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Figure 1: Split-depth frames over time generated by our approach. Via an occlusion cue, split-depth images can induce a 3D effect.

Abstract
Split-depth images use an optical illusion, which can enhance the 3D impression of a 2D animation. In split-depth images (also
often called split-depth GIFs due to the commonly used file format), static virtual occluders in form of vertical or horizontal
bars are added to a video clip, which leads to occlusions that are interpreted by the observer as a depth cue. In this paper,
we study different factors that contribute to the illusion and propose a solution to generate split-depth images for a given RGB
+ depth image sequence. The presented solution builds upon a motion summarization of the object of interest (OOI) through
space and time. It allows us to formulate the bar positioning as an energy-minimization problem, which we solve efficiently. We
take a variety of important features into account, such as the changes of the 3D effect due to changes in the motion topology,
occlusion, the proximity of bars or the OOI, and scene saliency. We conducted a number of psycho-visual experiments to derive
an appropriate energy formulation. Our method helps in finding optimal positions for the bars and, thus, improves the 3D
perception of the original animation. We demonstrate the effectiveness of our approach on a variety of examples. Our study
with novice users shows that our approach allows them to quickly create satisfying results even for complex animations.

CCS Concepts
•Computing methodologies → Image processing; Perception;

1. Introduction

Preserving or even enhancing the 3D impression of a scene on a
2D display can be a powerful means to attract attention, amplify
scene layout, and enhance scene understanding, yet, it is difficult to
achieve. Artists throughout the centuries developed techniques on
how to use effective pictorial (or monocular) cues to enhance the
depth perception on a canvas.

Occlusion is one of the strongest cues of the human visual sys-
tem to interpret depth ordering. In consequence, it is also one of
the main factors to exploit when conveying a 3D arrangement. One
creative solution to exploit this effect for paintings is the use of a
passepartout (a paper, more usually, cardboard sheet with a cutout).

† j.liao@tudelft.nl

We are so accustomed to a passepartourt being not part of the image
itself that incorporating it into the actual painting leads to a surpris-
ingly convincing 3D effect, e. g., in "Escaping Criticism" by Pierre
Borell del Caso as shown in Figure 2. With digital media, virtual
passepartouts have become a popular variant for photography and
static virtual scenes [SCRS09] [RTMS12]. The resulting occlusion
effect separates the image into a front and back layer, which pro-
duces a strong "popping out" sensation or a "floating on the win-
dow" illusion. Split-depth images utilize similar reference spaces,
usually bars (but we will use the general term splits throughout the
paper), to increase the 3D effect of a short animation or movie clip.
They have recently gained in popularity and are employed by an
increasing number of companies to catch the consumer’s attention
and interest. This paper will present a novel algorithm to help in the
generation of split-depth images.
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Figure 2: The use of reference spaces in paintings, images and
animations increases 3D impression. a) "Escaping Criticisim" by
Pierre Borell del Caso; b) Out of bounds photography [OOB15];
c) Virtual passepartouts [VP09]; d) Split-depth image.

As for passepartouts, splits induce a plane in the virtual scene,
creating a division between the mental fore- and background. If an
object overlaps this plane, it is considered in front. The same holds
for animations where this information is usually interpreted as an
object moving out of the image towards the viewer.

Currently, the generation of such split-depth images is a purely
manual and time-consuming task relying on image editing tools to
segment each image in an animation and add the splits. Further,
there are no known rules for producing the effect and choices were
made in an adhoc manner, although the quality of the resulting an-
imations relies heavily on several factors such as position, width,
scene content, physical correctness, etc. In consequence, design-
ing split-depth images is a tedious and time-consuming task, which
resulted in many low-quality examples on the internet.

In our work we propose an approach to automatically create
split-depth images using an RGBD (color plus depth) image se-
quence as input. We investigate the possible factors, which con-
tribute to the enhanced 3D perception and build a computational
model to automatically generate splits that lead to a convincing re-
sult. Overall, we make the following contributions:

• A perceptual study to investigate the contributions of different
factors to the split-depth illusion;

• A multi-objective split-optimization procedure respecting vari-
ous perceptual cues, such as occlusion, split proximity, and scene
saliency;

• A framework to support the split-depth image generation.

2. Related work

In this section, we will briefly discuss the related work of optical
illusions in relation to depth.

Optical illusions. The research of optical illusions has a long his-
tory in vision science. Michael Bach provides a vast collection of

optical illusions on http://www.michaelbach.de/ot/, which
use different perceptual cues such as motion (dotted line [IAC09],
reverse Phi illusion [AR86]), luminance and contrast (Hermann
grid [Spi94], the pyramid illusion [RMR83]), color (color fan
[ZECL12] [RE12]), geometric (Zöllner illusion, disjointed arch),
size constancy (moon illusion [RP02]), etc. Gregory et al. [Gre97]
classify the phenomena of illusions into four main classes: ambi-
guities (Necker cube), distortions (Ponzo figure), paradoxes (Tri-
bar impossible figure) and fictions (Kanizsa square). Among them,
some optical illusions already have a long history, whose mecha-
nisms are well studied while others still lack a successful explana-
tion [Oli06]. It has been only a short time that split-depth illusions
are produced and little investigation was done in automating this
process.

Occlusion depth cue. Depth perception helps us perceive the
world in 3D and there are various kinds of depth cues, which are
typically classified into binocular cues and monocular cues. With-
out 3D devices, we typically encounter monocular cues in anima-
tions - depth information that can be perceived with just one eye.
Motion parallax [KDR∗16] [LSE17], size, texture gradient [BL76],
contrast, perspective, occlusion [PBL07], and shadows [BG07] are
examples of these. Occlusion is a particularly strong depth cue
[Cut95], which can be used for various purposes, such as depth
recovering [SCN08] [SSN07], or depth enhancement. In this work,
we focus on the latter one. Ritschel et al. [RTMS12] provided a
framework to improve the perceived 3D effect by adding a vir-
tual passepartout to RGBD images. Later, Zheng et al. [ZZS13]
extended this work by incorporating scene saliency into the opti-
mization. A similar work [SCRS09] presented an intuitive user in-
terface for fast "Out of Bounds" prototyping by adding 3D frames
to 2D photographs. These approaches are mostly restricted to static
images. Finding the optimal splitting plane in animations is diffi-
cult and often error prone as the object’s motion is in general un-
restricted and the 3D impression is quickly reduced by a non opti-
mal placement. Nonetheless, well-placed simple splits in the form
of horizontal or vertical bars can provide a strong occlusion depth
cue. In this paper, we investigate the creation of split-depth images
and various factors that contribute to their effectiveness.

3. Overview

Our framework is illustrated in Figure 3. Given an RGBD image
sequence, a mask to encode the OOI, and a choice for the number
of splits and their width, we seek to generate optimal splits (poten-
tially, in combination with virtual passepartouts). Video input with
depth has become wide-spread (e.g., Kinect). In this case, an OOI
can be extracted using segmentation and rotoscoping.

The core of our solution builds upon an energy optimization.
To this extent, we first conduct a few psycho-visual experiments
to validate assumptions that we will then integrate into our energy
formulation (Sec. 4). We summarize the motion of the OOI through
space and time (Sec. 5.1), which serves as a hard constraint and
basis of our approach. Given these elements, we build a formulation
for the optimal positioning of splits (Sec. 5.2). We then demonstrate
our approach on various examples and show its effectiveness via an
evaluation with novice users (Sec. 6) on complex datasets, before
concluding (Sec. 7).

© 2017 The Author(s)
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Figure 3: Overview: Given an RGBD image with a mask channel to indicate an object of interest, we summarize the motion spatially and
temporally. This summary, together with other factors, such as saliency and proximity, will guide the split finding process.

4. Preliminary study

In this section, we study the assumptions that will guide our opti-
mization. Throughout our experiments, unless otherwise stated, we
used two splits, as it is the most common setup found in the many
examples that are presented online, although there are a few cases
where the number of splits varies or non-vertical bars are used. We
formulate the following hypotheses, which we base on our obser-
vations from various online examples:

• Preference for split width varies on an individual basis;
• Splits should be at the same depth layer, otherwise the result

might seem implausible;
• People prefer splits with a narrower gate (bar distance to the ob-

ject is smaller);
• Main features in the scene should not be obstructed by the splits.

For the first assumptions, we deliberately avoid content influ-
ence. We thus investigate scenes using abstract cubes before test-
ing two more complex scenes. In total, we performed four exper-
iments in this preliminary study and involved 45 users with nor-
mal or corrected-to-normal vision. During the training session, we
introduce split-depth images to the participants by showing them
some previously collected examples. Once the concept was clear,
we started the experiments. To avoid absolute scales for preference,
we used a forced-paired comparisons [MTM12] [LCTS05]. Here,
a preference choice has to be made between two shown exemplars.
We avoid biased results by randomizing the tests.

Experiment 1: Testing preference for split width. We used two
different scenes from which we created three split-depth images
with different split width (small (2% screen width), middle (4%
screen width), and big (8% screen width)) and tested two differ-
ent scenes. For each pair, we asked participants to choose the one
which looks as if the object is moving closer to them.

The result is recorded in the preference matrix shown in Table 1.
In total, it records 270 = 45 ∗ 3 ∗ 2 evaluations, used as a Score.
The numbers indicate the number of times that the corresponding
image sequence was preferred. E.g., the cell in row Small, column
Middle has a value of 52 indicating that 52 times Small was pre-
ferred to Middle in a direct comparison. The results are not entirely
conclusive, even though the splits with the biggest width score the
highest, there is no clear decreasing or increasing tendency shown
as the split width increases. Our assumption that width is based on
personal preference seems thus valid. In consequence, we made the
split width a user-defined parameter.

Table 1: Preference matrix for split width.

Small Middle Big Score
Small − 52 35 87
Middle 38 − 34 72
Big 55 56 − 111

Experiment 2: Splits should share the same depth to avoid an
implausible appearance. Again, we used two scenes, one with
splits at the same depth and one with different depth layers but
with the same distance of the splits in 3D. Note that due to perspec-
tive foreshortening, the distance between the splits that are located
at different depths appears smaller. For each pair, we asked, which
one is more plausible. The result is illustrated in Figure 4. 74 out
of 90 (binomial test, p < .000001) choices favor the ones, where
splits are placed at the same depth layer. Even though these results
are significant, we cannot exclude that other factors, such as mo-
tion direction, might influence a user’s preference, which should be
investigated in further experiments.

Figure 4: Preference comparison between bar placed at the same
depth and different depth.

Experiment 3: Narrower gates are preferred. We used two
scenes and created three split-depth image sequences each, where
the opening between the gates ranges in width (narrow (around
15% screen width), middle (around 30% screen width), wide
(around 45% screen width)), respectively. Again, participants per-
form 6 pair comparisons and were asked to choose the one, which
they perceive as having a stronger depth.

The result is recorded in Table 2. The study shows that people
preferred narrower gates as shown in the last column - the score
increases when bars get closer. While not entirely conclusive, the
results indicate that placing the splits as close as possible to the OOI
is generally preferable if no other factors, such as scene content
influence the perception, see Experiment 4.

© 2017 The Author(s)
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Table 2: Preference matrix for split proximity.

Narrow Middle Wide Total
Narrow − 54 56 110
Middle 36 − 57 93
Wide 34 33 − 67

Experiment 4: Main features should not be obstructed by bars.
We do want to maintain the visibility of the main features in the
animation. In practice, these would have to be estimated or other-
wise derived (e.g., eye tracking). This constraint may conflict with
the expected preference for a narrow opening between splits. In this
study we want to validate that in some cases proximity of splits are
more important than the scene saliency and vice versa. We present
two scenes (Dragon, Balls) and placed the bars at five different lo-
cations having different proximity of the bars and covering differ-
ently salient regions, Fig. 5. For each animation, we generated five
split-depth image sequences and inquired regarding preference. As
there are many factors that can play a role, we asked for the reason-
ing via a textbox.

As shown in Figure 6, for the dragon scene 23 out of 45 (bi-
nomial test, p < .000001) participants chose the version with the
narrow gate, whereas for the ball scene 17 out of 45 (binomial test,
p = .002594) chose the one where the main object is more visi-
ble. It is important to note that for the dragon scene, which has a
simplistic background, 8 participants mentioned in their reasoning
that they preferred the increased depth perception due to the narrow
gates. For the ball scene, which has a more complex background,
12 participants mentioned that they preferred a wider gate not be-
cause it provided a stronger 3D impression but because the narrow
gate occluded salient parts of the scene. These findings illustrate the
complexity of the problem, as it indicates that it is scene-dependent.
The preferred balance between covered salient elements and prox-
imity of the bars can thus vary. For this reason, our approach lets
the user determine the balancing between these two factors, e.g., if
salient parts are hidden the impact of saliency preservation can be
adjusted by increasing the according parameter in our framework.
Future studies with more diverse scenes could give more insight
into the impact of individual features on the perceived result.

A B C D E

Figure 5: Scenes (dragon and ball scenes) used in experiment 4.

5. Our approach

We will now use the findings of our preliminary study to develop
an optimization procedure for the placement of splits. First, in
Sec. 5.1, we will explain our motion summarization, which is used
to ensure that no intersections between the scene and the splits
occur. Then we derive an energy formulation that is used in the

Figure 6: Votes of people’s preference in experiment 4.

actual optimization process in Sec. 5.2. The input to our frame-
work are a set of RGB images (I1,I2, ...,In), as well as corre-
sponding depth images (D1,D2, ...,Dn), and masking images of
the OOI (M1,M2, ...,Mn). All images have size w× h. Two user-
defined parameters that will be involved in the optimization imme-
diately are the number N and width wb of the splits.

5.1. Motion summarization

Motion in split-depth images can be arbitrary and parts or entire
objects might change. Consequently, object centroids or similar ap-
proximations will not well characterize the animation. Instead, we
summarize the spatial and temporal information via a 3D histogram
approach.

depth 
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3D grid
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Figure 7: Motion summarization scheme. For each voxel inside
the 3D grid, we record the contained depth values of the OOI.

As shown in Figure 7, we discretize our scene into a 3D voxel
grid with dimensions of w× h× k, where k is a number of bins
between the object’s minimum and maximum extent along the z
direction during the animation. As the intersection with the static
scene would be simple to test and it is not as disturbing as intersect-
ing a moving object, we typically only insert the depth values of the
OOI into this 3D grid. All unfilled voxels indicate room to add po-
tential splits. In consequence, it becomes possible to enumerate all
options and test an energy function, derived in Sec. 5.2.

To accelerate computations, we rely on a strategy
from path finding and compute the Minkowski sum be-
tween the inversed 2D split shape and the 3D grid. Vox-
els that remain empty after this convolution will exactly
correspond to valid positions of the split [dBvKOS00].

unfilled grid

segment

x
z

If the splits are represented by axis-
aligned bars, we can project the en-
tire grid on this axis and reduce the
problem’s dimensionality. To facil-
itate explanations, we will assume
this case in the following. The figure
to the right illustrates the resulting
representation. The Minkowski sum

© 2017 The Author(s)
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is similar to a convolution and has the positive side effect to reduce
noise. Figure 8 illustrates this effect for different split widths.

To enumerate all possible split configurations, we should re-
member our findings from Sec. 4. Splits should form gates through
which the OOI moves in order to induce a 3D effect. Additionally,
these splits should share the same depth. In consequence, if we slice
the motion summarization grid with a plane at a certain depth, the
splits should separate the OOI intersections with this plane.

For example, if we assume the user indicated that two splits
should be used and a given depth layer leads to three connected
regions that indicate potential placements, (A,B,C), we will test
the combinations (A,B), (A,C), and (B,C). Generally, there will
be

(K
N
)
= K!

(K−N)!N! possible solutions, where N is the number of
splits and K the number of regions for possible placements. If a
given depth does not allow for the user defined number of splits
to form gates, we can proceed to the next discrete depth level. A
last condition is that splits need to form gates, which the OOI tra-
verses. To ensure this condition, we can test the OOI against each
split along the sequence and two consecutively overlapped splits
form a gate if the OOI is in front of the first, then behind the second
split, or vice versa. Only if all splits form gates, the configuration
is tested.

original width = 16 width = 26

empty area filled area noisy area

Figure 8: Larger bars lead to fewer potential placements, but re-
duce noise in the sequence, as highlighted in the red rectangle.

5.2. Split Optimization

We define an energy functional to encode and optimize various en-
ergy terms, denoted as E f b, Et , Ep, and Es:

min(λ f bE f b +λtEt +λpEp +λsEs). (1)

E f b, Et relates to the visibility of the occlusion by the splits, Ep
to the proximity of the splits, and Es to the saliency in the scene.
By default, we propose the parameters λ f b = 1.0,λt = 0.1,λp =
0.5,λs = 0.5, which work usually well in practice. Nonetheless,
the user has the possibility to adjust settings, as Sec. 4 showed that
some elements, such as preference for proximity and covering of
salient elements vary from scene to scene and individual to indi-
vidual. This energy functional is optimized by evaluating various
split configurations.

Occlusion cue. Occlusion is key in producing the depth effect. In
consequence, a user might want to make sure that the occlusion is
well noticed by the observer. We translate this condition into how
many pixels the OOI is actually in front or behind the given splits
over the duration of the video.

To compute this result, we calculate the number of pixels Ti of
the OOI that overlap with the split i for the current configuration.

Let Tmax be the maximal number among all splits, then we define
the energy:

E f b = ∑
i

1−|Ti/Tmax| (2)

A related energy Et , for trailing, will ensure that the OOI is not
hidden in the beginning of the sequence, as it will otherwise not
be visible to the observer and the frames would be useless for the
animation. As not all sequences will allow us to fulfill a hard time
constraint, we formulate this condition as an energy as follows:

Et = ∑
i

1−min(V/U,1), (3)

where U is a user-defined constant (the desired number of frames
that the OOI is not occluded by the split), V is a constant (the actual
number of frames that the OOI is visible, thus, not occluded). A
similar condition can be added for the end of the sequence, if no
overlap is wanted.

Saliency cue. Main features of the scene, even if they are not part
of the OOI, should not be blocked by the splits. As importance is
difficult to derive, we use a mean saliency term as an estimate. To
this extent, we compute the saliency of all input RGB frames and
sum the contributions [HKP06], Fig. 9. The energy is then defined
as:

Es = ∑
i

Si (4)

where Si is the integrated mean saliency distribution underneath
split i. In other words, split placements will be preferred that cover
less salient regions.

Figure 9: Mean saliency map for the input RGB frames overlaid
with a single frame from the input video for visualization purposes.

Proximity cue To integrate a preference for narrower gates, as was
investigated in our study in Sec. 4, we measure the distance be-
tween the two neighboring splits and encode it in the following
energy formulation:

Ep = ∑
i

Di (5)

where Di is the distance between two neighboring splits (for par-
allel bars, it is just their distance, for general splits, one could use
the Hausdorff distance). The terms are normalized by the screen
width. As the splits are not allowed to intersect with the OOI there
is a natural lower bound for Di, namely the width of the OOI. If the
user wants to only use one bar, this term is ignored.

© 2017 The Author(s)
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Figure 10: Examples of our approach on various data sets. Please refer to the supplemental videos for the animations. From top to bottom,
row 1: mean scene saliency map; row 2: projection of the motion summarization with optimal positions for splits in red; row 3 - 5: example
split-depth frames.

6. Results and discussion

We have implemented our framework in Matlab on a desktop com-
puter with an Intel Core i7 3.7 GHz CPU. We did not optimize the
code for performance. The timing for the motion summarization is
linear in the number of input images, ranging from a few seconds to
several minutes, but could be easily parallelized. The optimization
to look for the bar positions can be done within a few seconds.

6.1. Split-depth GIFs results

We demonstrate our results on a range of scenes. Please refer to
our supplemental material for several split-depth images, of which
we show a few example frames in Figure 10 (row 3 - 5). We also
visualize the final optimized position on the motion summarization
map, Figure 10 (row 2). We created scenes with similar motion to
the most popular split-depth gifs currently available. Interestingly
the artists avoid much clutter in the background or strong camera
motion. Strong camera motion would also contradict with the static
positioning of the splits and affect depth perception.

The improvement using split-depth images is diminished if white
splits are used in front of a bright background. We, therefore, offer
the option to adapt the color of the splits to different gray-scales,

Fig. 11. The user is also free to choose the number of splits for
each scene, although 2 is the default. 1 or 3 is rarely needed and we
encountered no case, where more than 3 was beneficial. A useful
maximal number of splits can be derived directly from the topology
of the summarization.

Figure 11: Adaption of color and number of splits.

An interesting 3D effect can also be achieved by combining the
split-depth images with virtual passepartouts. Our system automat-
ically proposes to enlarge the bar towards the image boundary if the
integrated saliency is comparably low (per default the splits should
not cover more than 15% of the total saliency in the image), Fig. 12.

© 2017 The Author(s)
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Figure 12: Combination using bars and virtual passepatouts

6.2. User validation

To test the applicability of our model in scenes with comparably
complex animations, we have performed a validation user study to
compare our automatic method with manual split placement. As it

Molecular scene Explosion scene

Figure 13: Example frames of two data sets we used in our valida-
tion study.

is a young artform, professional split-depth image artists are scarce.
Additionally, as our work targets users with little experience, we
conducted our study with three users, novice to creating split-depth
images but with differing knowledge on image editing. Their task
was to manually place the splits in the 3D scenes shown in Fig. 13.
Occlusion was then automatically derived from the corresponding
depth values. Before the study, we showed the participants exam-
ples of well done split-depth images. During the experiment, they
could position the splits freely in 3D until they were pleased with
the results. Only vertical splits were allowed. There was no time
limitation throughout the whole study. During the experiment, we
kept track of the number of split position adjustments and the re-
sult is shown in Table 3. It is worth mentioning that, in all test
sequences, participants had to experiment with several positions to
get to their final result.

Table 3: Number of bar adjustments.

User A User B User C
Explosion scene 6 8 8
Molecular scene 10 20 17

Figure 14 row 1 shows the final selected position of each partic-
ipant and the result of our algorithm in the scene summarization.
Row 2 to 5 depicts some example frames for each user. In most of
the users’ results, the scene objects penetrated the splits resulting
in implausible scene constellations, whereas our framework found
acceptable positions.

To further verify if our framework can generate more appeal-
ing results than those created by novice users, we conducted an

OursUser A

Molecular scene Explosion scene

User B User C

User A

User B

User C

Ours

User A

User B

User C

Ours

Figure 14: Results of novice users and example frames. Note the
intersections in the results of novice users.

additional user study with 13 subjects with normal or corrected-to-
normal vision and asked for their preference by showing them the
results of the novice users and ours. The user study setup is similar
to that in Sec. 4. Figure 15 shows the results of people’s preference.
For both datasets, 7 out of 13 (binomial test, p = .018686) subjects
liked ours best. The other results were comparably similar and no
clear preference exists.

Figure 15: Comparison of people’s preference between novice
users’ results and ours.

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



Jingtang Liao, Martin Eisemann & Elmar Eisemann / Split-Depth Image Generation and Optimization

7. Conclusion and future work

We presented an algorithm for automatic split-depth image cre-
ation from RGBD image sequences, which takes important factors,
such as spatial and temporal motion information, scene saliency
and proximity of the splits to the object of interest into account.
We also provided means to manually set and test different param-
eters, such as color and width of the splits, while the succeeding
optimization is fully automatic, which enables an easy exploration
of effective solutions. We validated the importance of these factors
through a preliminary study and demonstrated the usefulness of our
presented model and the optimization in a second user study.

Our method is subject to certain limitations. Imperfect masking
or depth-of-field in the animation, invalidate our current input as-
sumptions. Using natural image matting techniques, one could sep-
arate fore- and background, although (especially for videos) these
techniques are still highly error-prone and require substantial man-
ual effort. As mentioned in Sec. 6.1, scenes with much clutter in
the background or strong camera motion are often avoided by split-
depth image artists. Complex motion in itself is not a problem for
our algorithm. However, many objects with complex motion can
potentially lead to a case where the motion summarization is filled
and our algorithm fails to find good positions for the splits. This is,
however, no real limitation, as it simply implies that there is no pos-
sible intersection-free position for the splits. In fact, it can be seen
as a benefit of our algorithm, as it tells the user that the scene in its
current form is not well suited for an effective split-depth image.
A solution might be non-linear splits (e. g., circle, ellipse) or ani-
mated splits which fade in/out or move throughout the animation
but this is left for future work as the effect on depth perception is
unclear. Another fruitful direction for further research is the exten-
sion of our approach to plain RGB image sequences without depth
information.
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