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Figure 1: Our method needs only 2.2ms for single scattering using a 10242 shadow map and a 1920 × 1080 full-HD screen resolution. It
has basically a constant cost per screen pixel, achieving up to a 20× speedup and 6× less memory consumption for similar quality compared
to state-of-the-art methods that struggle with the complexity and details of the scene [Chen et al. 2011]. (Total render time is around 33 ms
— most time is spent on ambient occlusion, alpha matting, and disabled backface culling to avoid geometry errors in the scene).

Abstract

Volumetric light scattering is a complex phenomenon that is diffi-
cult to simulate in real time as light can be scattered towards the
camera from everywhere in space. By assuming a single-scattering
model, we can transform the usually-employed ray-marching into
an efficient ray-independent texture filtering process. Our algo-
rithm builds upon a rectified shadow map as input and we propose
an efficient rectification scheme, which could be used by other ap-
proaches as well. The resulting scattering method is very fast and
almost independent of the screen resolution, but it still produces
near-reference results. These properties make it a good candidate
for performance-critical applications, such as games.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: scattering, participating media, shadow test

1 Introduction

Participating media have an important impact on the appearance
of a scene. The resulting effects can add realism and spatial cues
to better convey the scene’s layout, or serve artistic purposes. A
particularly strong visual effect are crepuscular rays (or so-called
god rays), which arise from the interaction of light rays with thin
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participating media. They are often visually pleasing, but render-
ing them is usually costly. In contrast to surface-light interaction,
which is very local, participating media are everywhere, which
makes computations challenging [Max 1986]. Recently, several
real-time methods have been proposed to approximate light inter-
action in homogeneous participating media via a single scattering
model. Although very efficient when compared to an accurate eval-
uation, they are still relatively computationally involved when em-
ployed in high-performance applications.

In this paper, we present an algorithm with lower complexity. While
previous methods perform a ray-marching-like procedure per pixel
that can become costly and is scene-dependent in complexity and
viewpoint, our solution uses a constant amount of operations per
pixel. Hereby, we usually compute high quality scattering much
faster (Fig. 1) and measured a speed up of over a magnitude com-
pared to competing solutions [Chen et al. 2011].

Our algorithm is inspired by recent developments in shadow algo-
rithms. Our idea is to transform a standard shadow map into a spe-
cial basis representation that, combined with a simplified scattering
model, allows us to perform prefiltering. To evaluate a view ray,
a single dot product is then sufficient. Additionally, we present
a linear rectification that aligns epipolar lines, but avoids a pixel-
shader scattering used by previous reprojection schemes [Chen
et al. 2011]. Precisely, our contributions are:
• An algorithmic efficient and GPU suited single-scattering

method using prefiltering;
• A matrix transform for single-step shadow-map rectification;
• Optimization strategies for an efficient GPU execution.

We first discuss related work, before describing the background
(Sec. 3), our basic method (Sec. 4), implementation details (Sec. 5)
and further extensions (Sec. 6). We then present results (Sec. 7) and
conclude the paper (Sec. 8).

2 Related Work

Real-time computer graphics often assumes a vacuum and ignores
participating media. Hereby, light interaction is simplified and



only occurs on surfaces. Many rendering techniques, such as shad-
ows [Eisemann et al. 2011], often rely on this property, e.g., shadow
maps [Williams 1978] only encode the first surface visible from the
light source to determine if a surface is illuminated via a simple
lookup. Participating media lead to complex phenomena described
by the radiative transport equation [Chandrasekar 1960]. Details
and formal context are given in Sec. 3. When simulating multi-
ple scattering, even recent acceleration schemes are far from real
time [Novák et al. 2012], with the exception of diffusion models
that support only coarse or no object visibility (e.g., [Billeter et al.
2012]).

Real-time solutions usually rely on single scattering (light is scat-
tered once in the medium towards the camera along the view ray).
They are often inspired by image-based strategies, such as deep
shadow maps [Lokovic and Veach 2000]. Here, a 1D attenuation
function is derived per shadow-map texel, which reduces the light-
ray evaluation cost. Our approach renders the light and view-ray
evaluation efficient.

Interesting phenomena still occur under the assumption of homo-
geneous media, such as god rays, which were first simulated by
Max [1986]. Although analytical models exist when neglecting
visibility [Pegoraro and Parker 2009], stochastic solutions, even
when involving efficient ray caches and lookup strategies, remain
costly [Sun et al. 2010]. In real-time approaches, the contributions
along the view ray can be accumulated by ray marching with an
additional shadow test using a simple depth map [Toth and Umen-
hofer 2009], or by blending parallel planes [Dobashi et al. 2002].
A more efficient traversal was proposed via the rectification of the
shadow map (view rays are parallel and have constant depth) [Baran
et al. 2010]. This rectification, coupled with a min-max accelera-
tion structure allowed for the reduction of the number of marching
steps and gave rise to the algorithm, which is currently considered
the real-time reference [Chen et al. 2011].

It is possible to reduce the number of steps further by deriving a
marching interval via shadow volumes [Wyman and Ramsey 2008],
but such an approach is less useful for complex scenes. A more
successful shadow-volume application is their construction from a
shadow map instead of the geometry. When rendering the shadow-
volume faces with a special shader, an accumulation in the frame-
buffer results in a convincing single-scattering approximation [Bil-
leter et al. 2010]. Nonetheless, the performance depends highly on
the shadow map resolution and the method requires a high fill rate.

Performance-wise, voxelized shadow volumes are interest-
ing [Wyman 2011]. However, quality and speed depend highly on
the chosen voxelization method, which can be costly or is likely
to be error-prone. Storing a required high-resolution grid can also
lead to an extensive memory consumption. Further, the algorithm
factors visibility, which can lead to coarse results and textured light
sources can only be handled via full ray marching.

Image-based approaches also have a potential for high perfor-
mance, but so far, they have been very approximate [Mitchell
2007] or the performance depends strongly on the viewpoint and
scene [Engelhardt and Dachsbacher 2010]. The latter approach
performs an edge-aware filtering process along the epipolar lines
in screen space based on the assumption that significant changes
occur at discontinuities. The performance of almost all solutions
(e.g., [Wyman 2011] already made use of this algorithm) could po-
tentially be reduced. Nevertheless, the assumption can fail and for
detailed scenes, the edge detection can make many samples neces-
sary and might not pay off.

Single scattering methods often have links to shadow algorithms,
as does our approach. Following a recent trend [Annen et al.
2007; Annen et al. 2008; Jansen and Bavoil 2010], we represent

the visibility test via basis functions. Furthermore, we introduce
a new rectification that is compatible with other approaches as
well and comes at no additional cost, similar to warping strategies
for shadow maps [Stamminger and Drettakis 2002; Wimmer et al.
2004; Martin and Tan 2004].

3 Background

In this section, we give an overview of the used scattering model
and the shadow map rectification, which has been widely used in
related work [Baran et al. 2010; Chen et al. 2011; Wyman 2011].
Although we will introduce a different rectification as well, it is
easier to follow the algorithm using this known transformation.

3.1 Scattering Model

The radiative transport equation (RTE) [Chandrasekar 1960] rep-
resents physical scattering via a cross-section model; a hypothetical
area describing the likelihood of light being absorbed, scattered, or
emitted in a specific region of the volume. In its integral form, the
RTE defines how much radiance Li reaches a point in space, e.g.,
the camera x from a certain direction ωi. Assuming no emission, it
consists of the following two terms:

Li(x, ωi) = Tr(x,xs )Ls (xs ,−ωi) +∫ s

0

Tr(x,xt)σt(x)Lscat(xt, ωo) dt. (1)

The first summand describes the amount of radiance that is reflected
towards x from the first encountered surface point xs := x − sωi,
where s ∈ R. This radiance is attenuated by the participating
media based on its transmittance: Tr(x,xs ), which describes the
likelihood that a light particle travels through the volume without
hitting a volume particle. The second summand in the RTE is the
in-scattered radiance at each point xt along the view ray from x
to xs and again attenuated by the volume, which depends on the
amount of particles at position xt, defined by the extinction coef-
ficient σt. Assuming single scattering, it can be expressed as the
following sum over all light sources:

Lscat(x, ωo) = ρ f

lights∑
l=1

V (x, l)L̃i(x, l)

where f is the phase function (the volumetric equivalent to BRDFs
for surfaces), which describes how light is scattered in the volume,
and ρ is the albedo coefficient. L̃i(x, l) denotes the incoming ra-
diance from light source l without occlusion and V (x, l) denotes
the visibility between the light source and x. Throughout the paper,
we consider a single light source as light transport is linear and can
be computed per light source by accumulating the results. Further,
we make the following assumptions similar to previous real-time
work; the phase function is constant and the same everywhere, and
the volume homogeneous, i.e., σt, ρ are constant. Hereby, we ob-
tain Tr(xa,xb) = e−||xb−xa||σt , making the first term ofLi(x, ωi)
easy to compute. The real challenge lies in the second term:

ρ f σt

∫ s

0

e−tσt V (xt)L̃i(xt) dt. (2)

3.2 Rectified Shadow Map and Epipolar Geometry

In a rectified shadow map, view rays are parallel to the x-axis and in
turn are parallel to each other (Fig. 2). Consequently, the view rays



x

y

z

Light direction

epipolar line
epipolar slice

Recti�cation

view 
ray

shadow 
map row

Figure 2: Rectification makes camera view rays parallel to each
other. View rays in the same epipolar slice map to the same y.
Finally, the light direction is aligned with the z axis.

are parameterized by two parameters, y to indicate the shadow map
row and its depth z, which is the angle the ray direction spans with
the direction of the light source and the camera. View rays go from
left to right and have constant y, z, such that they can be mapped to
a range [0; 1]. All view rays sharing the same shadow-map row y lie
in a so-called epipolar slice. In turn, the slice projects on an epipolar
line in the camera view. The advantage of such a rectification is
that one can accelerate the ray marching along view rays, e.g., by a
1D min-max mipmap [Chen et al. 2011]. The construction of this
rectified shadow map is usually done in a pixel shader (details can
be found in [Chen et al. 2011]). As blockers between the light and
the camera frustum can still produce shadows, they are transferred
from the original shadow map and their depth value in the rectified
map is clamped to the range [0; 1]. In Sec. 6, we will propose an
alternative rectification approach.

4 Method

The main idea is to approximate the visibility function for an epipo-
lar slice via a set of basis functions that are independent of the cho-
sen ray. This will enable us to change the formulation of Eq. 2 and
extract all ray-related terms from the integral. The remaining ex-
pression is an integration of the basis functions, which is performed
for entire epipolar slices. Because the visibility function is derived
from the discrete shadow map, the integration becomes a prefix
summation. The scattering result of a ray can then be obtained
via a dot product between the easy-to-compute ray coefficients and
the integrated basis functions. Thus, the algorithm has three steps:
computing the rectified shadow map, changing basis and computing
prefix sums, and evaluating the ray-dependent in-scattering. In the
following sections, we present the core of our method, explaining
the basis representation and our prefiltering step.

4.1 Scattering

Our goal is to solve Eq. 2 for a given view ray r := (x, ωi). In the
rectified shadow map, the view ray r has constant y (epipolar slice)
and constant z (depth in shadow map). Due to the discretization of
the shadow map, the binary function V becomes piecewise constant
and can be defined by functions Vzi that depend on the depth values
zi at texels i stored in the shadow map. Along the ray r, each texel
corresponds to a distance ∆ in space. Thus, ∆ corresponds to the
world step size in a ray-marching process. It should be noted that
∆ is different for different rays, even in the same epipolar slice. For
the moment, we will ignore this issue, Eq. 2 then becomes:

Li(r) = ρ f σt

s∑
i=1

Vzi

∫ i∆

(i−1)∆

e−tσt L̃i(xt) dt,

s denotes the texel index of the first visible surface xs , hit by ray r.

Further, to simplify the explanation, we will assume that the light
source is directional, i.e., L̃i(x) = L̃i(x

′) ∀x,x′. Point lights are
discussed in Sec. 6. Our assumption allows us to remove L̃i from
the integral and solve it analytically:

Li(r) = ρ f L̃i

s∑
i=1

Vzi T (i,∆), (3)

where T (i,∆) := e−(i−1)∆σt(1− e−∆σt).

Next, we follow the decomposition by Annen et al. [2007], which
will allow us to cast the scattering into a prefiltering process. First,
we represent each visibility function Vzi by a linear combina-
tion of basis functions Bk,i := Bk(zi), such that Vzi(xt) ≈∑M
k ak,i(xt)Bk,i, with xt being the position along r. Key of the

linearization is that, first, only the coefficients ak,i depend on the
sample points xt of r and, second, they only take the z coordi-
nate of xt as input, which, because of the rectification, is constant
along the entire ray r. Consequently, the coefficients a1 . . . aM are
independent of i and constant for the entire ray r, and we simply
write ak(rz). This independence allows us to swap the order of the
sums:

Li(r) ≈ ρ f L̃i

s∑
i=1

(
M∑
k

ak(rz)Bk,i T (i,∆)

)

= ρ f L̃i

M∑
k

ak(rz)

(
s∑
i=1

Bk,i T (i,∆)

)

In Annen et al.’s approach, the inner sum was completely inde-
pendent of the ray r and an independent prefiltering became pos-
sible. Our situation is different; first, the ray-dependent ∆ is in the
weighting T (i,∆), second, r defines s, the first hit along r and,
thus, we need to find a way to adapt the summation appropriately.
(Please see the Appendix for an example of basis functions and co-
efficient computations.)

Weighting Along the Rays To solve the issue regarding ∆, we
will assume that we can find a good constant for all rays inside the
same epipolar slice. To this extent, we pick a reference ray in the
epipolar slice whose ∆ (world step size corresponding to a shadow
map texel) will be used for all rays. In fact, the ∆ of another ray
in the same slice deviates by a scale factor c. Hence, we can find
an optimal reference ray, for which c is close to one for all rays. It
can be shown that the actual factor c is given by the cosine of the
angle in epipolar space between the reference and any other view
ray. Hence, taking the ray defined by the bisectrix between the two
limit view rays in an epipolar slice leads to an optimal ∆opt.

Adapting the Summation To overcome the second prob-
lem of defining s, we compute and store for each basis k∑s
i=1 Bk,i T (i,∆opt) for all possible s. Possible s are directly

given by the number of columns of the shadow map. Thus, the
resulting filtered-basis textures share the resolution of the shadow
map, rows still correspond to epipolar slices, but each texel holds
the sum of the first s weighted basis function values. For each k the
values are stored in the channels of the textures (resp. 2D layers),
resulting in a filtered-basis vector at each 2D texel position. The
filtered-basis textures can be computed efficiently by using a prefix-
sum-like solution; in the rectified shadow map, s = 0 and s = smax

map to the left-most and right-most texel of a shadow-map row, re-
spectively. Hence, we perform the sum from left to right for each
row (epipolar slice) and weight each Bk,i using T (i,∆opt).



Figure 3: Left: our method; center: ray-marched in-scattering; The insets show from left to right: our method using unoccluded in-scattering
modulated by average visibility; our method applying our weights based on the media transmittance; ray-marching reference with correct
attenuation. Average visibility gives plausible results, but many significant differences occur. Shadows are missing or are overly dark. The
difference increases with the thickness of the participating media.

Figure 4: Alternatives to Fourier series. Top: variance shadow
maps (left), exponential variance shadow maps (right). Bottom:
our method (left), reference (right). Filterable, efficient statistical
methods approximate V too coarsely. Note, we used factored visi-
bility here, resulting in a different result than in Fig. 8.

It is noteworthy that previous work completely factors out visibil-
ity [Wyman 2011] or uses low-rank approximations [Baran et al.
2010; Chen et al. 2011]. Our T (i,∆opt) weights are a good ap-
proximation with a positive impact on the visual quality (Fig. 3).

Evaluating a Ray Given the filtered-basis textures, the evaluation
of scattering along a ray r reduces to a dot product between two vec-
tors and is a constant-time evaluation. The first vector corresponds
to the coefficient vector (a1, . . . , aM ) that we can compute from r.
For the second, we transform the first hit point xs along r into the
rectified shadow map, and retrieve the filtered-basis vector from the
corresponding texel in the filtered-basis textures.

4.2 Fourier Basis

One important choice regarding the algorithm are the basis func-
tions to use, which can have a strong impact on quality and per-
formance. In practice, we found that a Fourier series [Annen et al.
2007] is the best choice for our purposes (see Appendix). We tried
alternatives, such as exponential functions [Annen et al. 2008; Salvi
2008]. Unfortunately, they fail because the resulting approximation
of V leads to values that exceed one by far when evaluating them off
the surface. While this effect is less problematic for surface shad-
ows, where the function is actually evaluated on the surfaces that
define V , it is a real problem for scattering because the function
is used everywhere in space. Other alternatives include statistical
methods, such as variance shadow maps [Donnelly and Lauritzen

Figure 5: Difficult scene for ringing. Top row: M = 8, M = 16,
M = 32 coefficients (left to right); bottom row: our suppression
for M = 8, M = 16 (left, middle); bottom right: ray-marching
reference. The suppression renders the image a bit darker, but dis-
turbing artifacts are reduced.

2006] and exponential variance shadow maps [Lauritzen and Mc-
Cool 2008] that give a too coarse approximation (Fig. 4).

When using a truncated Fourier series, the typical approximation
artifact is a ringing effect. Annen et al. [2007] propose to apply a
scaling and offsetting to V to reduce ringing. Offsetting is used to
avoid self shadowing at the surface due to the truncation, which is
not problematic in our case. However, light bleeding for fully or
mostly occluded rays and shadowing for mostly visible view rays
can be disturbing. By using 1.04(V − 0.5) + 0.52 instead of the
visibility function V , we basically shift the ringing artifacts beyond
one and below zero. A zero-one clamping needs then to be applied
to obtain the final scattering result. The image becomes slightly
dimmer, but in practice more pleasing as shown in Fig. 5. Please
notice that this is a particularly bad scenario for our method because
the background is uniformly colored, making the ringing most vis-
ible and the window is small, leading to a very difficult case for
the reduction and base representation. The empirically found value
1.04 seems stable and was kept constant for all our test scenes.

5 Implementation

Prefiltering We store the basis functions in a Texture2DArray,
which will be transformed into the filtered-basis texture. Interest-



ingly, the simplest implementation of the prefix sum also turned out
to be the fastest. We implemented a compute shader that executes
one thread per row in the rectified shadow map. Starting on the left
and proceeding to the right, the values are written into each texel of
the filtered-basis texture. Due to the rectification, this texel order
corresponds to a parallel execution over epipolar slices, traversing
along the view rays. Hereby, it is simple to maintain and update the
weights T (i,∆opt). In consequence, only very few registers are
needed and the execution is fast.

We also tested a GPU-optimized prefix sum [Harris et al. 2007]
designed for sums of complete arrays (while we only require the
prefix sum per row and per layer). It makes use of shared mem-
ory and avoids some synchronization by performing work in pre-
defined warp sizes. However, this variant is two times slower than
the simple approach. Probably, remaining synchronization steps
and shared memory create a bottleneck, but this may depend on the
used hardware (for us an NVIDIA Titan card).

An interesting observation is that we have the possibility to tradeoff
work between the prefiltering stage and the final ray evaluation.
Instead of performing the prefix sum for an entire row, we can split
the row uniformly, e.g., into three regions, and compute the sums
independently, hereby reducing the workload. To evaluate a ray r,
we then need several lookups; one from the region that contains the
first visible surface along r, and one more for each filtered-basis
texture region in front of it — with three regions, maximally three
lookups. In practice, three regions led to a speed up of 18%.

A final important observation is that instead of storing a pre-
fix sum of the actual integral, we can store a weighted inte-
gral, i.e., we divide the sum of weighted basis functions by the
sum of weights

∑s
i T (i,∆opt). Mathematically, it is easy to

recover the correct value by multiplying with
∑s
i T (i,∆opt),

which can be determined analytically because
∑s
i T (i,∆opt) =∑s

i

∫ i∆opt

(i−1)∆opt
e−tσtdt =

∫ s∆opt

0
e−tσtdt. To evaluate the scatter-

ing, we thus perform the dot product as before, but then multiply by
the integrated weights up to the first hit point, which are computed
analytically. The numerical advantage is that lower precision values
can be used to store the filtered-basis textures — no improvement
was visible for textures with more than 8bit — leading to a signifi-
cant reduction in memory and an increase in performance. Further,
our ringing reduction is improved. After the dot product the val-
ues are generally higher, but still have to lie between zero and one,
clamping at this moment, makes the result more accurate.

Shadow-map Resolution The shadow map resolution defines
implicitly the number of epipolar slices (y-axis) as well as the num-
ber of integration steps (x-axis). The number of needed epipolar
slices can be computed from the screen resolution, as well as the
configuration of camera and light. Following Baran et al. [2010],
we can derive a minimum number of slices such that the distance
of a pixel center to the closest epipolar slice is within a predefined
bound (e.g., half a pixel).

We use 8× RGBA8 (32 values) for M = 16 coefficients (sine and
cosine coefficients), which proves sufficient in practice. In theory,
compared to the min-max tree of [Chen et al. 2011], we require 2.6
(32bit floats for depth, min-max) / 5.3 (16bit floats) times more
memory. Nevertheless, we can rely on hardware filtering when
accessing the prefiltered basis functions, countering any potential
undersampling artifacts. This possibility allows us to reduce the
resolution drastically (usually by a factor of six). Using filtering
is beneficial along the x-axis, which averages discrete integration
steps, as well as along the y-axis, which blends neighboring epipo-
lar slices. The latter is often desired as it avoids unnaturally sharp
edges without requiring an extensive oversampling. Due to hard-
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Figure 6: Rectification (top left to bottom right): original situation;
bisectrix; light frustum; rectification

ware filtering our method achieves high performance and quality
constantly. Previous work needs higher resolution textures [Chen
et al. 2011] or relies on customized upsampling strategies [Baran
et al. 2010; Wyman 2011].

6 Extensions

In this section, we discuss several extensions to our method; we
introduce a novel linear rectification scheme and explain the use of
textured and spotlight sources.

6.1 Rectification

As a standard rectification method, we use Baran et al.’s [2010] re-
sampling approach. We render a standard shadow map, find suitable
bounds in x, y, z of the rectified light space by analyzing the cam-
era frustum corners and reproject the shadow map into the rectified
light space. Although performance is high (1024 × 1024: 0.1ms,
4096×1536: 0.6ms, 4096×4096: 1.5ms), it is preferable to avoid
resampling in general.

Our linear rectification avoids the reprojection completely by con-
structing a special projection matrix to replace the standard light
view-projection matrix when rendering the shadow map. Points
can be mapped easily into this space via a simple homogeneous
transformation, making lookups very simple as well. To find the
transformation, we construct a frustum with an associated matrix
that maps the scene in such a way that it fulfills the constraints of
our scattering approach, i.e., all view rays in an epipolar slice map
to a row of the shadow map, the depth along a view ray is constant,
rays in this light space go from left to right, and the shadow map
tightly encompasses the camera frustum.

Constructing the Linear Rectification Matrix Fig. 6 gives an
overview of the construction steps for a directional light source.
We first determine the 3D bisectrix of the camera frustum projected
along the light direction (Fig. 6, top-right). The light frustum is



centered on the original camera center. Its up-vector points along
the light direction, its view direction along the bisectrix (hereby,
near and far plane are parallel to the light direction as well). The
frustum’s side and top planes are chosen to encompass the camera’s
near and far plane corners tightly (Fig. 6, bottom-left). Applying the
frustum’s matrix to the scene leads almost to the wanted result, but,
in this light space, the view direction has become the z-axis, and the
light direction the y-axis. Hence, to produce the shadow map for the
light, we need to swizzle the axes to map the z-axis on the y-axis
and vice versa. The final matrix can be used to generate a rectified
shadow map with all needed properties (Fig. 6, bottom-right).

The construction is not possible if any of the view rays is paral-
lel to the light direction (as for all such remapping techniques),
i.e., when looking directly into the light source. It is easy to de-
tect these cases [Stamminger and Drettakis 2002], and we switch
back to a texel-wise reprojection. Additionally, using depth clamp-
ing (NV DEPTH CLAMP) when rendering the shadow map makes
sure that objects shadowing the camera frustum, but lying outside
of it, are rendered in the shadow map as well.

Non-linearity of the Rectification Our frustum-based rectifica-
tion results in a non-linearity along the view rays (x-axis in the
shadow map), similar to the non-linearity of the depth buffer. The
effect increases the more view and light rays are parallel to each
other. Thus, we also return to texel-wise reprojection for close-to-
degenerated cases. However, the increased shadow map resolution
near the observer can be an advantage, as, due to transmittance, the
in-scattered light near the observer receives more precision.

It is possible to reduce the non-linearity similar to split shadow
maps [Zhang et al. 2006]. Here, we split the light view into different
regions (from left to right), which increase in size. If each region is
then rendered into a shadow map of the same resolution, the higher
resolution near the observer is counteracted. Although we imple-
mented this solution, it does not lead to a benefit. Nonetheless, it
could be an interesting avenue for future research.

Weighting Along the Rays Using the rectification has an im-
pact on the weights T (i,∆) that modulate the prefix sum in the
scattering approach (cf. Eq. 3). In our rectification, the traveled
distance along a view ray increases by a constant factor d from one
shadow-map texel to the next. This result stems from the fact that a
perspective transformation, such as our rectification, preserves the
cross ratio of points [Heckbert 1989]. The weight then becomes
T ′(i,∆) = e−∆xσt

∑i
j=1 d

j−1

(1 − e−∆xσtd
i

). To compute d, we
transform the first three texel centers of a shadow-map row into
world space (the depth does not matter, but should be the same for
all three) and compute the cross ratio of the distances. For a given
shadow-map row, the factor d only needs to be determined once
before launching its prefix sum.

6.2 Light Source Extensions

In this short subsection, we give a brief overview of extensions that
can be used to support a larger variety of light sources, although,
we did not implement these solutions.

Textured Sources Integrating textured sources is straightfor-
ward; during the prefix sum, we can weight each texel by the light’s
texture map. In the same way, an angular falloff can be applied. If
the light texture is colored, we store one value for each component,
instead of a single value.
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Figure 7: Computation time and memory consumption of our
method with different parameters. As test scene we used San Miguel
for a screen resolution of 1920× 1080, where the method achieves
near ground truth results with the green highlighted parameters.

Spotlights Via the reprojection-based rectification [Baran et al.
2010], integration can be performed as in Eq. 3. In our rectification,
the scene and camera are transformed additionally via a perspective
transformation that sends the source to infinity. A similar solution
has been employed in [Wimmer et al. 2004].

Omnidirectional sources can be treated as six independent spot-
lights, whose contributions are simply added.

Distance Falloff A challenging task is to integrate a distance
falloff along light rays, which, in contrast to directional sources,
is meaningful for local light sources. This addition is also diffi-
cult for other approaches, and we could follow the suggestion of
[Baran et al. 2010] to represent the falloff as a set of basis func-
tions. Nonetheless, such a solution is a bit cumbersome and we
would need to store all combinations of falloff and shadow basis
functions, leading to an increased memory consumption. Instead,
a better alternative would be to exchange our basis functions by
a more general set [Jansen and Bavoil 2010]. Note that factoring
visibility and accounting for the distance falloff in an analytical
solution for unoccluded scattering [Pegoraro and Parker 2009] as
in [Wyman 2011] is trivially supported by our approach.

7 Results and Discussion

We tested our prototype on an i7 system with an NVIDIA Titan
card. The method was implemented in OpenGL using compute
shaders. In this section, we present our results and compare to pre-
vious work. We also discuss benefits and limitations of our solution.

All results in this section were computed at full-HD screen resolu-
tion (1920 × 1080). Fig. 8 shows a comparison between different
methods. We evaluated quality and performance on scenes with dif-
fering complexity. Our method performed in all cases below 3 ms,
while still resulting in a high quality rendering.

The upper row in each scene set shows the result with optimal
quality settings of each method, i.e., the parameters were cho-
sen as suggested by the authors, although, when not leading to a
lower quality, we reduced the shadow-map resolution more. Our
approach reached the highest performance. For the San Miguel
model, our solution was over 20× faster than the min-max-mipmap
approach [Chen et al. 2011]. Their low performance is a direct con-
sequence of the complex depth map; the many leaves of the tree
lead to an overhead on the min-max hierarchy (as also observed
in [Baboud et al. 2011]). For simple scenes, such as the terrain, the
min-max structure reaches optimal performance and our method is
only 1.8 times faster (due to lower resolution shadow maps, but
hardware filtering). These comparisons show the main benefit of
our method: it is independent of the scene complexity and con-
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Figure 8: Quality/Performance comparison at 1920 × 1080. To compare quality, we chose the suggested settings of all methods. For same
time, we reduced the shadow map resolution. Our result compares favorably to reference quality, even for low resolution shadow maps.

figuration, while the cost of other methods is less predictable. In
this regard, our solution is very different from other approaches
whose run time is more strongly influenced [Billeter et al. 2010;
Engelhardt and Dachsbacher 2010; Baran et al. 2010; Billeter et al.
2012]. Precisely, our cost isO(wh+ ad) for a screen resolution of
w×h, a maximum of d view-ray integration steps, and the number
of epipolar slices a. Brute-force ray marching requires d integration
steps per pixel, yielding O(whd). Acceleration structures [Baran
et al. 2010; Chen et al. 2011] can lead to an improvement; poten-
tiallyO(wh log d+ad). However, log d is the optimal case, which
becomes d in the worst case. Our method does not suffer from this
scene dependence.

The lower row in each scene set shows an equal time comparison.
Here, we adapted the shadow map resolution of the competitors
until our performance was roughly matched. The resulting im-
ages show significant artifacts stemming from discretization issues.
While our method allows for hardware filtering, other approaches

do not have this option. Our images remain visually pleasing, even
with lower resolution shadow maps. While ringing is a potential is-
sue, our suppression works rather well and scene details (textures,
materials, surface lighting. . . ) tend to hide this artifact completely.

A performance breakdown of our solution for San Miguel is shown
in Fig. 7. The scattering cost is indeed constant, while the pre-
fix sum scales linearly with resolution, as expected. Changing the
amount of coefficients behaves sub-linearly. This result is probably
linked to the cache and texture mechanisms; as 32bit floating point
computations are standard and on newer cards even 64, it is likely
that the bandwidth has been increased correspondingly. Hence, our
solution also seems well suited for future hardware developments.

8 Conclusion

We present a very efficient single scattering approach, that only
needs constant time for each screen pixel. The prefiltering process



is fast and because our method allows for hardware interpolation,
much smaller resolutions can be used for the shadow maps than
in previous approaches, hereby we also keep the memory require-
ments low. In contrast to other solutions, our method delivers pre-
dictable, generally high performance and convincing image quality,
independent of the scene size, complexity, or detail level. Hence,
we believe that it is a good candidate for time-critical applications.

In the future, we will investigate non-homogeneous media. Further,
our rectification might motivate rethinking the warping procedure
and coupling it closely to the actual ray marching.
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A Linearized Visibility via Fourier Series

We linearize the evaluation of visibility by representing the visi-
bility function V via a linear combination of basis functions. As
V is piecewise via a set of visibility functions Vzi , we focus
on this particular approximation. Precisely, we want to obtain:
Vzi(xt) ≈

∑M
k ak(z)Bk(zi) with i being the texel index in the

rectified shadow map, zi the corresponding depth, and z the depth
in light space of position xt.

Following Annen et al. [2007], the Fourier series representation
then becomes:

a(2k−1)(z) = 2c−1
k cos(ckz), a(2k)(z) = −2c−1

k sin(ckz)

B(2k−1)(zi) = sin(ckzi), B(2k)(zi) = cos(ckzi)

with ck = π(2k − 1). Because the step function is not considered
between zero and one, but [-0.5,0.5], we need to keep in mind to
apply a constant offset of 0.5 after evaluating the function via the
dot product.


