjust the headset for comfort or even completely
remove it for a short while. We show that a correction of such shifts can be achieved via
2D drift vectors in eye space. Our method estimates these drifts by extracting salient
cues from the shown virtual environment to determine potential gaze directions. Our
solution can compensate for HMD shifts, even those arising from taking off the headset,

which enables us to eliminate reinitialization steps.

1. Introduction

Virtual Reality (VR) is an exciting technology that has reached
the consumer market with affordable head-mounted displays
(HMDs). Nowadays, VR is successfully applied in many differ-
ent tasks but some challenges remain. Real-time rendering of
high-quality content is an example, as very high framerates are
needed and VR display resolutions increase constantly. Further,
new paradigms for user interaction are required. Traditional in-
put devices like a mouse are difficult to employ and any physical
peripherals are obscured by the HMD.

Eye-tracking with gaze estimation provides a compelling
direction to address rendering bottlenecks and interaction.
Foveated and perceptually-driven rendering focuses resources
on regions currently observed by users and gaze information can
be used to interact with virtual environments |1} 2, 3]]. The latter
is valuable for a person with physical disabilities [4]. Many
applications can benefit from gaze estimation, e.g., realistic eye
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movements for avatars [3]], interactive tone mapping [6], or just
to acquire knowledge about what users are observing or actively
focusing on [7].

However, there are still problems related to eye-tracking in
VR. Firstly, the gaze estimation in a head-mounted display
is very sensitive to HMD movements relative to the users’
head [8,9]. Such movements happen regularly, but are especially
noticeable when a user touches the HMD to adjust its position
or even temporarily removes it completely. Movements of the
HMD can result in large errors in the gaze estimation unless
these shifts are accounted for by the gaze estimation method.
Further, many eye-tracking methods require a calibration pro-
cess [10, 11, [12] that users need to perform before they can start
with a VR experience or even, occasionally, during execution.

In this paper, we show that inaccurate gaze estimation due
to shifts and movements can be sufficiently corrected with a
drift vector that is applied to the detected pupil locations. We
present a method to detect this drift vector when using near-eye
cameras for tracking by utilizing saliency information of the
displayed 3D scene. It is more likely that users focus on salient
elements, and we can use this assumption to detect drifts in



2 SalientGaze: Saliency-based gaze correction in virtual reality / Computers & Graphics (2020)

the calibration on the fly, without interrupting the use of VR
HMDs. Contrary to other solutions, our method does not involve
any prior knowledge about users nor rely on large amounts of
training data.

We test our method in multiple 3D scenes where users perform
distinct tasks. Specifically, our main contributions are:

e We show that, in an interpolation-based gaze estimation
method, HMD shifts can be compensated for with 2D trans-
lations applied to the pupil location.

e We present an auto-calibration method deriving this 2D
correction vector based on saliency detection applied to the
virtual content.

Section [2] introduces the topic and related work. We then
present our method in Section[3] Section[d]describes the experi-
mental results from a user study. Section[5]concludes the paper
and discusses future research.

2. Related work

Given their wide applicability, eye-tracking and gaze estima-
tion have been explored thoroughly, and we refer readers to the
survey of Kar and Corcoran [13], as well as the summary of
Hansen and Ji [14] for details.

Video-based eye-tracking systems, as used in this paper, op-
erate in the near infrared spectrum. These systems illuminate
the eyes using (invisible) infrared LEDs and capture images
with an infrared camera to estimate the gaze. The concurrently-
developed machine learning approach presented by Kim et al. [9]
operates directly on these images, using them to infer gaze es-
timates via a neural network. However, like other machine
learning-based methods [13} [16]], they need a large amount of
training data. They propose to synthesize the data, but this
nevertheless remains a costly endeavor, taking significant com-
putational resources. Other learning-based approaches avoid
eye-tracking cameras, and instead rely on other inputs. For ex-
ample, Soccini [17] inputs head movements and image features
into a convolutional neural network that estimates gaze positions.
Xu et al. [18] simplify this further for 360° videos by only using
previously estimated gaze positions together with image content.

Many other gaze estimation methods rely on specific features,
like pupil positions or glints (reflections on the eye cornea sur-
face) [19]]. Stengel et al. [20] use a virtual model of the optical
system comprising the eyes and compute light paths through this
optical system to map pupil positions to gaze. In this method,
a precise optical model of the VR HMDs has to be constructed,
making the method device-dependent.

PupilLabs [21] is a commercial example of a calibration-based
system. Here, users are asked to focus on a number of calibration
markers distributed over a large portion of the user’s field of view.
The calibration yields a number of pupil- and screen-position
correspondences, from which a mapping between screen- and
gaze-space is derived. This paper focuses on such interpolation-
based gaze estimation approaches. These have the advantage that
no prior knowledge of HMDs or eye-tracking systems is required
but the disadvantage that the method becomes inaccurate as the
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Fig. 1: Interpolation-based gaze estimation methods create a mapping between
pupil positions (in pupil space) and gaze positions (in gaze or screen space) by
measuring pupil positions corresponding to displayed calibration markers (gaze
space). Points inside of the region spanned by the calibration markers are found
through interpolation. The grid and the colored calibration markers show how
each position in gaze- and pupil space map to each other using a polynomial
function for interpolation.

relative position between the HMD and the user’s head changes.
While it is possible to just re-run the calibration process, this
would be invasive, negatively affecting the users’ immersion.
Our solution avoids this issue.

Our method relies on saliency information [22] 23] of the
displayed images to identify HMD shifts. Sugano et al. [10, [11]
first applied saliency-based analysis in a desktop eye-tracking
system. Their approach collects eye images and corresponding
saliency maps, and uses these as input to train a mapping to a
gaze position. They also combine this solution with electroocu-
lography (EOG) data in a head-mounted setting [12]. While
self-calibrating, the main drawback is the long data collection
time that is required.

Chen and Ji [24]] combine information from saliency images
with a 3D eye model to perform auto-calibration, achieving their
goal of avoiding a time-consuming initial setup in desktop eye-
tracking systems. They treat saliency images as probabilistic
information, and estimate free variables in their eye model via
an optimization step. Perra et al. [23]] consider the case, where
an initial calibration of a head-worn device becomes invalid
over time. Their approach subdivides the saliency images into
several regions and considers the salient region closest to the
current gaze estimation as the regarded position. Tripathi and
Guenter [26] instead rely on matching eye trajectories to the
motion of rendered objects to estimate the gaze position. Siden-
mark [27] finds matching points based on user interactions, but
explores this mainly as an alternate method for acquiring data
for the initial calibration.

Our gaze estimation builds upon a standard interpolation-
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Fig. 2: Gaze and pupil positions before and after a shift. The red disks denote
the positions of the calibration markers in gaze space. Blue disks show the
corresponding pupil positions in pupil space. After a shift of the HMD, the same
calibration markers give us a new set of pupil positions, shown as green squares.
Using the old, uncorrected gaze estimation with the green squares as input would
result in the orange squares. The offsets between the sets of positions in the gaze
space vary both in direction and magnitude. However, the offsets in pupil space
are very coherent, having both similar direction and magnitude, and motivate
our 2D drift vector model in pupil space.

based method [21]]. The selected method performs an initial
calibration using seven markers, as shown in Figure [T} which
cover roughly 90% of the users’ visible field of view when
looking at the center of the screen in VR. A mapping of the
form g = G (p) is fitted to these measured points, where g
is the estimated gaze point, p is the 2D pupil position in the
view of the eye-tracking camera, and G = (GX, Gy) with G,
and G, each being fourth degree polynomials in x and y of form
ay+ap x+az y+as x> +as y>+ag x y+az x> y* (i.e., with seven free
parameters each). After calibration, G maps 2D pupil positions
to image positions on the VR screens (each eye has a separate G).
Inverting G gives the reverse mapping. The calibration process
ensures that G is locally one-to-one and thus invertible. Contrary
to previous approaches, where G would be static, our proposed
method adapts G to correct for drifts during HMD usage.

3. The SalientGaze method

Our method, SalientGaze, consists of two parts. We first dis-
cuss our HMD drift model and introduce 2D drift vectors, which
we show to be sufficient for correcting the initial calibration over
time. We then present a saliency-based method to compute the
correction vector on-the-fly, during HMD use.

3.1. 2D drift vector model

An HMD can shift due to head movements or due to the
user touching the device, e.g., when adjusting for comfort or

Fig. 3: Correction using the error-minimizing 2D drift vector in pupil space.
Similar to Figure@ the red disks show the original calibration markers and blue
disks show the corresponding pupil positions. After a shift, the green squares
show the new pupil positions corresponding to the calibration markers, and the
orange squares show the gaze positions using the uncorrected estimation. An
error-minimizing 2D drift vector would map the new pupil positions (green
squares) close to the original locations (purple crosses in pupil space), and using
these as an input to the original gaze mapping function results in the estimates
shown as blue crosses in the gaze space.

even when taking off the device for a moment and reseating it
afterwards. Once a change in relative position occurs, the initial
gaze mapping function G is no longer accurate. Figure 2] (top
row) illustrates an example. One can observe that the resulting
errors in the gaze estimation vary in direction and magnitude
over the entire domain. However, when analyzing the shift in the
near-eye camera view, referred to as pupil space in this paper,
we observe that the offsets between the corresponding pupil
positions are very similar in direction and magnitude (Figure 2}
bottom row). Therefore, we propose to correct a shift with a
single 2D translation in pupil space.
Formally, the 2D translation, the drift vector d, is applied as
follows:
ga=G(p-d, e))

where gq is the corrected gaze position and d the shift. To evalu-
ate the validity of using a single 2D drift vector for correcting
the calibration. For a given vector d, we measure the error as the
sum of distances between the individual calibration markers g
and the corresponding gaze estimate gg:

N
E=) |ea-2
k=1

where N = 7 is the number of calibration makers (see Figure 3).

We will first illustrate the possible improvement that a cor-
rection with a single drift vector can have. To this extent,
given an initial calibration (defined by G), we compute an error-

@
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minimizing drift vector, d, that minimizes Equation 2| In prac-
tice, we found that such error-minimizing drift vectors keep
the average error below 1.4° on average. The details of the
corresponding study and results can be found in Section {4

3.2. 2D drift vector estimation

Given our finding that a single drift vector d is sufficient to
correct the calibration, it implies that it would be possible to
recalibrate on the fly by just determining a single point that a
user is looking at. Unfortunately, finding such a point is difficult.
We propose an on-the-fly method that relies on the saliency of
the displayed VR content to derive the drift vector iteratively.

As we do not control the content of the rendered images,
determining the saliency in a single image is not guaranteed
to accurately predict the region of attention (e.g., users might
just randomly look around). Further, none or even multiple
areas might appear salient (see second column of Figure [ for
example saliency images). For these reasons, additional criteria
are needed to increase robustness. Our goal is to construct a
probability map, from which the estimated drift vector can be
derived. This map will be produced by accumulating saliency
maps from several well-chosen frames. In the following, we
detail the construction of this map.

We filter the input and omit frames with rapid eye-movement,
using the I-DT algorithm from Salvucci and Goldberg [30]]. For
each remaining frame i, the rendered images Iig’[ and I¥" (in gaze
space, identified by the index ¢) and associated pupil positions
pf and p! are extracted. Then, saliency maps S f’[ and S f’r are
computed from the rendered images If’[ and I¥", respectively.
We use the boolean map saliency detection method by Zhang and
Sclaroff [31]], which shows good accuracy in the MIT saliency
detection benchmark [32, 33/ 34]]. For brevity, from here on, the
¢ and r will be omitted whenever operations are applied equally
to the left and right eye.

Computing saliency images is expensive and therefore the
rendered content is downsampled before saliency detection. Fur-
thermore, our implementation crops the images to a region of
interest that roughly matches the center area of the view covered
by our (original) calibration markers, as most of the time, users
are looking at the center region in VR content [35]]. Figure [
shows the central image regions and the corresponding saliency
maps in the two left-most columns.

We interpret the saliency images as instantaneous probabil-
ities, carrying information about the location a user might be
looking at. However, the gaze position cannot be reliably esti-
mated from a single frame. Therefore, SalientGaze combines
several saliency images over multiple frames. Specifically, we
create a map A? , where each pixel represents a drift vector and
their values indicate their corresponding likelihood at frame i.

The map Af’ is constructed through the following steps. We
transform the saliency image S f from the gaze/screen space into
the pupil space (7), yielding S f , by fetching for each pixel p
in §¥ the corresponding value from S¢. Specifically, S¥(p) =
Sf (G(p) (Figure second and third column). As can be seen
from the formula, although we hereby map § f into pupil space,
we do not actually have to invert the function G to construct S lp .

Next, we translate S/ such that the current pupil locations are
centered (Figure 4| last two columns), resulting in the map S l.d ,
whose domain we refer to as drift-vector space. For example, if
no drifts have occurred and an observer is looking at a salient
object, the salient area of that object would be centered in S f’ .
If drifts have occurred, this salient area would be offset and its
location would then indicate the drift vector.

Af.’ accumulates the information over several frames:

A=K Vs
,ZO ’ 3)
=59+ A7 .

The parameter A € (0, 1] controls how much history is kept: a
smaller value causes old data to affect the current result less, a
higher value will keep historic data longer. Figure[5]shows an
example of how Af’ changes over time.

The location of the maximum in A;’ gives the current instanta-
neous estimate of d denoted as d;. We filter the instantaneous
estimates to handle high-frequency transients to yield the final
estimated drift d;:

Q.l

d; -

m y(|ldi = dia]). )

a,' = (_i,»_ 1+
Figure [6 shows both the instantaneous estimates and the
smoothed estimate over time. The main purpose of Equation 4]
is to limit the maximum change of our estimate. This is con-
trolled by the function y (x) = § e /2%, The Gaussian shape
acts as a low-pass filter: small changes are unaffected by the
filter, whereas changes of larger magnitudes are increasingly
suppressed. In particular, § determines the maximum amount
of change in a single step. The parameters A, o, and ¢ were
determined empirically, and are in practice set to 0.992, 0.2 and
0.003, respectively. We present detailed information on deter-
mining the empirical parameters in the supplementary material,
which proved robust in our use cases.

3.3. Improving 2D drift vector estimation with stereo

In stereo rendering, images are produced for both the left
and the right eye. So far, SalientGaze produces an independent
estimate for each eye. The estimation can be improved with the
assumption that an observer is generally looking at the same
object with both eyes.

It is possible to take advantage of this stereo-consistency
in multiple different stages of SalientGaze. Specifically, we
explored pre-filtering the saliency images Sf’€ and S before
accumulation as well as filtering the accumulated maps Al’.’ £
and AP before giving an instantaneous estimate. Based on our
experiments, we settled on the latter.

Both choices rely on reprojecting the left eye’s map to the
right eye and vice-versa [36, 37]]. This is possible since depth
information of our rendered images is retained. Conceptually,
the 3D world position for each pixel in gaze (screen) space of
one eye is constructed using the inverse of the eye’s camera
and projection matrices. Then the world positions are projected
to the other eye’s gaze space using its transformation matrices.
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Fig. 4: Saliency map processing pipeline. Processing starts with cutouts from rendered images If (left column) from filtered frames. Next, the corresponding saliency
maps Sf (second column from left) are computed. The saliency images are then transformed into pupil space, giving Sf . The third column shows § f’ overlaid onto
an image of the eye recorded using the near-eye cameras in the HMD. Finally, the maps are translated such that the detected pupil position (red dots) is centered
(rightmost column). This gives us a map S :.1 in drift-vector space, where each pixel carries information about the probability for the corresponding drift vector d. Note
that this figure only shows three examples from a single eye - the same process is applied to both eyes independently.

Practically, the transformations can be concatenated into a single
matrix for each direction (left to right, right to left). Some
reprojected samples will not be visible to the other eye, which
implies that the corresponding values should be set to zero. By
comparing the depth of the reprojected pixel to the value already
in the depth buffer of the target eye, these occlusion cases can
be detected.

Once reprojected, we combine the information by multiplying
the reprojected map with the original map. For example, for the
left eye, we produce a reprojected map A%‘“" by reprojecting
A%’ from the right drift vector space to the left gaze space. We
then multiply it pixel-wise with the left eye’s map A% to produce
a new combined map C4* in gaze space

8l _ pgler &t
CH =AY 0 Al

and map it back to drift-vector space (via pupil space), yielding
C4!. The procedure is repeated for the right eye to produce the
corresponding C¢". The only change to the previously presented
version of SalientGaze is that the instantaneous estimates d;
are now derived from the C;M and Cfl’rinstead of A% and A?’r.
Figure[7]illustrates the process and shows maps from the various
steps.

4. Experimental results and analysis

We illustrate the effectiveness of SalientGaze on an HTC Vive
Pro with a binocular eye-tracking system by PupilLabs [21]],

which consists of two infrared near-eye cameras, capturing im-
ages at a rate of 120 Hz and a resolution of 320 x 240. We use
the software supplied with the eye-tracking system to extract
the pupil positions. We render 3D scenes at 2036 x 2260 pixels
per eye, as recommended for the HTC Vive Pro (screen resolu-
tion is 1440 x 1600 per eye). The rendering is implemented in
OpenGL, and uses an NVIDIA GTX 1080 GPU (with a Intel
Core i7 4820K CPU with 24GB of RAM). The rendering main-
tains ~90Hz in the simpler 3D environments (e.g., used for the
game-like task, see Figure, and at ~53Hz in the more complex
scenes. In the latter, we benefit from SteamVR’s motion smooth-
ing mechanism. Our implementation processes VR content at
20Hz, that is, it only considers a subset of the rendered frames.

The saliency detection is applied to a downsampled image
roughly one third of the original size (factor of 0.3). Only the
central 288 x 299 pixel region of interest is used. For the ac-
cumulation map A?, we use a resolution of 960 x 720 (3x the
eye-tracking device’s camera resolution).

4.1. Experimental setup
We design two experiments in the user study:

o In the first experiment, we test SalientGaze’s performance
with regard to an adjustment of the HMD by the user. We
refer to this as the adjustment experiment.

¢ In the second experiment, we let the participants perform
the calibration and then save the calibration data. We then
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Fig. 5: The accumulation map, A;.i, shown over time. The index i is the index

of the filtered frame (filtered frames occur roughly at a rate of two per second).
The maximum position, argmaxy A;.i(d), indicates the instantaneous estimate of

the drift vector d. In this example, the map A;i stabilizes over time and results in
relatively stable instantaneous estimates.

ask the users to remove and subsequently reseat the headset.
We refer to this as the reseating experiment. Its aim is to
test whether initial calibrations can be avoided after a short
break or even when beginning another session.

Both experiments are performed in the context of two tasks
that model common virtual-reality scenarios:

e The first task consists of a small shooting game, where
users have to aim at and shoot small robots/drones in a
3D environment as shown in Figure §a). The game con-
sists of several two-minute rounds that are individually
scored (scores are continuously visible to users). Users get
a positive score for shooting the round robots (Surveillance
Drone and K07 Drone) and a negative score for hitting the
rectangular Sci-Fi Camera Drone. The number of robots
increases with time. While mimicking some popular VR
games, the setup is aimed at testing a configuration with
few very salient objects that are moving in the scene. This
is common in games (e.g., Beat Saber [38] or Space Pirate
Trainer [39]) and in some training scenarios.

e The second task consists of two static (but relatively large)
3D scenes, shown in Figure (b)), that users are asked to
explore. This test case aims to approximate scenarios such
as architectural previewing or visiting a virtual museum.
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Fig. 6: Example time series of a drift estimation experiment, showing the drift
estimates over time. The x- and y-axes of the drifts are shown separately (top
and bottom plots, respectively). Green points correspond to the instantaneous
estimates based on the accumulation map A;i. Early on, the instantaneous
estimates are very noisy. These are filtered to produce the smoothed drift
estimate d, which is shown as a red line. The filtering is clearly observable, and
ensures that there is no jump in the returned estimate. The dark gray regions
correspond to the periodic accuracy measurements where the ground truth drift
is measured (see Sectioanor full details of the experiment setup).

Eight people participate in each experiment. The participants
did not wear glasses during the experiments, since these affected
the accuracy of pupil detection and we therefore restricted the
experiments to participants that could experience VR normally
without glasses.

In the first task, we explained the objective of the game and
asked the participants to aim for a high score. In the second task,
we asked them to explore the scenes and try to memorize some
of their distinct features. The game task always preceded the
exploration task. Before starting with either task, a short trial
run ensured that the participants were comfortable and familiar
with the objectives.

Figure Q] illustrates the process of the first experiment. Users
first perform an initial calibration (~20 seconds). The calibration
markers are immediately shown again, to give an estimate on
the accuracy of the initial calibration process. Then, after 60
seconds of VR content, the accuracy of our drift estimation is
similarly measured by displaying calibration markers again and
comparing the gaze estimates to our results. These ~80 seconds
sequences (VR content, followed by an accuracy measurement)
are repeated a number of times (Table [T). Note that our drift
estimation process is paused during the accuracy measurements
and does not use data from them.

In the adjustment experiment, at a random time during one of
the sequences during the 60 seconds of VR content, we prompt
the user to adjust the headset, and record this moment in time.
Users were asked to re-adjust the headset to a comfortable posi-
tion to mimic real-world behaviour. The random time such that
we record at least three accuracy measurements before and after
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original accumulation map (A;M).

Table 1: Overview of the user study experiments.

Adjustment Experiment Reseating Experiment
Game Exploration Game Exploration
Task Task Task Task
S Holodeck San Miguel Holodeck Bi
cenes w. robots & Bistro w. robots 1stro
Recorded
sequences > 10 >10 4 4

the adjustment.

Each task lasts for at least ten sequences (when adjustments
took place late (eighth sequence), an eleventh sequence was
recorded to ensure that the sessions included at least three mea-
surements after the adjustment). The exploration task switches
scenes from the San Miguel scene to the Bistro scene after five
sequences.

In the reseating experiment, participants perform the initial
calibration (which is saved) and then immediately remove the
headset. Participants are then asked to put on the headset again,
at which point we load the saved calibration data and perform an
accuracy test immediately. Following, we record four sequences
as described for the first experiment. The second experiment
only uses the Bistro scene in the exploration task.

Our user study was approved by the ethics assessment board
of our institution, which follows the Declaration of Helsinki.
Experiments were aborted if participants felt any discomfort
(e.g., motion sickness). The recorded data is the basis of a
two-fold analysis of our approach. We demonstrate that the
proposed 2D drift-vector model can produce good correction
results (Section.2)) and we show that our on-the-fly estimation
method can estimate high-quality 2D drift vectors (Section [43)) .

4.2. Analysis of the 2D drift vector model

Here, we verify our assumption that drift vectors can provide
sufficient correction. We first establish an error baseline and
perform an initial calibration immediately followed by another

calibration step. By comparing the results of these two calibra-
tions, we can estimate a base inaccuracy. Besides the average
error E,,,, which is the average 2D distance between the esti-
mated gaze positions and the corresponding marker, we also
report E,,,, the maximum 2D distance. For convenience, the
distances are expressed in angles using the total field of view
(100° x 110°). Figure a) shows the results of this initial test
(due to the relatively short duration of these tests, we were able
to collect data from 20 participants in total).

We then show the gaze estimation errors after a shift has
occurred in Figure[I0[b) and evaluate the accuracy of a gaze esti-
mation involving an error-minimizing drift d in Figurec). For
these two figures, we use all calibration moments during the user
study. The error-minimizing drift vector d for this verification is
obtained using a brute-force search minimizing Equation 2} The
calibration accuracy after a shift decreases significantly and the
average error is around 10 degrees. However, the gaze estimation
error can be corrected effectively by the error-minimizing drift
vector. This ideal drift error correction shows comparable quality
to the baseline; the worst case error using the error-minimizing
drift vector is around 6°, and the average error is around 1.4°.

Figure[TT] (top row) shows how the gaze estimation error after
a shift and our ideal correction error change with drift magnitude.
As expected, average and worst case errors are relatively constant
with the error-minimizing correction, regardless of drift size.
In comparison, the uncorrected gaze estimates show a linear
relationship between the average gaze estimation error and drift
size. This can be understood intuitively: without correction, the
error is caused mainly by the drifts. The maximum error behaves
worse than the average. We attribute this to the calibration
method and its reliance on polynomial functions. The mapping
becomes rapidly worse outside of the space spanned by the
calibration points (as can be seen in Figure[T), so any outliers
are amplified strongly.

The rightmost pair of the images in the bottom row of Fig-
ure[TT]illustrates another potential source of errors. In general, a
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Fig. 8: (a) The game task. Participants are tasked with aiming at and shooting moving robotic drones. During the game, the users can see their scores in the cyan
middle rectangle. The drones are randomly picked from three possible models (bottom row) and are tinted with a random color. (b) The exploration task. The
exploration task takes place in two scenes: in the San Miguel 2.0 scene (top two images) and in the Amazon Lumberyard Bistro scene (middle two images). Users are
free to explore both scenes, and move either physically or by using the controllers (either via teleporting to selected points or by using a button to move around as
shown in the bottom images). The navigation cubes for position selection are only shown when users indicate that they want to move to a new location by pressing a
button on the controller (this is a simplified version of the commonly used point and teleport locomotion technique [28]). The navigation cubes are shown 1.34s on
average and frames with cubes account for ~20% of the total frames selected for processing. The Holodeck scene (game task) and the San Miguel and Bistro scenes
(exploration task) are from the Computer Graphics Archive 4| [29]. Drone models (left to right) are: |Sci-Fi Camera Drone & | by San Ozbulbul, |Surveillance Drone &
by Tatiana Kunitsyna, and KO7 Drone ¢ |by KBM7 (the electronic version contains links to the model sources). Rendered models differ slightly from the originals due
to exporting/importing limitations. Models are licensed under/CC BY @3 |

I Initial Calibration MM Accuracy Measurement VR Experience Game Task Exploration Task Exploration Task

(b) User study in progress

(a) Experiment overview

Fig. 9: (a) Experiments start with a calibration step, which is immediately repeated to estimate the accuracy of the calibration. Accuracy measurements are repeated
periodically during each experiment. (b) Between the measurements (where users only see the calibration markers), users perform activities related to one of the two
tasks (game or exploration). Besides interaction via the HTC Vive Controllers, users can walk around physically (within limits of the room, which is approximately
2x 1.5m?).

smaller eye image tends to result in larger errors, since the accu-
racy of the estimated pupil position decreases. In the rightmost
pair of images, a large drift that places the pupil of the eye at
the very edge of the eye-tracker image can be observed. In such
cases, and especially at grazing angles, the pupil position may
not be reported accurately.

Overall, these results show that a correction via a 2D drift
vector performs well if the vector is correctly estimated.

4.3. Analysis of the drift vector estimation

We estimate the 2D drift vectors on-the-fly from the rendered
images, as described in Section[3.2]and saliency estimations are
accumulated over time. From this accumulation, instantaneous
estimates are extracted and subsequently filtered to derive a
smoothed final estimate. Figure[T2]displays complete timelines

from two of our experiments, where we include the instantaneous
estimates d, (green circles) and the smoothed estimate d; (orange
line). The error-minimizing drifts, which we can derive from our
accuracy measurements, are included as well (green squares);
the time periods when accuracy measurements take place are
shown in a darker gray, during which our on-the-fly estimate is
paused.

The first example (Figure left) is from an adjustment
experiment. The adjustment happens at around 400 seconds
into the experiment (marked with a solid purple rectangle). It
includes a brief period with noisy instantaneous estimates. These
are filtered and do not affect the drift estimate significantly.
Afterwards our drift vector estimate adjusts relatively quickly.
We can see that the new estimated drift vector matches the drift
from the next accuracy measurement quite well. The second
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Fig. 10: Gaze estimation accuracy comparison. The left two scatter diagrams
visualize the recorded gaze positions for each of the calibration markers (red
points) shown during accuracy tests. The right two histograms show the dis-
tributions of both the average error and the maximum error (z and o denote
average errors and standard deviation thereof). (a): The base accuracy, found
by comparing the initial calibration with the results of an immediate accuracy
measurement. (b): The accuracy without correction after a shift appears. (c):
The accuracy achieved using the error-minimizing drift vector d to correct the
inaccurate results of (b).

example (Figure[I2} right) shows a reseating experiment. Here,
it takes about one minute before SalientGaze provides a good
estimate of the drift vector. The initially noisy instantaneous
estimates are aggressively filtered. This delays the convergence
somewhat, but increases robustness.

Figure [[3|summarizes the results from all experiments using
SalientGaze with stereo: the top row shows the accuracy at the
three accuracy measurements preceding the manual adjustment
of the headset in the experiment. The middle row shows the
three measurements following it. Note that some displacements
are quite severe. In one case, one participant’s eye data in the
game task is not used in Figure [I3(b) because the eye moved
out of the view of the eye-tracking camera. The bottom row
plots the accuracy of the first four measurements in the reseating
experiment. The corresponding time spans in the examples in
Figure[I2) are marked with same-colored bars drawn at the top
of the various plots. Left plots are for our game tasks, and the
right columns for the exploration tasks.

Before the adjustment, we observe very few large drifts in
our experiments. Consequently, the errors in the uncorrected
case and with our method remain low. After the adjustment,
SalientGaze generally provides gaze estimates with much lower
errors. In one of the cases (Figure[I3] middle row, right column,

dark blue), the participant’s manual adjustment was very close to
the following accuracy measurement. In this case, SalientGaze
was unable to converge to a new value in time, and instead
recovers in time for the next measurement. The two outliers
(two eyes of one participant) in the bottom row (right column,
green circles) stem similarly from an unexpected slippage of the
headset just before the accuracy test. Figure [T4]explores this in
more detail.

The timeline of Figure[T4]begins at ¢ = 9s after the user moves
the headset; this is about one minute before the first accuracy
test shown in Figure T3] By manually tracking the corners of
the eyes, we can see that the headset shifts at around ¢ = 55s. At
this point, SalientGaze attempts to converge towards this drift.
However, the headset shifts back already at about ¢ = 75s, just a
few seconds before the accuracy test is performed. This gives
SalientGaze insufficient input to converge towards the new drift;
SalientGaze does complete convergence only shortly after the
accuracy test.

In consequence, we also added Figure [T5] which takes this
aspect into account. For all the measurements in Figure[T3] we
also compare to the drift estimation 30s after the calibration step.
Implicitly, if there is a shift close to the calibration, we assume it
will either happen before or after the calibration in a 30s interval,
but not in both. As we can see, all the outliers disappear, which
confirms the hypothesis that SalientGaze converges to the correct
estimate. We therefore conclude that the outliers are actually
introduced mostly by the timing of measuring the ground-truth
drift vectors.

We summarize the average accuracies for all experiments
(measurements in Figure[T3]and measurements in Figure[I3) in
Table[2] SalientGaze performs overall better in the game task,
with the very clearly salient objects. The exploration task takes
place in scenes with a more uniform salience, which results in
a higher standard deviation in Table [2] due to the absence of
clear salient objects, which leads to a higher uncertainty. In
the time before any adjustments, the accuracy with SalientGaze
is slightly better compared to the uncorrected accuracy, which
illustrates that it does not diverge. After an adjustment, the
difference to the uncorrected case becomes obvious. The method
can catch minute drifts and shifts, and compensate for these.
SalientGaze is able to return to similar accuracy as before the
adjustment, while the uncorrected gaze estimates show large
errors. Reseating shows a similar pattern, where SalientGaze
can recover to accuracies similar to the base case.

Exploiting stereo consistency improves results slightly ver-
sus providing just independent estimates, in particular in the
exploration task. This is especially visible in the total sum of all
errors, SE in Table 2] over the full data.

An advantage of SalientGaze is that performing gaze estimates
is efficient. For the conversion from pupil to gaze space, we only
need to find the pupil positions in the eye images, translate them
by the current drift vector estimate, and then apply the mapping
G. Regarding processing, only about 2 frames per second are
evaluated for saliency by omitting frames based on the test for
pupil movements. The latter only takes 1.5us on average. The
implementation provided by the authors of the saliency detection
method [31] runs on the CPU, and takes around 45ms on average
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also becomes problematic.

Table 2: Average accuracies from our experiments. Uncorr.: the initial calibration accuracy; Ours (M): our correction only considers mono saliency; Ours (S):
our correction with stereo information considered; adj.: adjustment; reseat.: reseating. The first measurement after adjustment is not taken when performing the
statistic on the accuracy of our method because the adjustment is very close to the accuracy measurement. For a fair comparison during the accuracy statistic, the
first measurement in the data before adjustments is also removed, which means that the measurements in the dashed rectangles of Figure@ and Figure@are not
considered. Avg. is the average, Std. is the standard deviation and SE is the sum of errors.

(a) Statistics of the measurements in Figure[T3]

Game Before adj. After adj. After reseat. Explor. Before adj. After adj. After reseat.
Task | Avg.  Std. ‘ Avg. Std. ‘ Avg.  Std. SE Task Avg.  Std. ‘ Avg.  Std. ‘ Avg.  Std. ‘ SE
Uncorr. | 390 247 | 13.71 11.56 | 1224 8.13 | 1319.80 Uncorr. | 484 271 | 13.63 9.86 | 11.64 555 | 133599
Ours (M) | 3.25 1.38 3.04 1.21 321 1.20 | 400.74 Ours (M) | 3.86 2.63 410 200 | 463 3.69 | 551.04
Ours (S) | 2.93 1.05 3.03 1.19 3.18 1.33 388.46 Ours (S) | 3.87 293 386  2.04 399 271 502.87

(b) Statistics of the measurements in Figure[T3]

Game Before adj. After adj. After reseat. Explor. Before adj. After adj. After reseat.
Task Avg.  Std. ‘ Avg.  Std. ‘ Avg.  Std. SE Task ‘ Avg.  Std. ‘ Avg.  Std. ‘ Avg.  Std. ‘ SE
Ours M) | 3.00 130 | 268 099 | 295 1.00 | 36535 Ours M) | 323 220 | 345 210 | 345 211 | 43422
Ours (S) ‘ 270 1.05 ‘ 249  1.05 ‘ 283  1.10 ‘ 34222 Ours (S) ‘ 3.06 1.98 ‘ 3.18 1.85 ‘ 299  1.65 ‘ 390.97

for each of the two 288 x 299 pixel images. The remaining parts
of our pipeline execute on the GPU, but are not fully optimized
for performance. Nevertheless, the total computation time from
saliency to an updated drift vector takes on average only 2.2ms
in total for both eyes without stereo and 4.2ms with stereo.

The average accuracy of our gaze correction is around 3°
for the game scenario and 4° for the exploration scenario. The
achieved accuracy is comparable to that of related contemporary
methods. To place such a performance in context, the authors
of the machine learning-based NVGaze [9] report an average
accuracy of 3.5°. The SynthesEye-base approach [16]] reports
a 7.9° accuracy on average, with some worst-case error above
10°. Geometric models perform similarly, e.g., the work by Sten-
gel et al. [20]] shows an accuracy of 0.5° to 3.5° but it requires a
precise model of the HMD, making it device dependent. While a
direct comparison is difficult, SalientGaze avoids the mentioned
pitfalls, as well as the lengthy training processes of machine
learning-based approaches, while achieving comparable results.

SalientGaze relies heavily on saliency detection. We briefly

investigated performance with other top methods identified by
the MIT saliency benchmark [32]. Using the deep-learning
based Saliency Attentive Model (SAM-ResNet) [40] improves
accuracy slightly: total errors (SE in Table [2)) are reduced by
about 4.6% in the game task and change less than 1% in the
exploration task. For development, we preferred the boolean
map saliency method. Using a more traditional vision-based
algorithm avoided many dependencies on large software pack-
ages used for learning-based methods. Nevertheless, users of
SalientGaze can choose any saliency detection method according
to their needs and preferences. We also experimented with nor-
malization of the saliency map. In essence, normalization would
remap values of each §; such that the range is [0, 1] using the
minimum and maximum values found in that frame. Total errors
increase slightly in the exploration task (~2% for the Boolean
Map Saliency and ~9% for the Saliency Attentive Model) and
change less than 1% in the game task across the board. We thus
recommend working with non-normalized saliency maps, that
is, with the maps as returned by the corresponding methods.
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Fig. 12: Two drift estimation examples from our two experiments. In the adjustment experiment, since users adjust the headset at different time, we choose three
measurements before the adjustment (red filled ractangles) and three measurements after the adjustment (yellow filled rectangles) to compare how our algorithm
behaves among different participants. In the headset reseating experiment, four measurements (green filled rectangles) are chosen, one minute after users reseat the
headset. The colored rectangles indicate the measurements from this experiment that contribute to the summarized results shown in Figure@(see matching color
bars).
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Fig. 14: Example of an unexpected shift that occurs close to one of our accuracy measurements. This causes a large error, as SalientGaze has not converged to a new
drift vector at the time of the accuracy measurement. A first shift of the HMD occurs around ¢ = 55s. SalientGaze starts converging towards this shift. However, a
second shift occurs at ¢ = 75s, approximately ten seconds before the accuracy test. SalientGaze does not react quickly enough to reflect this in time for the accuracy

test (but converges afterwards).

5. Conclusions and future work

In real-life conditions, a VR headset can shift and move rela-
tive to the user’s head, both naturally and through active interven-
tion by the user. In our study, we use artificial shifts to simulate
naturally occurring ones. The latter are caused by rapid head
movements, but also by, e.g., stepping on cables attached to the
HMD. Natural shifts are often smaller in nature than our artificial
ones but still benefit strongly from a correction. For gaze estima-

tion with near-eye cameras attached to the headset, shifts cause
problems for methods relying on calibration. First, we showed
that a wide spectrum of shifts can accurately be modelled with
a simple 2D drift vector in pupil space. Next, we proposed a
simple on-the-fly method to estimate such 2D drift vectors from
saliency in the shown VR content. We demonstrated SalientGaze
in a realistic setting with two complex tasks and under relatively
extreme conditions, i.e., when users adjust or even completely
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Fig. 15: Use the drift estimation 30 seconds later to correct all the measurements in Figureif the drift vector 30s later shows lower error than the current drift vector.
We can see that all the outliers disappear. This shows that SalientGaze does give a correct drift estimation later on for measurements that show large error in Figure@

remove and redo the VR headset. SalientGaze reduces errors
significantly compared to an uncorrected situation.

A drawback is the heavy reliance on saliency information. To
test our algorithm in a difficult scenario, the 3D scene in our
exploration task lacks very clear salient areas, but it results in
less information to be used by our estimator. One interesting ap-
proach for future work would be artificial intervention, injecting
salient objects/content at key times, potentially involving subtle
cues [41]. Also, if one can identify salient objects ahead of time,
saliency computations might be avoided altogether. This would
be possible in, for example, our game tasks, where we know that
the target robots are the key salient objects, or when the user is
interacting with an interface similar to the method proposed by
Sidenmark [27].

SalientGaze is capable of providing results with accuracies
around 3° in scenarios with clear salient objects and 4° on av-
erage in others. This is already sufficient for many practical
applications such as foveated rendering, which is considered a
key technology for lowering rendering costs in the future.
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