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Abstract

We propose a framework for the spectral processing of tangential vector fields on surfaces. The basis is a Fourier-type repre-
sentation of tangential vector fields that associates frequencies with tangential vector fields. To implement the representation
for piecewise constant tangential vector fields on triangle meshes, we introduce a discrete Hodge–Laplace operator that fits
conceptually to the prominent cotan discretization of the Laplace–Beltrami operator. Based on the Fourier representation, we
introduce schemes for spectral analysis, filtering and compression of tangential vector fields. Moreover, we introduce a spline-
type editor for modeling of tangential vector fields with interpolation constraints for the field itself and its divergence and curl.
Using the spectral representation, we propose a numerical scheme that allows for real-time modeling of tangential vector fields.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—

1. Introduction

Tangential vector fields are a fundamental representation of direc-
tional information on a surface. For example, gradients of functions
are tangential vector fields and flows, stresses, strains, or curvature
directions are tangential to a surface. Therefore, the processing of
tangential vector fields is important for algorithms for many appli-
cations in graphics.

Spectral methods are well established for the processing of func-
tions and signals over planar domains. Within the last decade, spec-
tral methods for the processing of curved surfaces and functions
on them have been developed and the field of spectral mesh pro-
cessing has been established. Central is the eigendecomposition of
the Laplace–Beltrami operator, which generalizes the Fourier basis
from planar domains to curved surfaces. Whereas on planar do-
mains, spectral methods can be directly generalized to the process-
ing of vector fields by simply applying the method to each of the
component functions of the vector field, this is not possible for tan-
gential vector fields on curved surfaces because there is no rigid
Cartesian coordinate system.

In this paper, we introduce a framework for spectral processing
of tangential vector fields on curved surfaces. The foundation is a
Fourier-type representation that associates frequencies with tangen-
tial vector fields. To construct the Fourier-type basis on the space of
tangential vector fields, we combine the eigendecomposition of the
Hodge–Laplace operator and the Hodge decomposition to obtain
basis fields that are either integrable, co-integrable or harmonic.

We formulate the spectral processing framework for piecewise
constant tangential vector fields on triangle meshes. These vector

fields are widely used in graphics applications and a discrete Hodge
decomposition has been established. To define the spectral basis,
we introduce a discrete Hodge–Laplace operator for piecewise con-
stant vector fields on surface meshes. The operator shares important
properties with its continuous counterpart and fits conceptually to
the prominent cotan discretization of the Laplace–Beltrami opera-
tor. We show that a sparse matrix representation of the operator can
be obtained by combining a set of simple matrices. Additionally, we
derive a discrete Dirichlet energy that can be used as a regularizer
or fairness energy for piecewise constant tangential vector fields
on surfaces. For solving the eigenproblem of the discrete Hodge–
Laplace operator, we introduce a scheme that boils the computation
of the eigenfields down to the computation of the eigenfunctions of
two discrete Laplace–Beltrami operators.

To illustrate the potential of our framework for the applications,
we introduce tools for spectral filtering and analysis, compression
and real-time tangential vector field design. The filtering tools al-
low users to design filters in the spectral domain. Individual filters
can be specified for the integrable and co-integrable parts of a field.
The compression scheme allows for lossy compression of tangen-
tial vector fields at high compression rates. For vector field design,
we follow the approach introduced by Fisher et al. [Fisher2007].
A tangential vector field is constructed by minimizing the Dirich-
let energy subject to soft constraints that implement the user input.
We demonstrate that by restricting the design space to the space
spanned by 1-2k low-frequency eigenfields, the computation is sig-
nificantly accelerated (up to a factor of 200 in our experiments).

Our second main contribution is a “spline-like”-editor for tan-
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gential vector fields. It allows for modeling tangential vector fields
using hard constraints on the field and its divergence and curl. Tan-
gential vector field splines (TVFS) can be defined (analogous to
cubic splines) as the minimizers of a biharmonic energy under con-
straints. This idea was already discussed in [Fisher2007] as a pos-
sible extension of the design method introduced in the paper. How-
ever their approach has two limitations: only soft constraints can
be imposed and the resulting scheme is not fast enough to allow
for interactive editing. In this work, we overcome both limitations
and transfer the approach to piecewise constant vector fields. To
be able to formulate TVFS for piecewise constant vector fields, we
introduce a biharmonic energy for these fields. Furthermore, we in-
troduce a numerical scheme for computing the TVFS in real-time.
The scheme combines the spectral basis and an efficient solver of
the quadratic problem. The supplementary video illustrates the ben-
efits of hard constraints for vector field modeling. A live editing
session demonstrates the benefit of the TVFS editor for the design
of fur on meshes.

We want to remark that after the submission of this paper we
found that concurrently to our work the discrete Hodge–Laplace
operator for piecewise constant vector fields was also introduced
in [dGDT15] and a scheme for computing the eigenfields using
eigenfunctions was introduced in [LMH∗15], also concurrent to
this work.

2. Related Work

Spectral mesh processing Within the last decade a large num-
ber of methods for tasks in shape analysis and processing that use
the spectrum and eigenfunctions of the Laplace–Beltrami opera-
tor have been proposed. In the following, we briefly discuss some
of the applications. For an introduction to spectral mesh process-
ing and a broader overview of applications, we refer to the sur-
veys by Lévy and Zhang [LZ09] and Zhang, van Kaick and Dyer
[ZvKD10].

The eigendecomposition of the Laplace–Beltrami operator
yields a basis of the space of functions on a curved surface anal-
ogous to the Fourier basis for signals over a one-dimensional do-
main. By transforming a function into this basis, it is decomposed
into oscillations that are ordered by their frequencies. Even the sur-
face itself (i.e., the embedding of the surface in R3) can be treated
in this way. Vallet and Lévy [VL08] proposed a framework for the
design of mesh filters. The framework allows for amplifying and
suppressing the different frequencies in the embedding of the mesh.
For example, high and low pass filters for sharpening and smooth-
ing the mesh can be constructed. Karni and Gotsman [KG00] pro-
posed a scheme for the compression of triangle meshes based on
the eigendecomposition of a combinatorial Laplacian. Recently, a
scheme for the compression of dynamic mesh sequences was in-
troduced by Váša et al. [VMHB14]. The regular pattern of min-
ima and maxima of the eigenfunctions are used for generating a
quadrangular mesh on a surface. Dong et al. [DBG∗06] introduce
a technique that uses the Morse–Smale complex of a carefully cho-
sen eigenfunction to generate a coarse quadrangulation. Huang et
al. [HZM∗08] and Ling et al. [LHJ∗14] extended this approach
such that it can provide a user with control of the shape, size, orien-
tation, and feature alignment of the faces of the resulting quadran-

gulation. Spectral methods for shape segmentation have been intro-
duced by Sharma et al. [SHKvL09] and Huang et al. [HWAG09].

The eigenfunctions enjoy many desirable properties. They are
intrinsic, which means they do not change if the mesh is iso-
metrically deformed. Since they are derived as the discretization
of a continuous concept, they are mesh independent. They are
variational, which makes them robust to remeshing. These prop-
erties make them well-suited for the design of pose-independent
and mesh-independent shape descriptors. Various descriptors have
been designed including the Shape-DNA introduced by Reuter et
al. [RWP05, RWP06], Rustamov’s Global Point Signature (GPS)
[Rus07], the Heat Kernel Signature (HKS) proposed by Sun et
al. [SOG09], the Auto Diffusion Function introduced by Gebal
et al. [GBAL09] and the Wave Kernel Signature by Aubry et
al. [ASC11]. A signature involving not only intrinsic, but also ex-
trinsic information about the surface was introduced in [HSvTP10,
HSvTP12]. Based on the GPS and the HKS, Ovsjanikov et
al. [OSG08, OMMG10] introduced schemes for the detection of
shape symmetries. The pose and mesh independence has also been
the basis of schemes for shape correspondences and matching. Dey
et al. [DLL∗10] propose a robust pose-oblivious shape matching
algorithm based on persistent extrema of the HKS. The functional
maps framework, introduced by Ovsjanikov at el. [OBCS∗12], uses
low-frequency eigenfunctions of the Laplace–Beltrami operator on
two shapes for constructing a linear map between the function
spaces of the shapes. Rustamov et al. [ROA∗13] used this func-
tional correspondence to compare shapes.

Discrete Laplace–Beltrami operators are the backbone of spec-
tral mesh processing. Commonly, piecewise linear and continuous
functions (linear Lagrange finite elements) over triangle meshes are
considered. The discretization of the Laplace–Beltrami operator in
this setting leads to the prominent cotan weights [PP93,MDSB03].
Discretizations with higher-order elements were consider by Reuter
et al. [RWP05]. Properties of the discrete Laplace operators have
been studied by Wardetzky et al. [WMKG07,AW11]. Convergence
of the discrete operators and their spectrum have been studied by
Hildebrandt et al. [HPW06, HP11] and Dey et al. [DRW10].

In this paper, we are proposing a framework that allows for
applying spectral methods for the processing of tangential vector
fields on surface meshes. The spectral analysis of vector fields
on planar domains has been treated by Wagner, Garth and Ha-
gen [WGH12] and a construction of reduced bases for fluid sim-
ulation on planar domains using Laplace eigenfunctions was intro-
duced by de Witt, Lessig and Fiume [DWLF12]. These techniques
however do not carry over to curved surfaces since they require a
fixed Cartesian coordinate system, which is not available for tan-
gential fields on curved surfaces.

Tangential vector field processing Tangential vector fields ap-
pear in many applications in graphics. They are used for control-
ling anisotropic shading of surfaces [MRMH12, RGB∗14], non-
photorealistic rendering [HZ00, YCLJ12, CYZL14], texture gener-
ation [WL01, KCPS15], simulation of fluid and liquids on surfaces
[AWO∗14, AVW∗15], surface segmentation [SBCBG11, ZZCJ14]
and surface construction [IBB15, PLS∗15]. For a recent surveys
on direction field synthesis, design, and processing, we refer
to [dGDT15, VCD∗16]. Methods that use tangential vector fields
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and more general direction fields for surface meshing have received
much attention in recent years. Some examples are [RLL∗06,
KNP07, BZK09, LLZ∗11, TPP∗11, ECBK14, CK14, LLW15]. For
a recent survey on the topic, we refer to [BLP∗13].

The Hodge decomposition of vector fields is an important tool
for the processing of tangential vector fields. It allows for decom-
posing the fields into an integrable, a co-integrable and a harmonic
part. A discrete Hodge decomposition of the space of piecewise
constant vector fields on a surface mesh has been introduced by
Polthier and Preuss [PP00, PP03]. Tong et al. [TLHD03] general-
ized this decomposition to 3-dimensional domains and introduced
a multi-resolution representation of vector fields using the potential
and co-potential of a vector field. Wardetzky [War06] extended the
approach from simply-connected domains to surfaces of arbitrary
genus and proved convergence of the decomposition. The spectral
decomposition we are proposing is compatible with this discrete
Hodge decomposition. For a recent survey on discretizations and
applications of the Hodge decomposition, we refer to [BNPB13].

Fairness energies are used for the reconstruction, design and syn-
thesis of tangential vector and direction fields. Fairness energies for
different representations of vector and direction fields have been
proposed [ZMT06,ZHT07,RVLL08,BZK09,KCPS13,DVPSH14].
Here, we introduce a discretization of the Dirichlet energy for
piecewise constant tangential vector fields using a combination of
conforming and non-conforming discrete divergence and curl op-
erators.

Alternatively to working with vector fields, one can dualize
and consider 1-forms. Discrete Exterior Calculus [DHLM05] pro-
vides notions of discrete k-forms and discrete operators on them
including a discrete Hodge Laplacian for k-forms. A discrete
Hodge decomposition for 1-forms was introduced by Fisher et
al. [FSDH07] and a spectral decomposition of a discrete Hodge
Laplacian on spaces of discrete k-forms has been derived by Arnold
et al. [AFW06].

3. Background: Hodge Decomposition of Vector Fields

In this section, we review the Hodge decomposition of vector fields
on a smooth surface M embedded in R3. We denote the surface
normal field by N, and, for any point p ∈ M the tangent plane
ofM at p by TpM. Before stating the Hodge decomposition, we
introduce basic differential operators on the space of functions and
vector fields on surfaces.

Gradient, divergence, curl and Laplace–Beltrami The gradient
is a linear operator mapping differentiable functions to tangential
vector fields. For any point p ∈M the gradient of f at p is defined
as the tangential vector grad f (p) that satisfies

〈grad f (p),v〉R3 = dv f (p)

for all v ∈ TpM. Here, dv f (p) is the derivative of f at p in direc-
tion v. At any point, grad f points in direction of the steepest ascent
of f . We denote by J the operator that rotates any vector of a vec-
tor field in its tangent plane by π

2 (following the orientation of the
surface). Besides the gradient operator, we consider the operator
J grad, which concatenates the gradient and the rotation J. We call
this operator the co-gradient.

The divergence and curl are linear operators that map vector
fields to functions. The divergence of a vector field v at a point
p ∈M is defined by

div v(p) =
2

∑
i=1
〈∇ei v(p),ei〉,

where∇ is the covariant derivative and {e1,e2} forms an orthogo-
nal basis of the tangent plane at p. We define the curl as

curl v =−div J v. (1)

The divergence and curl are related to the gradient and co-gradient.
To describe this relation, we use the L2-scalar products on the
spaces of square-integrable functions and vector fields. These are
defined as

〈 f ,g〉L2 =
∫
M

f (p)g(p)dA (2)

〈v,w〉L2 =
∫
M
〈v(p),w(p)〉R3 dA (3)

The divergence and gradient as well as the curl and the co-gradient
satisfy

〈divv, f 〉L2 =−〈v,grad f 〉L2 (4)

〈curl v, f 〉L2 =−〈v,Jgrad f 〉L2 , (5)

for all pairs of a continuously differentiable function f and tan-
gential vector field v, which follows from an integration by parts.
By combining the operators introduced above, we can define the
Laplace–Beltrami operator

∆ =−divgrad (6)

on the space of twice differentiable functions. Note that the opera-
tor could alternatively be defined as the negative of the curl of the
co-gradient: ∆ =−curl Jgrad.

Hodge decomposition and harmonic fields The space X of
smooth tangential vector fields on a surface with vanishing bound-
ary can be decomposed into three L2-orthogonal subspaces

X = Image(grad)⊕ Image(J grad)⊕H,

The first subspace is formed by the gradients of smooth functions.
Fields in this space are curl-free and represent the integrable part
of a vector field. Similarly, the second subspace is the space of
co-gradients of smooth functions, which are divergence-free. This
space represents the co-integrable part of a vector field. The third
space consists of the harmonic tangential vector fields H. These
fields are neither gradients nor co-gradients of functions. The space
H can be defined as the intersection of the kernel of the diver-
gence and the curl. In other words, these are exactly the fields that
have vanishing divergence and curl. The space contains informa-
tion about the topology of the surface. H equals the first singular
cohomology of the surface. This is an important relation between
vector calculus and algebraic topology. We refer to the literature,
e.g. [War13], for more about this connection. One consequence is
that the dimension ofH on a surface of genus g is 2g.

4. Discrete Hodge Decomposition

In graphics applications, we are often dealing with piecewise con-
stant vector fields on triangle meshes. A discrete counterpart of the
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Hodge decomposition for piecewise constant vector fields has been
introduced in [PP00, PP03, TLHD03, War06]. In this section, we
review this construction.

Function spaces We denote the space of vector fields that are con-
stant in every triangle of a meshMh by Xh. In addition, we con-
sider two function spaces. Both consist of functions on Mh that
are linear polynomials in every triangle. The two spaces are con-
structed by imposing continuity constraints on the linear polynomi-
als of neighboring triangles: the space Sh of piecewise linear poly-
nomials that are globally continuous and the space S∗h of piecewise
linear polynomials that are continuous at the midpoints of all inte-
rior edges. The combination of Sh and S∗h is needed for the discrete
Hodge decomposition.

Discrete operators The gradients of functions in Sh and S∗h are de-
fined for all points in the interior of a triangle and they are constant
within each triangle. Hence the gradient is a linear map from Sh
and S∗h into Xh. While the gradient can be directly transferred to
the discrete setting, we define the discrete divergence and curl op-
erators indirectly using the gradient and equations (4) and (5). As
in the continuous case, the discrete divergence and curl map vector
fields to functions. Since we are working with two function spaces,
we get two discrete divergence and curl operators. The conforming
discrete divergence is the linear operator

divh : Xh 7→ Sh

that satisfies

〈divhv, f 〉L2 =−〈v,grad f 〉L2

for all v ∈ Xh and f ∈ Sh and the nonconforming discrete diver-
gence is the linear operator

div∗h : Xh 7→ S∗h

that satisfies 〈
div∗h v,g

〉
L2 =−〈v,grad g〉L2

for all v ∈ Xh and g ∈ S∗h . Following the definition (1) of the curl
in the continuous case, the conforming and nonconforming discrete
curl operators are defined as

curlhv =−divhJv and curl∗h v =−div∗h Jv.

We discuss explicit matrix representations of the operators in Sec-
tion 5.

Finally, we want to remark that there is a difference between
the discrete operators we define here and the definitions in [PP03,
War06]. They define the divergences and curls of vector fields as
integrated quantities, while in the presented definitions, the diver-
gences and curls of vector fields are piecewise linear functions
(hence pointwise quantities). The notions are related, one can use
the mass matrix (see Section 5) to convert one into the other. We re-
fer to [WBH∗07] for a discussion of integrated vs. pointwise quan-
tities.

Discrete Hodge decomposition As in the continuous case, the dis-
crete Hodge decomposition divides the space of vector fields into
three orthogonal subspaces: the image of the gradient, the image

of the co-gradient and a space of harmonic vector fields. To ob-
tain spaces of harmonic fields that are 2g-dimensional as in the
continuous case, we need to combine the spaces Sh and S∗h . The
discrete Hodge decomposition of the space of piecewise constant
vector fields is

Xh = Image(grad|Sh
)⊕ Image(J grad|S∗

h
)⊕Hh. (7)

The first component, Image(grad|Sh
), consists of the vector fields

that are gradients of functions in Sh. This part describes the inte-
grable part of a vector field, which has vanishing nonconforming
discrete curl. This means the first component is part of the ker-
nel of curl∗h . The second component, Image(J grad|S∗

h
), consists of

the vector fields that are co-gradients of functions in S∗h , the co-
integrable part. These vector fields have vanishing conforming dis-
crete divergence. Hence, the second component is part of the kernel
of divh. For surfaces with genus zero (homeomorphic to a sphere),
Image(grad|Sh

) is exactly the kernel of curl∗h and Image(J grad|S∗
h
)

is exactly the kernel of divh. However, for surfaces with non-
vanishing genus g there is a 2g-dimensional spaceHh of piecewise
constant vector fields for which curl∗h and divh vanish. These vec-
tor fields are neither gradients of functions in Sh nor co-gradients
of functions in S∗h . We call

Hh = Kernel(divh)∩Kernel(curl∗h )

the space of discrete harmonic vector fields.

We want to emphasize that this theory requires the interplay of
the conforming and nonconforming spaces and operators. For ex-
ample, a vector field is the gradient of a function in Sh (on a simply-
connected domain) if curl∗h vanishes. Moreover, to get spaces of
discrete harmonic vector fields of dimension 2g, the spaces Sh and
S∗h have to be combined. If only gradients and co-gradients of func-
tions in Sh are used, the dimension of the resulting space of har-
monic fields depend on the mesh (and not only on the genus of the
surface) and are usually large (e.g. the dimension grows under mesh
refinement).

As an alternative to (7), we could exchange the
roles of Sh and S∗h and obtain the decomposition
Xh =Image(grad|S∗

h
)⊕Image(J grad|Sh

) ⊕ H∗h . Since in this
case the integrable part of a vector field is the gradient of a
function in S∗h , we call this the nonconforming discrete Hodge
decomposition. The resulting space of nonconforming discrete
harmonic fields is H∗h =Kernel(div∗h )∩Kernel(curlh). The fact that
there are two different discrete Hodge decompositions is specific
to the discrete setting and is not present in the continuous case.
In [War06], it was shown that both decompositions converge to
their smooth counterpart under suitable refinement of the surface
meshes. In this sense, the two decompositions are similar.

In the following, we will consider only the decomposition (7).
However, for any notion we introduce, there is a corresponding no-
tion where the roles of the spaces Sh and S∗h are exchanged.

5. Discrete Hodge–Laplace Operator for Vector Fields

In this section, we introduce a discrete Hodge–Laplace operator
for piecewise constant vector fields on surface meshes and the cor-
responding discrete Dirichlet and biharmonic energies. Before we
consider the discrete setting, we first review the smooth setting.
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The smooth setting By combining the operators discussed in Sec-
tion 3, one can construct the Hodge–Laplace operator

∆ =−(grad div+ J grad curl) (8)

on the space of smooth tangential vector fields on a surface. We
use the minus sign in (8) to get positive eigenvalues for the Hodge–
Laplace operator.

Since we could not find a reference where (8) is stated, we want
to put this formula in context with the literature (the supplementary
material includes a more detailed derivation). The Hodge Laplacian
is usually defined as an operator on smooth k-forms on a Rieman-
nian manifold [AF02]. For surfaces, 0- and 2-forms can be identi-
fied with functions and the Hodge Laplacian for these forms is the
Laplace–Beltrami operator (6) for functions. 1-forms on a surface
can be identified with vector fields via v↔ 〈v, ·〉. Using this iso-
morphism, we can carry over the Hodge Laplacian from 1-forms to
vector fields and express this operator in terms of the operators J,
grad, div and curl. Formula (8) is the resulting operator. For vec-
tor fields on planar domains, this operator agrees with the vector
Laplacian. In this sense, the Hodge Laplacian generalizes the vector
Laplacian from vector fields on planar domain to tangential vector
fields on curved surfaces.

Discrete Hodge–Laplace operators Using the definition (8) of
the smooth Hodge–Laplace operator for tangential vector fields on
a surface and the discrete operators introduced in Section 4, we
can construct the discrete Hodge–Laplace operator for piecewise
constant vector fields on a surface mesh. As for the discrete Hodge
decomposition, the discretization mixes the conforming discrete di-
vergence and the non-conforming discrete curl operators

∆h =−(grad divh + J grad curl∗h ).

The discrete Hodge–Laplace operator ∆h shares many properties
with its continuous counterpart ∆.

1. Symmetry The operator ∆h is self-adjoint with respect to the
L2-scalar product, i.e.,

〈∆hv,w〉L2 = 〈v,∆hw〉L2

for any pair v,w ∈ Xh.
2. Harmonic fields The discrete harmonic vector fields (which we

defined in Section 4) are exactly the piecewise constant fields
with vanishing discrete Hodge–Laplace operator, i.e.,

Hh = Kernel(∆h).

3. Positive semi-definite The operator ∆h is positive semi-
definite. The symmetry guarantees that all eigenvalues are real.
The harmonic fields have eigenvalue zero, all other eigenvalues
are positive.

4. Locality The continuous Hodge–Laplace operator is local, i.e.,
evaluating the smooth Hodge–Laplace of a vector field at a
point p does not depend on the surface or the vector field out-
side of an arbitrarily small neighborhood of p. We achieve this
property by using a diagonal mass matrix for the L2-scalar prod-
uct on Sh. Then, for any v ∈ Xh and triangle t ∈Mh, the vector
that ∆h(v) assumes in t depends only on the vectors of v in the
triangles that share a common vertex with t and the geometry of
these triangles.

5. Intrinsic The discrete Hodge–Laplace operator is an intrinsic
operator, i.e., it can be constructed using only the length of all
edges of the mesh. As a consequence it does not change if the
surface is isometrically deformed.

6. Hodge decomposition The discrete Hodge–Laplace operator
respects the corresponding discrete Hodge decomposition. The
image of an integrable vector field is an integrable vector field
and the image of a co-integrable vector field is a co-integrable
vector field.

Discrete energies Based on the discrete Hodge–Laplace operator,
we introduce two quadratic functionals (or energies) on the space
of piecewise constant tangential vector fields: the Dirichlet energy

ED(v) = 〈∆hv,v〉L2 =
∫
Mh

(
(divh v)2 +(curl∗h v)2

)
dA (9)

and the biharmonic energy

EB(v) = 〈∆hv,∆hv〉L2 =
∫
Mh

‖∆hv‖2 dA. (10)

For simply-connected surfaces (topological spheres) the energies
are positive definite, and, for surfaces of genus g > 0, the energies
are semi-positive definite. In the latter case, the harmonic fields are
in the kernel of the energies. We will use these energies as regular-
izers for the construction of smooth vector fields.

Matrix representations Matrix representations of all the discrete
operators and the energies can be obtained as products and sums
of a set of six simple matrices. This illustrates the structure un-
derlying the operators and simplifies the implementation. To get a
matrix representation of an operator, we first have to fix bases in the
relevant spaces. We use the nodal bases, i.e., a function in Sh is rep-
resented by a vector listing a function value for every vertex and a
function in S∗h is represented by a vector listing a function value for
every edge. The linear polynomials over each triangle correspond-
ing to a nodal vector are uniquely determined via interpolation. For
S∗h , the nodes are located at the midpoints of the edges. For a vector
field in Xh, we are listing one tangential vector for every triangle.
To describe the vectors, we fix a (positively oriented) orthonormal
basis of the tangent plane in every triangle.

Once the bases are fixed, we can construct the matrices. The first
two matrices are the gradients G and G∗ on Sh and S∗h . Both ma-
trices are sparse (three entries per row). Explicit formulas for the
computation of the gradient of a linear polynomial over a triangle
can be found in [PP93] and [BKP∗10, pp. 40–41]. Furthermore, we
need three diagonal mass matrices M, M∗, and M representing the
L2-scalar products in Sh,S

∗
h and Xh. The ith diagonal entry of M is

a third of the combined area of the triangles adjacent to the ith ver-
tex and the jth diagonal entry of M∗ is a third of the combined area
of the two triangles sharing the jth edge. Alternatively, the Voronoi
areas of the vertices and edge midpoints can be used. The diagonal
entries of the matrix M are simply the areas of the corresponding
triangles. We refer to [WBH∗07] for a discussion of mass matri-
ces. The last matrix J is the matrix representation of the operator
J that rotates every vector of a piecewise constant vector field by
π/2 in the tangent plane. The matrix is block diagonal, each block
consists of a 2× 2 matrix that represents the π/2-rotation in one
triangle with respect to the chosen orthonormal basis. All the 2×2
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Figure 1: The first, 21st, 51st and 71st pairs of eigenfields on the centaur model. Green fields are curl-free, red fields are divergence-free.

matrices are the same since for any positively oriented orthogonal
basis, a π/2-rotation maps the first entry of the vector to the second
and the second to the negative of the first entry.

Matrix representations of all the discussed discrete operators can
be obtained as products and sums of these six matrices. For the dis-
crete divergence and curl operators, we have the following matrix
representations

divh curlh div∗h curl∗h
−M−1GT M M−1GT JM −M∗−1G∗T M M∗−1G∗T JM

We denote the matrices representing the discrete Dirichlet energy,
Hodge–Laplace operator and biharmonic energy by S,L and B. The
matrices satisfy

S = M(GM−1GT −JG∗M∗−1G∗T J)M

L = M−1S

B = LT ML = SM−1S

To derive the first row, we combine the matrix representations of
the operators divh and curl∗h and form the energy (9). The second
row follows by construction because the discrete Hodge–Laplace
operator is the self-adjoint operator corresponding to the discrete
Dirichlet energy. For the first step in the third row, we use (10), and
the second step follows from the formula for L.

We want to remark that the discrete Dirichlet energy for piece-
wise linear functions and the discrete Laplace–Beltrami operator

can also be constructed from these matrices. The matrix S repre-
senting the Dirichlet energy of functions is given by S =GT MG.
This is exactly the cotan matrix [PP93, MDSB03]. The matrix L
representing the discrete Laplace–Beltrami operator is given (anal-
ogous to the second row above) by L =M−1S.

6. Fourier Representation of Tangential Vector Fields

In this section, we describe a Fourier type representation of tan-
gential vector fields that associates frequencies with the fields in
the space Xh. The representation is based on the eigenfields of
the Hodge–Laplace operator, which have to be computed numer-
ically. We introduce a scheme for computing the eigenfields of the
Hodge Laplacian that reduces the problem to the computation of
the eigenfunctions of the conforming and the nonconforming dis-
crete Laplace–Beltrami operators.

Eigenfields of the discrete Hodge–Laplace operator The eigen-
fields of ∆h are the solutions of the equation

∆hΦ = λΦ.

Instead of solving this eigenproblem directly, we construct the
eigenfields using the eigenfunctions of the conforming and non-
conforming discrete Laplace–Beltrami operators

∆h =−divhgrad and ∆
∗
h =−div∗h grad.

These operators are the cotan-Laplacians on Sh and S∗h . Eigenfunc-
tions of these operators are solutions of the problems

∆hφ = λφ and ∆
∗
h ψ = µψ,
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where φ ∈ Sh and ψ ∈ S∗h . The numerical treatment of the eigen-
problem for the conforming operator is the basis for spectral geom-
etry processing and is treated in detail in [VL08]. The nonconform-
ing case can be treated in the same way, only the matrices M∗ and
S∗ = G∗T MG∗ are used instead of M and S = GT MG.

The following Lemma summarizes the relation of the eigenfunc-
tions of ∆h and ∆

∗
h and the eigenfields of ∆h and is the basis of our

scheme for computing the eigenfields.

Lemma 1 The gradient of any eigenfunction of ∆h is an eigen-
field of ∆h and the co-gradient of any eigenfunction of ∆

∗
h is an

eigenfield of ∆h. The eigenvalues of an eigenfunction and the cor-
responding eigenfield are the same.

Proof Let φ be an eigenfunction of ∆h with eigenvalue λ. Then,

∆hgrad φ =−grad divhgrad φ− J grad curl∗h grad φ

= grad ∆h φ = λgrad φ.

This proves the lemma for eigenfunctions of ∆h. The statement
about the co-gradients of eigenfunctions of ∆

∗
h is proved in a similar

manner.

Fourier representation We denote the number of vertices, edges
and the genus of our mesh by nv, ne, and g. The following lemma
shows that we can use Lemma 1 to construct an orthonormal basis
of Xh.

Lemma 2 Let {φ0,φ1, ...,φnv−1} and {ψ0,ψ1, ...,ψne−1} be
eigenbases of ∆h and ∆

∗
h (where φ0 and ψ0 are the con-

stant functions), and let {Γ1,Γ2, ...,Γ2g} be an orthonor-
mal basis of the subspace of harmonic fields Hh. Then, the
set B = {Φ1,Φ2, ...,Φnv−1,Ψ1,Ψ2, ...,Ψne−1,Γ1,Γ2, ...,Γ2g},
where Φi =

1
‖gradφi‖L2

gradφi and Ψi =
1

‖gradψi‖L2
J gradψi, is an

orthonormal basis of the space Xh of piecewise constant tangential
vector fields.

Proof We first show that any pair of vector fields from B is orthog-
onal. For i 6= j, we have〈

gradφi,gradφ j
〉

L2 =
〈
∆hφi,φ j

〉
L2 = λi

〈
φi,φ j

〉
L2 = 0,

which implies 〈
Φi,Φ j

〉
L2 = 0.

In a similar manner, we can show that any pair Ψi,Ψ j is orthonor-
mal. The discrete Hodge decomposition (7) guarantees that any
pair of vector fields with different letters is orthogonal, because
such fields are in different components of the Hodge decompo-
sition. It remains to show that the number of vector fields in the
set equals the dimension of the space Hh. The set B consistes of
|B| = nv − 1 + ne − 1 + g vector fields. Using the Euler formula
nv− ne + n f = 2− 2g, we get |B| = 2ne− n f . Since our mesh is
a closed manifold, every edge is in two triangles, which means
3n f = 2ne. Using this equation, we get |B| = 2n f , which is exacty
the dimesion of Xh. We showed that B is an orthonormal set in Xh
with 2n f elements, which proves that B is an orthonormal basis of
Xh.

As consequence of the lemma, we can represent any field v∈Xh

in the basis B

v =
nv−1

∑
i=1

αiΦi +
ne−1

∑
i=1

βiΨi +
2g

∑
i=1

γiΓi, (11)

where αi = 〈v,Φi〉L2 , βi = 〈v,Ψi〉L2 and γi = 〈v,Γi〉L2 . Since any
basis field is an eigenfield of the discrete Hodge–Laplace operator,
we can associate a frequency, the square root of the eigenvalue, to
every basis field. Hence, this representation associates frequencies
with tangential vector fields. In this sense, (11) is a Fourier repre-
sentation. In the following sections, we will show benefits of this
representation for the applications.

In the continuous case, the eigenfunctions come in pairs. For
every eigenfield Φ, the rotated field, J Φ, is also an eigenfield with
the same eigenvalue. Since we construct the basis as gradients and
co-gradients of eigenfunction of the Laplace–Beltrami operator, we
choose in every eigenspace the basis such that every basis vector is
in one component of the Hodge decomposition. As a result, the
Fourier representation refines the Hodge decomposition. Since in
the discrete case two different function space, Sh and S∗h , have to be
combined, the symmetry is broken and “pairs” of eigenfields have
only approximately the same eigenvalues. Figure 1 shows “pairs”
of eigenfields of the discrete operator.

Computation of the eigenfields Our scheme for computing the
low-frequency eigenfields proceeds in three steps. The input is a
maximum eigenvalue λmax (or alternatively the number of eigen-
fields to be computed). The first step is to compute a basis of the
space of discrete harmonic fields (which along the way provides
us with a basis of the cohomology of the surface). The space is
2g-dimensional, where g is the genus of the surface. The idea is
to project 2g random vector fields to the space of harmonic fields.
These will span the space of harmonic fields (the probability that
the random vectors or their projections are linearly dependent van-
ishes). Finally, we orthonormalize these vectors. To project a vector
field v into the space of harmonic fields, we remove the integrable
and the co-integrable parts. The potentials of the integrable and the
co-integrable part can be determined by solving the least squares
problem

argmin
f∈Sh,g∈S∗h

‖v−grad f − J grad g‖2 .

Since the integrable and co-integrable parts are orthogonal, solv-
ing this problem can be carried out in two steps: first compute
the integrable part, then the co-integrable part. Both steps require
solving a linear system where the matrices are the cotan matrices
S = GT MG and S∗ = G∗T MG∗. The second step is to compute lin-
early independent eigenfunctions φ of ∆h with eigenvalue smaller
than λmax. Since all eigenvalues are positive, we compute bands of
eigenfunctions with increasing eigenvalue starting with zero until
we reach λmax. Then we compute the corresponding eigenfields
Φ =grad φ and orthonormalize them. The third step is to compute
the eigenfunctions ψ of ∆

∗
h with eigenvalue smaller than λmax. As

before, we compute the corresponding eigenfields Ψ=J grad ψ and
orthonormalize them. For the computation of the eigenfunctions of
∆h and ∆

∗
h , we follow [VL08].

The resulting eigenbasis refines the discrete Hodge decompo-
sition. By construction each type of eigenfield belongs to one sub-
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space ofXh. The fields Φ are in the integrable component, the fields
Ψ in the co-integrable component and the rest forms a basis of the
space of harmonic fields.

7. Tangential Vector Field Splines

Many classical splines can be characterized by variational princi-
ples. Splines in tension are minimizers of a weighted sum of the
biharmonic and the Dirichlet energy subject to constraints (cubic
splines are the special case when the weight of the Dirichlet energy
vanishes). Following the classical example, we define the tangen-
tial vector field splines (TVFS) as minimizers of the weighted sum
of the biharmonic and the Dirichlet energy

EB(v)+ωED(v) (12)

subject to linear equality constraints on the vectors of v and its
divergence and curl. Vortices can be constructed by prescribing
non-zero curl, sinks and sources are created via positive or nega-
tive divergence respectively. Alternatively, singularities can be con-
structed by specifying a few vector constraints around their desired
locations. We refer to the several images and the supplementary
video to see several examples of this type of topology control in
action. The biharmonic energy is needed to obtain smooth enough
vector fields that satisfy the hard constraints. The effect is shown in
Figure 2.

We want to remark that the idea of defining tangential vector
field splines as minimizers of (12) was introduced in [FSDH07] as
an extension of their vector field design approach. However, their
approach has two limitations: only soft constraints can be imposed
and the resulting scheme is not fast enough to allow for interactive
editing.

Real-time computation The computation of a TVFS amounts to
solving a sparse quadratic problem with linear equality constraints.
The challenge is to solve the problems at real-time rates to enable
an interactive TVFS editor.

Directly solving the resulting linear systems to compute a TVFS
is not an option since this can take several minutes. Directly re-
using a sparse factorization is not possible, because the size of
the matrix changes, whenever constraints are added or removed.
A fast approximation algorithm can be established using the basis
of eigenfields. We are using the property of the eigenbasis that in

Figure 2: The per-face Dirichlet energy of a tangential vector field
spline from a single constraint on an irregular sphere is shown (red:
high Dirichlet energy, green: low Dirichlet energy). On the left, we
show the minimizer of the Dirichlet energy only, without higher
order regularizer, on the right, we use the biharmonic energy (12)
with low ω.

Figure 3: Real-time tangential vector field spline editing on the ar-
madillo model (left, 331904 faces) and the resulting fur (right).

this basis the Dirichlet and the biharmonic energy are represented
by diagonal matrices.

In a preprocess, we compute the d eigenfields with the smallest
eigenvalue as described in Section 6. We assemble the vectors to
form the columns of a matrix U ∈ R2n f×d . A tangent field in the
d-dimensional subspace can be described by reduced coordinates,
i.e., a vector v ∈ Rd . The matrix U transforms from reduced co-
ordinates v to the full coordinates x = Uv ∈ R2n f . Since we are
using a basis of eigenfields, in the reduced coordinates the energies
are represented by diagonal matrices. The matrix Λ representing
the Dirichlet energy has the eigenvalues on the diagonal. Then, Λ2

represents the biharmonic energy and the resulting energy matrix
D is

D = Λ2 +ωΛ.

We consider nc linear constraints, which in the unreduced coordi-
nates have the form C̃x = c, where C̃ ∈ Rnc×2n f , c ∈ Rnc and x ∈
R2n f . To constrain the divergence or curl of the field at a vertex or
an edge, we copy the corresponding row from the divergence and
curl matrices (see Section 5) into C̃. The entry in the vector c speci-
fies the value the divergence or curl assumes. Values at arbitrary lo-
cations in a triangle can be specified using barycentric coordinates.
In a similar manner, vectors in triangles can be prescribed. Once
the matrix C̃ is constructed, we can obtain its reduced counterpart
by matrix multiplication: C = C̃U. The matrix C ensures that the
reduced solution exactly satisfies the constraints. The matrix is of
small size, C ∈ Rnc×d .

Now we describe how to efficiently solve the constrained linear
system. We first consider the case of a surface of genus 0. In this
case, the matrix D has full rank and since it is diagonal, it can be
easily inverted. Using Lagrange multipliers, represented by a vector
µ ∈ Rnc , the solution v of the constraint optimization problem is
computed by solving the linear system

Dv−CT µ = 0

Cv = c

Instead of solving this system directly, we first transform it. To
eliminate v from the second equation, we multiply the first equa-
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tion by CD−1 and subtract it from the second equation

Dv−CT µ = 0 (13)

CD−1CT µ = c (14)

To compute the solution v, we first solve (14) for µ and then (13)
for v. To compute µ, we factor the matrix CD−1CT , which is a
very small matrix of size nc×nc. A new factorization is computed
whenever the set of constraints changes, changing the value of the
constraints affects only the right-hand side of the equation. Solving
for v is very fast since D is diagonal.

In the case, of a surface of genus g > 0, the matrix D has the
harmonic fields in its kernel. The resulting system can be solved
by treating the harmonic part separately. The system can be re-
arranged such that first the harmonic part and the Lagrange mul-
tipliers are determined and then v is computed. An alternative is to
slightly modify the system by setting the eigenvalues of the har-
monic part to a small positive constant (e.g., a tenth of the lowest
non-zero eigenvalue).

Since we are restricting the computation to a subspace spanned
by low-frequency fields, the algorithm computes a low-pass filtered
TVFS. From a signal theoretic point of view, the TVFS are low-
frequency fields by construction. Our computational scheme cuts-
off the remaining high-frequencies of the field. In this sense, the
reduced solution could even be the preferred solution. Using bases
of 1-2k eigenfields, the reduced results are typically very close to
the TVFS.

8. Applications and Experiments

8.1. Computation of the eigenfields

Table 1 lists timings for the computation of the eigenfields of the
Hodge Laplacian. The column Bases setup contains the total time
to setup the conforming and nonconforming Laplace–Beltrami op-
erator, computing their eigenfunctions and then computing their
gradients and co-gradients. To compute the low-frequency eigen-
functions, we use the shift-and-invert Lanczos method. The im-
plementation was done in Java with native calls to the MUMPS
library [ADKL01] for solving the sparse linear systems. The com-
putation was performed on a Dell Precision M3800.

Figure 1 shows examples of low-frequency eigenfields. For each
integrable field (green), the corresponding co-integrable field (red)
is shown.

8.2. Spline editor for tangential fields

In Section 7, we described a system for modeling tangential vec-
tor field splines in real-time, making use of our reduced basis. We
implemented this system, using a dense Cholesky factorization and
utilizing the GPU to quickly map from the reduced space to a full
field representation. In total, we get real-time responses in an inter-
active editing environment, where vector constraints can be spec-
ified via click-and-drag and a globally optimal tangential field is
instantly updated. The method scales well with the sizes of the
meshes and allows for real-time tangential vector field modeling
on larger meshes: aside from mapping the reduced coordinates to

Figure 4: Comparison between editing using our tangential vector
field spline editor as described in Section 7 (left) and using soft
constrained vector field design (cf. [FSDH07]) (right). As can be
seen, not all constraints on the right are satisfactorily obeyed.

the full representation (which can be done efficiently on the GPU),
the size of the system to be solved is independent of the resolution
of the mesh.

In Table 1, 4th column, we list the resulting total time for gen-
erating tangential vector field splines on various meshes from 30
user defined constraints using a basis of 1000 eigenfields. We sepa-
rately list the timings for setting-up and factorizing the system and
the timing for a solve (including the time for sending the reduced
coordinates to the GPU and there mapping them to the full repre-
sentation). When a new constraint is added, both those steps have
to be executed, but if a constraint is just modified (e.g., changing
the direction of a vector constraint), only the solve time has to be
taken into account, which is below 5ms even for our largest test
mesh (the Armadillo mesh).

In Figure 4, top, we show a result of designing a vector field
using our spline editor. As can be seen, all constraints are exactly
obeyed but the overall field is still very smooth. In the supplemen-
tary video, a real-time editing session can be seen. Another result
of TVFS editing on a high-resolution meshes can be seen in Fig-
ures 3 and 5, where we effortlessly designed tangent vector fields
on meshes with 331k and 70k faces respectively.

8.3. Fur design

As an application of tangential vector field spline editing, we intro-
duce a tool for fur design on surface meshes. A demonstration is
shown in the supplementary video and results are shown in Figures
5 and 3. The efficient and intuitive way to design smooth tangent

Model #faces Bases Spline Editing Reduced Soft Design Full Soft Design
Name setup Setup \Solve Factor \Solve Factor \Solve
Hand 12184 23s 12ms \ 1ms 148ms \ 2.5ms 1.4s \ 16ms
Rocker Arm 20088 43s 15ms \ 1ms 148ms \ 2.6ms 3.3s \ 28ms
Bunny 69666 184s 18ms \ 2ms 155ms \ 2.4ms 22.7s \ 141ms
Bumpy Torus 140240 395s 17ms \ 2ms 169ms \ 3.1ms 86.8s \ 379ms
Armadillo 331904 1246s 49ms \ 4ms 150ms \ 3.5ms 187.7s\ 818ms

Table 1: Timings for tangential vector field bases computation,
solving the reduced tangential vector field spline system and solv-
ing the reduced and full design system. In all three systems we used
a second order energy term as an additional regularizer. In all exam-
ples a basis size of 1000 was used (500 divergence free and 500 curl
free eigenfields of the Hodge–Laplace operator) and 30 constraints
were specified.
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Figure 5: Fur design on the bunny mesh. Left: constraints and re-
sulting tangential vector field spline, right: output field visualized
as fur on the bunny.

fields via few hard constraints allows a designer to edit fur on sur-
face meshes in real-time by specifying the length and direction of
the hair at certain spots, while aiming for an overall smoothly vary-
ing hair direction.

For this type of design task real-time visual responses are crucial,
which is made possible with our reduction via the spectral basis.
More generally does the reduced basis allow for efficient updates
to the GPU when the tangential field changes, which can speed-up
the visualization of CPU-run simulations of tangential vector fields.

8.4. Speeding-up soft constrained design

In Fisher et al. [FSDH07], a method for designing vector fields us-
ing weak constraints has been proposed. Sinks, sources and vortices
can be constructed via prescribing non-zero curl and divergence at
specific vertices/edges, but vanishing curl and divergence on the
rest of the mesh. Additionally, interpolation constraints for the vec-
tor field can be imposed. Since this, in general, over-constrains the
system, they are treated as weak constraints and a least-squares
problem is solved. As a regularizer, either the Dirichlet energy or a
weighted sum of the biharmonic and the Dirichlet energy are used.
Denoting the linear constraints by C̃x = c, as in Section 7, and the
weight of the biharmonic energy by ω, the linear system

(S+ωB+C̃T C̃)x = C̃T c

has to be solved to construct a field. To solve the system, a sparse
Cholesky factorization is computed once and used to solve the sys-
tems. When the set of constraints changes, a sparse Cholesky up-
date is computed.

By restricting the construction to a subspace of d =1-2k low-
frequency modes, we get a fast approximation algorithm for this
system. In particular, the computational cost for the reduced com-
putation depends on the dimension of the subspace and is indepen-
dent of the resolution of the mesh. The only operations that depend
on the mesh size are the mapping of the reduced coordinates to the
unreduced coordinates and the construction of the subspace, which
is done in a preprocess. Using the notation of Section 7, the reduced

system is

(Λ+ωΛ
2 +CTC)v =CT c,

which is a d-dimensional system. To solve the system, we compute
a dense Cholesky decomposition and use dense Cholesky updates,
when the set of constraints changes.

After employing the spectral basis to the resulting system,
we are able to speed-up the computation times of the de-
signed tangential fields by a factor of up to 200 (for higher
resolution meshes this factor will become larger). Figure 6
shows an example of a reduced and an unreduced solution
to the system. One can see that the reduced solution is a
smoother field (since additional high frequencies are cut-off). Note
that Fisher et al. propose their method in the setting of dis-
crete 1-forms. However, to make a better comparison, we re-
implemented their system to work with piecewise constant tangen-
tial fields. We solve the resulting sparse linear systems using the
MUMPS library, which provides sparse Cholesky factorizations.

Figure 6: Comparison of unre-
duced (left) and reduced (right)
vector field design.

The speed-up can be ob-
served from the timings
listed in Table 1, where
one can see, that already
for small meshes we gain
significantly shorter com-
putation times, and that for
large meshes, interactive
design is made possible at
all only by using our re-
duced basis. We list tim-
ings for factorizations and
solving the systems sepa-
rately. We create tangen-
tial fields from 30 user defined constraints and, in the reduced case,
we use a basis of 1000 eigenfields. The biharmonic energy was
added as a regularizer. Note that adding constraints does not re-
quire a re-factorization in either the full or the reduced case, since
the factorization can be updated using sparse or dense Cholesky
updates, which take less than a millisecond.

To highlight the difference of our tangential vector field spline
editing and the vector field design system discussed in this sec-
tion, we point to Figure 4. Here one can see how not all constraints
in the least squares system are satisfactorily obeyed. This is also
highlighted in a section of our supplementary video. The reason for
this is that the user needs to specify the weights for the prescribed
vectors and the magnitudes of the prescribed curl and divergence,
which results in a trade-off between satisfying the locations of pre-
scribed sinks, sources and vortices versus obeying the prescribed
vectors. In the shown example, no weights were found where both
types of constraints were obeyed satisfactorily at the same time.

8.5. Spectral analysis and filtering

The Fourier representation (11) discussed in Section 6 allows for
spectral analysis and filtering of tangential vector fields. In prac-
tice, we only compute the harmonic and first k integrable and co-
integrable eigenfields, where k is between 500 and 5000. Then any
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Figure 7: Applying spectral filters to a custom vector field (left). The integrable and co-integrable parts of the field are filtered individually.
Two results (middle and right) are shown.

piecewise constant vector field v can be written as

v =
k

∑
i=1

(αiΦi +βiΨi)+
2g

∑
i=1

γiΓi +vr (15)

where vr is the “rest-field” of v, i.e. vr = ∑
n
i=k+1 αiΦi +

∑
m
i=k+1 βiΨ

c
i . The coefficients αi,βi describe the contribution of

v to the corresponding eigenfields. They are ordered by ascending
frequency and can be analyzed and manipulated for spectral pro-
cessing of the field. Note that the harmonic eigenfields are in the
kernel of ∆h and thus contribute to the lowest frequency part of
the field.

To enable the spectral processing of tangential vector fields via
the creation of spectral filters, we use the established method (cf.
[VL08]) of enabling the user to “draw” functions Fα,Fβ : R+ →
[0,τ], such that a new vector field v∗ is acquired by replacing the
spectral coefficients of v by new coefficients α

∗
i = Fα(

√
λi) · αi

and β
∗
i = Fβ(

√
λi) · βi. Here, λi is the ith distinct eigenvalue of

the Hodge Laplacian and τ signifies the largest possible magnifi-
cation of a coefficient. The reason for scaling the coefficients by
Fα/β(

√
λi) is that the frequency of the ith eigenfunction is related

to the square root of λi.
In addition, constants γh and γr can be defined, which specify the
scaling of the harmonic part of the field and the rest field vr. A typi-
cal “low-pass” filter is Fα/β(λ) = e−λ which keeps low frequencies
intact while exponentially suppressing high frequencies, which can
be used to simplify fields or remove unwanted noise. In the same
vein, a “high-pass” filter is Fα/β(λ) = 2− e−λ, which can be used
to “sharpen” the field. The integrable and co-integrable parts of the
field can be filtered separately, which allows for a spectral analysis
of the divergence-free and curl-free part of the vector field.

Spectral filtering can be seen in action in our supplementary
video as well as in Figure 7, where we show how it can be used
to interactively edit and analyze tangential fields. As a first step,
we perform a spectral analysis. The plot of the coefficients of the
field in the spectral domain for both the integrable and co-integrable
eigenfields is shown in Figure 8. The unaltered field is shown on
the left of Figure 7. In the magnified area the vectors seem to ex-
hibit noise, and indeed, when applying a low-pass filter on both the
field and additionally enhancing the integrable low-frequency part
(middle), we get a smoothed and more structured field. Since we

magnified only the integrable part, the vortex on the stomach of the
centaur disappears. To analyze the noisy features, we enhance the
high-frequency part of the field and remove the low frequency inte-
grable part (right). We can see that the high-frequency part mainly
consists of two vortices on the side of the centaur (highlighted).

8.6. Compression

The spectral decomposition and the transformation into the fre-
quency domain described above can immediately be used to reduce
data rates required to represent tangent vector fields on meshes:
instead of storing a vector field on a triangular mesh by specify-
ing two values per triangle (coordinates with respect to an edge
or similar common representations), a field can be represented by
the nv+ne+2g coefficients αi,βi,γi. Compression can be achieved
by cutting off the higher coefficients, since the high frequency part
of the fields is typically small. This approach extends existing ap-
proaches from mesh compression [KG00] or dynamic mesh com-
pression [VMHB14] to the compression of tangential vector fields
on meshes. Rate-distortion curves can be found in Figure 9.

In Figure 10, we compressed a field exhibiting over 100 small
curls on a bunny mesh using the lowest 1k integrable and co-
integrable eigenfields. All features are kept faithfully intact.

In Figure 9, left, we plot the relative L2-error when using a
varying number of eigenfields to reproduce the fields on the hand
model and on the rocker arm, both shown in Figure 9, right, as well

Figure 8: Spectral analysis of the field shown in Figure 7.
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Figure 9: Rate distortion curves when compressing various custom
tangential vector fields on three different meshes.

as the field on the bunny shown in Figure 10. The plot is essentially
a rate-distortion curve, as the number k of pairs of eigenfields used
to compress the field directly relates to the data rate, namely the
number of bits per vertex is 2 · 64 · k/n (where n is the number of
vertices) when using double precision for the coefficients. In case
of the tangential field on the bunny mesh, the error only slowly
converges to 0, since the field contains a lot of high frequency
elements (of course, the error still reaches 0 as the number of
eigenfields reaches the number of vertices plus the number of
edges). This is visualized in Figure 10, right, where the part of the
field is shown which cannot be reproduced by the 1k lowest pairs
of eigenfields (note that the LIC visualization shows the structure
of the field, but does not reveal its magnitude). When creating
the same plot for a more regular field, namely the ones shown in
Figure 9, we can see that we are able to reach an almost lossless
compression by using the 2k lowest pairs of eigenfields. It is worth
noting that quite a large number of eigenfields is required to get a
low L2-error, even for this fairly simple field, while a very small
number of eigenfields is required to get visually indistinguishable
results that preserve all the large features. The compression of the
field on the rocker arm yields the best results, where we get an
essentially lossless compression for k = 1100, which corresponds
to a compression rate of 36.52 when comparing to the usual
representation of two doubles per triangle.

Figure 10: A field exposing a lot of small features (left) and the
compressed version made from the 5from the 1000 lowest pairs
(middle). In the last picture (right) we show the part of the origi-
nal field that cannot be constructed from the 1000 lowest pairs of
eigenfields.

In Figure 11 we show a snapshot of a time-dependent
tangent field on the bumpy torus (140240 faces),

Figure 11: Snapshot from the
uncompressed (left) and com-
pressed (right) time-dependent
tangential vector field on the
bumpy torus.

consisting of 500 fields,
which amounts to a file
size of 560,96 Megabyte
when representing the vec-
tors in each face by two
single precision floating
point numbers (4 bytes).
We compress the sequence
using a basis of 500 eigen-
fields which amounts to
a file-size of exactly 1
Megabyte. On average we
get a relative L2-error of
10 percent between com-
pressed and uncompressed
frames, however, as can be
seen in the supplementary
video, where both time-series are shown next to each other, the two
time series are visually indistinguishable.

The timings for the compression are very low, once the eigen-
fields have been computed, which only needs to be done once per
mesh (for timings see Table 1). Whenever a new field on the mesh
is to be compressed, all that needs to be done is to compute the L2-
scalar products of the field with the 2 · k eigenfields (0.67 seconds
for the hand-mesh and k = 1000). Recovering the usual represen-
tation of the vector simply requires a dense matrix vector product
of the matrix containing the eigenfields as columns with the coeffi-
cient vector (0.06 seconds for the hand-mesh and k = 1000, below
1ms when done using the GPU).

9. Conclusion

We introduce a framework for spectral processing of tangential
vector fields using a Fourier-type representation of tangential vec-
tor fields that associates frequencies with tangential vector fields.
To formulate the framework for piecewise constant vector fields
on surface meshes, we introduce a discretization of the Hodge–
Laplace operator. We demonstrate how techniques from spectral
mesh processing can be transferred to tangential vector field pro-
cessing using this framework. We show results for spectral filtering,
analysis and compression. Moreover, we introduce a spline-like ed-
itor for modeling tangential vector fields using interpolation con-
straints. Based on the spectral representation, we propose a com-
putational scheme that enables modeling of tangential vector field
splines in real-time.

Future work One direction of future work is to find more applica-
tions of the Fourier representation of tangential vector fields, e.g.,
by transferring techniques from spectral mesh processing to tan-
gential vector field processing.

For applications, e.g., surface meshing, more general types of
fields (direction fields, RoSy fields,...) are considered. We are
working on establishing a Fourier-type representation for direction
fields. This involves the construction of analog differential opera-
tors and decompositions for these fields. In this paper, we are for-
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mulating the Hodge Laplacian and Dirichlet energy in terms of the
classical operators grad, div and curl. This could be helpful since
recent work is already addressing the construction of a curl opera-
tor [DVPSH15] for direction fields to ensure integrability.
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