CAD/Graphics 2001
August 22-24, Kunming
International Academic Publishers

ESSENTIAL DEVELOPMENTSIN FEATURE MODELLING

Willem F. Bronsvoort, Eelco van den Berg, Rafael Bidarra and Alex Noort
Faculty of Information Technology and Systems, Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
W.F.Bronsvoort@its.tudelft.nl

ABSTRACT

Four essential developments in feature modelling are
discussed that solve serious shortcomings in current
feature modelling systems. First, in semantic feature
modelling, it is possible to more adequately specify and
maintain the meaning of features. Second, in enhanced
multiple-view feature modelling, different views on a
product are provided, also for conceptual and assembly
design. Third, in collaborative feature modelling,
several users can collaborate on the development of a
product with full feature modelling functionality.
Finally, in freeform feature modelling, features with
freeform faces are made available. All developments
are illustrated with results from research projects at
Delft University of Technology, and aso future
developments are mentioned.

KEYWORDS feature modelling, validity
maintenance, multiple views, collaborative modelling,
freeform features.

INTRODUCTION

Feature modelling is nowadays the predominant way
of product modelling. Although the functionality of
feature modelling systems has been considerably
improved during the last decade, there are still several
shortcomings. This paper discusses a number of
essential developments to solve the most important. All
these developments take place in the context of
research projects performed at Deft University of
Technology, and are implemented in the prototype
feature modelling system SpPIFF developed at this
university [1].

A number of concepts in feature modelling that are
generally accepted now, and are used in the rest of the
paper, are introduced in the next section. The four
developments are introduced in subsequent sections.

The first shortcoming in current feature modelling
systems is that the meaning, or semantics, of featuresis
often not adequately maintained during modelling. The

semantic feature modelling approach does handle this.
How the semantics of all features is specified, and how
it is maintained during al modelling operations, is
discussed.

The second shortcoming is that product models with
multiple feature views are not yet possible for all
product development phases. Current multiple-view
feature modelling systems only support form feature
views, which can, for example, be used for part detail
design and part manufacturing planning. An approach
that also supports views for conceptual design and
assembly design is discussed.

The third shortcoming is that collaboration of several
users in developing a product with a feature modelling
system is not yet adequately supported. A web-based
collaborative system that offers interactive modelling
facilities, but also all functionality of a real feature
modelling system, is discussed.

The fourth shortcoming is that mostly only regular-
shaped features can be used, whereas in practice
products often contain freeform surfaces. Because of
the many benefits of feature modelling, it is worth to
develop techniques for freeform feature modelling as
well. The main problems that occur here are discussed.

Some conclusions about the developments in feature
modelling discussed in this paper are given in the final
section.

FEATURE MODELLING

This section introduces the main concepts in feature
modelling in general. There is now more or less
consensus in the modelling community that a form
feature (feature for short) is a representation of shape
aspects of a product that are mappable to a generic
shape and functionally significant for some product
life-cycle phase. Functional information, e.g. on the use
of the shape for the end-user or on the way the shape
can be manufactured, can be associated with the shape
information [2].

Several types of features can be distinguished; block
protrusions, cylindrical holes and rectangular slots are
typica examples of frequently used ones. Although

several attempts have been made, it has turned out to be
very difficult to make a general classification of
features. It is therefore important that new types of
features can be easily introduced in a feature modelling
system. All properties of a feature type are specified in
the corresponding feature class, which defines a
template for al its instances. This always includes the
canonical shape of the feature and a number of
parameters that characterise this shape, e.g. the width
and depth for a rectangular slot. By determining values
for the parameters, an instance of a feature class can be
created in a model. The instance is normally attached
to other features in the model, i.e. some of its faces are
coupled to faces of other features. Fig. 1 shows a model
that contains several features.

In advanced feature modelling systems, several
properties that correspond to functional information can
also be specified. In a feature class, feature validity
conditions can be given that al instances of the class
should satisfy. An example is that the radius of a blind
hole should be between 5 and 15 mm. In addition to
feature validity conditions, there can aso be model
validity conditions, which specify relations on or
between instances in a feature model. Examples of
model validity conditions are that two slots should be
paralel, and that the diameter of a hole should be half
of the width of the protrusion it is attached to. Model
validity conditions are specified on the instances
involved. All validity conditions can be specified with
congtraints on feature entities, in particular faces or
dimensions of the features.

A feature model is usually represented by a graph
and a geometric model of the resulting shape [2]. The
graph contains al feature instances, with their shape
and feature validity constraints, attach relations and
model validity constraints. The geometric model can be
a boundary representation, but also a more extended

Fig. 1 Feature model.

representation, such as acellular model [3], that is more
suitable for advanced facilities such as validity
maintenance and feature conversion (see next sections).

There are many applications of features. In product
design, shapes with some function for the end-user of
the product can be considered as features. In design
analysis, in particular stress anaysis with the finite-
element method, features may represent local stiffeners
or other areas relevant for the analysis. In process
planning for manufacturing, volumes in a product that
can be manufactured with a single or a sequence of
machining operations are considered as features. Each
application has its own way of looking at a product, i.e.
its own feature model of the product, with features
relevant for that application. Such an application-
specific feature model is called a view on the product
[4].

Independently of their application, there are basically
three ways to create a feature model: design by features,
feature recognition and feature conversion.

In design by features, the designer specifies a feature
model. He can create instances of feature classes stored
in a library, by specifying values for the parameters,
and add them to the model. In some systems, also new
feature classes, so-called user-defined features [5] can
be created by a user, after which instances from these
can be added to the model. Feature instances can also
be modified, by changing the value of their parameters,
or be removed from the model. The features that are
specified may well have a functional meaning for the
end-user of the product, but can also be manufacturing
features. In the latter case, the designer specifies a
model that, more or less, corresponds to the way the
product will be manufactured.

In feature recognition, features are recognised from a
geometric model of a product. Historicaly, this was the
first method to create a feature model, introduced in the
context of manufacturing planning. Many methods for
feature recognition exist, each with its own advantages
and disadvantages [2]. The four most important cate-
gories of feature recognition methods are rule-based,
graph-based, volume decomposition and geometric
reasoning methods. Some successful feature recognition
systems use combinations of these methods.

Once a feature model of a product has been created,
either by design by features or by feature recognition,
other feature models of that product, which correspond
to other views, can be derived by feature conversion.
For example, a manufacturing planning view can be
derived from a design view. Feature conversion is a
relatively new technique, and forms the basis for
multiple-view feature modelling systems (see
corresponding section).

FEATURE VALIDITY MAINTENANCE

In many current feature modelling systems,
“features’ only occur at the user interface level,
whereas in the product model only the resulting
geometry is stored. Such systems are in essence only
geometric modelling systems. In other systems, see for
example [6], information about features is stored in the
product model, but it is not consistently checked that
the meaning of all features is maintained during the
whole modelling process. For example, a through hole
can be turned into a blind hole by blocking one of the
openings of the hole with a stiffener, without the system
even notifying this change, see Fig. 2. Although
geometrically this is correct, it is incorrect in the sense
that the meaning, or semantics, of the feature is
changed from a through hole into a blind hole.

Ideally, al validity conditions of the features, i.e.
their semantics, should be checked by the system after
each modelling operation. If some validity condition is
no longer sdatisfied, e.g. the top face of a hole is no
longer open, this should be notified by the system, and
preferably the user should be assisted in overcoming
this situation. An approach that supports these ideas is
semantic feature modelling [7]. This approach
guarantees that all design intent once captured in a
model is maintained, bringing feature modelling to a
really higher level than advanced geometric modelling.
It involves specification of the semantics of features in
their respective classes, and maintenance of this
semantics during modelling.

Specification of validity conditions in a feature class
can be classified into two categories: geometric and
topologic. For both, constraints are used. These feature
constraints are members of the feature class, and are
therefore instantiated automatically with each new
feature instance.

First of al, the geometry of a feature may be
constrained by geometric constraints, e.g. requiring that
some faces should be parallel or perpendicular. Another
way of constraining the geometry of a feature, is by
restricting the set of values alowed for a shape
parameter with dimension constraints. For instance, the
radius parameter of a through hole class could be
limited to values between 1 and 10 mm. Finaly, the
geometry of a feature may be constrained by means of
explicit relations among its parameters. These relations
can be simple equalities between two parameters (e.g.
between width and length of a square passage feature)
or, in general, algebraic expressions involving two or
more parameters and constants. For this, we use
algebraic constraints.

The set of shape faces of a feature provides full
coverage of the feature boundary. However, for most

Fig. 2 Changing athrough holeinto ablind hole.

features, not al faces are meant to effectively
contribute to the boundary of the modelled product.
Some faces, instead, have a closure role, delimiting the
feature volume without contributing to the boundary.
The specification of such propertiesis called topologic
validity specification. For this, we use two sorts of
congtraints; boundary constraints and interaction
constraints.

A boundary constraint states the extent to which a
feature face should be on the model boundary. An
example of this is a blind hole class for which the
entrance face has a notOnBoundary constraint, whereas
the bottom face has an onBoundary constraint.

Boundary constraints are insufficient to fully
describe several other functional aspects that can be
inherent to a feature class as well. These are better
described in terms of the feature volume or feature
boundary as a whole. An example of this is the
requirement that every feature instance of some class
should somehow contribute to the shape of the part
model. Such functional requirements can be violated by
feature interactions caused during incremental editing
of the model.

Feature interactions are modifications of shape
aspects of a feature that affect its functional meaning.
An example of this is the transmutation interaction of
the through hole into a blind hole in Fig. 2. We use
interaction constraints in a feature class to indicate that
a particular interaction type is not allowed for its
instances.

Embedding validity conditions in each feature class
and checking them when an instance is created,
enhances the modelling process, as it guarantees that at
the creation of a feature instance its semantics
effectively matches the requirements of its class. In
fact, one of the basic ideas of feature modelling is that
functional information can be associated to shape
information in a feature model. This association,
however, becomes useless when the shape imprint of a
feature, once added to the model with a specific intent,
is significantly modified later by a modelling operation.

Feature model validity maintenance is the process of

monitoring each modelling operation in order to ensure
that all feature instances still conform to the validity
criteria specified for them.

Validity maintenance can be split into two types of
tasks: (i) validity checking, performed at key stages of
each modelling operation; and (ii) validity recovery,
performed when a validity checking task detected a
violation of some validity criterion.

The basic idea of model validity maintenance is that
a modelling operation, to be considered valid, should
entirely preserve the design intent specified with
features as well as model constraints. In other words,
after a valid modelling operation, the feature model
conformsto all its constraints.

If a constraint is no longer valid because of a
modelling operation, e.g. a boundary constraint on the
entrance face of ablind hole is violated by blocking the
face with another feature, the model enters an invalid
state, and a valid model should be achieved again. This
is straightforward if the operation is cancelled: al that
is needed is to backtrack to the valid model state just
before executing it, by “reversing” the invalid
operation.

However, to aways have to recover from an invalid
operation by undoing it is too rigid. It is often much
more effective to constructively assist the user in
overcoming the constraint violations, in order to restore
model validity. In most cases, if the user receives
appropriate feedback on the causes of an invalid
situation, it is likely that other corrective actions might
preferably be chosen. We call this process validity
recovery, and it includes reporting to the user constraint
violations, documenting their scope and causes, and,
whenever possible, providing context-sensitive correc-
tive hints.

The user can specify several modelling operations in
a batch and execute them, in order to overcome the
invalid model situation. Execution of these reaction
operations follows the same scheme as normal
operations, which means that their outcome is checked
for validity. At any stage when the model isinvalid, the
user may give up attempting to fix it and backtrack to
the last valid stage.

The specification of reaction operations is supported
by automatically generated hints, which document each
constraint violation detected and suggest solutions.
These vary with the type of constraint involved. In the
example of the blocked entrance face of a blind hole,
the feature that blocks the face is reported to the user,
who can then reposition it to solve the problem.

In all cases, the scope of the reaction choices made
available is restricted to those features and model
constraints that are somehow involved in the invalid
situation. This assists the user in concentrating validity
recovery efforts on effective and meaningful reactions.

The semantic feature modelling approach has been
fully implemented in the SPIFF modelling system. It
uses a feature dependency graph and a cellular model
as main model representations [7,3]. Gao et a. [8] have
presented an alternative approach to semantic feature
modelling, closer to current commercial feature
modelling systems.

MULTIPLE-VIEW FEATURE MODEL -
LING

Multiple-view form feature modelling is a product
development approach that combines concurrent
engineering and feature modelling. Concurrent
engineering aims at designing better products in less
time, by using Design for X (where X stands for any
product life cycle phase) [9] and by enabling
simultaneous activities in several product development
phases [10].

Multiple-view form feature modelling supports
applications from various phases of product
development, by providing interpretations of, or views
on, a product for each of these applications. Each view
contains a form feature model specific for the
application. Since the feature models of all views
represent the same product, they have to be kept
consistent.

Quite a lot of research has been done on multiple-
view form feature modelling during the last years. In
the SPIFF modelling system, applications from severa
product development phases are integrated by
providing a view with a constraint-based form feature
model for each of them, and combining these feature
models into one product model [1]. It uses multiple-
way form feature conversion to alow changes in the
feature model of any view to be propagated to the
feature models of the other views. Other approaches to
multiple-view form feature modelling have been
presented by, among others, De Martino et al. [11] and
Hoffmann and Joan-Arinyo [12]. All these approaches
share a number of shortcomings.

First, all approaches focus on the later product
development phases in which the geometry of the
product has been fully specified. They use the geometry
of the product as a basis, and, therefore, cannot be
applied in the early product development phases, such
as conceptua design.

Second, all approaches deal with a single part only.
Real products, however, rarely consist of a single part.
Dealing with products that consist of multiple parts, i.e.
assemblies, does not only involve the separate parts, but
also the relations between these parts.

To support the early product development phases
and products with multiple parts, the enhanced

multiple-view feature modelling approach has been
developed. Here, instead of form feature models,
enhanced feature models are used. Such models till
contain features, but these are here defined as aspects of
the product that have some functionality. The features
can be form features, but are in general features at a
higher abstraction level. A prototype enhanced
multiple-view feature modelling system is being
developed based on the SPIFF modelling system. It
supports four product development phases (see Fig. 3).

The first phase, in which the product architecture is
determined by specifying components and their
interfaces, is conceptual design. Components are built
of a base shape, concepts, such as depressions and
protrusions, and reference elements. Interfaces between
components are specified by means of degrees of
freedom between the components. The complete
geometry of the components does not have to be
specified. For example, for some concept only certain
properties, such as its maximum volume, can be
specified. An example of a conceptual design view for
a bench vice, consisting of a base yaw, a moving yaw
and aspindle, isgiven in Fig. 3a.

The second phase, in which the physical connections
between the parts are determined, is assembly design.
The connections are represented by connection
features, such as dove-tail and pen-hole connection
features, see also [13]. An example of an assembly
design view of the bench vice of Fig. 3a, with the form
features for the connections between the components, is
givenin Fig. 3b.

The third phase, in which the details of the geometry
of parts are determined, is part detail design. Detail
design features are form features, examples are a
through hole and a rectangular protrusion. An example
of a part detail design view for the base yaw part of the
bench vice of Fig. 3a, isgivenin Fig. 3c.

The fourth phase, in which the way each part is to be
manufactured is determined, is part manufacturing
planning. Manufacturing planning features are again
form features, such as slot and hole. An example of a
manufacturing planning view for the base yaw part of
the bench vice of Fig. 3a, isgivenin Fig. 3d.

The enhanced multiple-view feature modelling
approach keeps the feature models of al views
consistent. The views can be divided into a group of
views that deal with all components of a product and
the relations between them, i.e. the aggregate-oriented
views, and a group of views that deal only with asingle
part, i.e. the part-oriented views. The conceptual design
view and the assembly design view are the aggregate-
oriented views, and the part detail design views and the
part manufacturing planning views are the part-oriented
views (see Fig. 4). The part-oriented views on a part
should represent the same part. The aggregate-oriented

Fig. 3 A conceptua design view (a), an assembly design
view (b), a part detail design view (c), and a part
manufacturing planning view (d).

views should represent the same product, and represent
the parts from the part-oriented views as
(sub)components that are related. If the views satisfy
these requirements, they are said to be consistent.
Feature conversion is used to achieve this. It involves
linking features, mapping features and recognising
features[14].

Some information is given here on how a designer
might work with the various views.

conceptual design
view

e

assembly design
view

N\

part detail design
view

|

part manufacturing
planning view

\ product [

Fig.4 Reations between the supported views. the
conceptual and assembly design view deal with the
whole product, whereas the part detail design and
manufacturing planning views dea with the
individua parts.

The conceptual design view allows the designer to
specify the product architecture with components and
interfaces.

The assembly design view alows the designer to
refine the interfaces between the components in the
conceptual design view. A connection feature needs to
be created for each interface in the conceptual design
view, and linked to that interface. The interface and the
connection feature should reduce the same freedom. In
order to accommodate the connection feature, form
features may be created on the components in the
assembly design view.

The part detail design views allow the designer to
refine the parts that are represented by the components
in the conceptual design view, and which may have
been refined in the assembly design view to
accommodate connection features. Form features may
be created for concepts in the conceptual design view,
and linked to those concepts. A form feature should
satisfy the requirements specified for the corresponding
concept, eg. that the volume should be less than 80
cm®. In addition, form features are automatically
created to represent the regions of a part that
correspond to the form features of the connection
features on the related component.

The manufacturing planning views dlow the
designer to analyse the parts for manufacturability and
to create a manufacturing plan for them. The feature
model in a manufacturing planning view is linked to the
feature model in the corresponding part detail design
view.

In all cases, when the feature model of a view is
changed, the feature models of the other views involved

are made consistent, in order to check whether their
requirements are still satisfied.

Implementation of enhanced multiple-view feature
modelling in the SPIFF modelling system is near
completion [14]. Experiences so far have shown that
feature views that represent only those aspects of a
product that are relevant in the associated product
development phase, can significantly increase the
insight of the designer into the product model.

COLLABORATIVE FEATURE MODEL -
LING

Collaborative modelling systems are distributed
multiple-user systems aimed at supporting engineering
teams in co-ordinating their modelling activities.

So far, only a small number of tools have been
developed that somehow support collaborative design
activities. For example, tools for collaborative model
visualisation via Internet are now becoming available,
providing concepts such as shared cameras and
telepointers. However, such tools are primarily focused
on inspection, e.g. using simple polygon mesh models,
and do not support real modelling activities. In other
words, they are valuable assistants for teamwork, but no
real CAD systems.

An interesting research challenge consists of
developing a collaborative feature modelling system
that offers all facilities of advanced feature modelling
systems to its users, while at the same time providing
them with the necessary co-ordination mechanisms that
guarantee an effective collaboration. Typicaly, in a
collaborative session, different participants would be
provided with their own, application-specific views on
the product model. The co-ordination mechanisms
should solve the critical problems of concurrency and
synchronisation that characterise collaborative design
environments. Concurrency involves management of
different processes trying to simultaneously access and
manipulate the same data. Synchronisation involves
propagating modified data among users of a distributed
application, in order to keep their data consistent. This
section discusses webSPIFF, a web-based collaborative
feature modelling system that is a major step in this
direction.

webSPIFF has a client-server architecture, consisting
of several components (see Fig. 5). On the server side,
two main components can be identified: the SPIFF
modelling system, providing al feature modelling
functionality; and the Session Manager, providing
functionality to start, join, leave and close a modelling
session, and to manage al communication between
SPIFF and the clients.

The clients perform operations locally as much as

webSPIFF Server

-t »| Session Manager

webSPIFF client [] A
webSPIFF
portal

P v

| SPIFF modeling system

Fig. 5 Architecture of webSpIFF.

possible, in particular regarding visualisation of, and
interaction with, the feature model. Only high-level
semantic messages, e.g. specifying modelling
operations, as well as a limited amount of model data
necessary for updating the client data, are sent over the
network.

The server co-ordinates the collaborative session,
maintains a central product model, and provides all
functionality that cannot, or should not, be implemented
on the client. In particular, as soon as real feature
modelling computations are required, they are executed
at the server, on the central product model, and their
results are eventually exported back to the clients.

An important advantage of this architecture is that
there is only one central product model in the system,
thus avoiding inconsistency between multiple versions
of the same model.

As abasis for the server, the SPIFF modelling system
was taken, which offers several advanced modelling
facilities. As already discussed in the previous sections,
it offers feature validity maintenance functionality and
multiple views on a product model. In addition, SPIFF
offers sophisticated feature model visualisation
techniques, which visualise much more specific feature
information than most other systems do. For example,
feature faces that are not on the boundary of the
resulting object, such as closure faces of athrough dot,
can be visudised too. All these facilities are
computationally expensive, and require an advanced
product model, including a celluar model with
information on all featuresin al views[3].

The Session Manager stores information about an
ongoing session and its participants. It manages all
information streams between webSpPIFF clients and the
SPIFF modelling system. Since several session
participants can send modelling operations and queries
to the webSPIFF server at the same time, concurrency
must be handled at the Session Manager. It is also the
task of the Session Manager to synchronise session
participants, by sending them updated model data, after
a modelling or camera operation has been processed.

The Session Manager has been implemented using the
Java programming language.

The clients of webSPIFF are using standard web
browsers. When a new client connects to the webSpIFF
portal, a Java applet is loaded, implementing a simple
user interface, from which a connection with the
Session Manager is set up.

Once connected to the server, the user can join an
ongoing collaborative session, or start a new one, by
specifying the product model he wants to work on.
Also, the desired view on the model has to be specified.
The current version of webSPIFF provides two views:
one for design and another for manufacturing planning
of parts. Information on the feature model of that view
is retrieved from the server, and used to build the
client’s graphical user interface, through which the user
can start active participation in the modelling session.

Obvioudly, clients should be able to specify
modelling operations in terms of features and their
entities; for example, a feature, to be added to a model,
should be attachable to entities of features already in
the model. After a feature modelling operation, with all
its operands, has been fully specified, the user can
confirm the operation. The operation is then sent to the
server, where it is checked for validity and scheduled
for execution. This can result in an update of the
product model on the server, and thus also of the
feature model in the view of each session participant.

In addition to the above functionality, several
visualisation and interactive facilities of the SpPIFF
system have also been ported to the clients. webSPIFF
clients provide two ways of visualising the product
model, both making use of so-called camera windows,
i.e. separate windows in which a graphical
representation of the product model is shown. First, a
sophisticated feature model image can be displayed.
Second, a visualisation model can be rendered that
supports interactive modification of camera viewing
parameters, e.g. rotation and zoom operations. After the
desired viewing parameters have been interactively set,
they are sent to the server, where a sophisticated feature
model image corresponding to the new parameter
values is rendered and sent back to the client, where it
is displayed. webSPIFF cameras also use a selection
model, providing facilities for interactive specification
of modelling operations, e.g. assisting the user in
selecting features or feature entities by having them
picked in a sophisticated image of the model.

To support all these facilities, the webSPIFF clients
need to locally dispose of some model data. Thisdatais
derived by the server from its central model, but it does
not make up areal feature model. webSPIFF clients need
just enough model information in order to be able to
autonomously interact with the feature model, i.e
without requesting feedback from the server. Client

model data is never modified directly by the clients
themselves. Instead, updated model data is sent back to
the client after a modelling operation has been executed
at the server. In addition, if the central feature model
has been changed, appropriate updated model data is
sent to al other session participants as well. This
consists of, possibly several, new model images, a new
visualisation model, and an incremental update of the
selection model.

A good distribution of the functionality between the
server and the clients has resulted in a well-balanced
system. On the one hand, the server provides
participants in a collaborative modelling session with
the advanced functionality of the SpIFF feature
modelling system. On the other hand, al desirable
interactive modelling functionality is offered by the
clients, ranging from display of sophisticated feature
model images to interactive model specification
facilities.

All' functionality has been implemented in the
webSPIFF prototype system [15], of which a demo
version is available on Internet for users to experiment
with, at www.webSPIFF.org.

FREEFORM FEATURE MODELLING

In almost all current feature modelling systems, only
regular-shaped (form) features, i.e. features having
(rounded) prismatic and cylindrical shapes, can be
used. However, products in practice often contain
freeform surfaces. Therefore, a research project has
recently been started on freeform feature modelling.
Many concepts from modelling with regular-shaped
features can be mapped to freeform feature modelling
in a straightforward way. It will be indicated what has
already been achieved here, and which issues are till
open.

Freeform features can be defined in the same way as
regular-shaped features. They still correspond to
generic shapes, the only difference being that there is
more modelling freedom for the shape of the features;
typically, their faces can be modelled with NURBS
[16].

In freeform feature modelling, the genera outline of
a product is often created in the initial phase of the
modelling process by defining a primary feature, which
here can be a freeform volumetric shape. Later,
secondary features can be attached to the primary
feature in order to adjust the product model, while
preserving its global outline. Secondary freeform
features are also referred to as detail features.

Features like protrusions, holes and dots can still be
used in this context, but now with freeform faces. In
addition, many new types of useful features can be

envisaged. The definition of a freeform feature class is
more complicated. The canonical shape now has to be
modelled with, for example, NURBS. In addition, a
meaningful set of parameters has to be chosen that
makes intuitive instantiation and modification of the
feature possible, and a mapping between these
parameters and the low-level definition entities of the
NURBS has to be established. Instances can again be
created in a model by determining values for the
parameters, but their “attachment” to other features is
more complicated than that of a regular-shaped feature.
In Fig. 6, two freeform feature models are shown, with
different parameter values for some features.

Au and Yuen [17] indicate that the most important
relation between individual freeform features in an
object is how they are connected, i.e. the order of
continuity between adjacent faces of the features.
Smooth transitions between adjacent faces are often
realised by blends. They are mainly used to prevent
sharp cuts, but can also be useful in closing gaps that
occur when adjacent faces do not connect properly.

The idea that properties that correspond to functional
information can be included in freeform feature classes,
and on or between freeform feature instances, by
validity conditions, has hardly been explored, but seems
nevertheless very promising. One can easily imagine
conditions that all instances of some freeform feature
class have to satisfy, e.g. that the curvature of their side
faces is limited, or conditions on interaction between
feature instances, e.g. that the area modified by another
feature is limited. Such validity conditions can again be
specified with constraints, although these may become
quite complex.

A freeform feature model can still be represented by
a graph, with all feature instances, attach relations and
model validity constraints, and a geometric model of
the resulting shape, e.g. a boundary representation with
NURBS patches. A more advanced geometric model
than a boundary representation may be desirable here
too, but this hasto be further explored.

Fig.6 Variations of a freeform feature model: (a) is
standard model and (b) is model with different
parameter values for some features.

The possible applications of freeform features, the
corresponding views on a product, and the ways to
create a feature model, are similar to those for regular-
shaped features. This iswhy freeform feature modelling
can be regarded as an extension of modelling with
regular-shaped features. However, many difficult
problems have to be solved to make freeform feature
modelling mature. Some of these problems are
mentioned here.

In design by freeform features, the creation of
individual freeform features by specifying values for
their parameters is again the basic idea. Because of the
large shape domain of freeform features, a good
mechanism to define new feature classes is indispen-
sable. The canonical shape, the parameterisation and
the validity conditions should be easy to specify for a
user. In addition, ways have to be provided to indicate
how individual freeform featuresin an object have to be
“attached” to the model, including the order of
continuity between adjacent faces of features.

Validity maintenance has hardly been explored for
freeform features. As already remarked above, one can
easily imagine useful validity conditions for freeform
features. However, these become only really useful if
they are maintained during the modelling process. How
this can be achieved, will be a major issue of our future
research in this area.

Although some methods have been proposed for
freeform feature recognition, these are not yet mature.
Considering the long history in, and large variety of
currently available methods for, recognition of regular-
shaped features, much more research is to be expected
here.

Feature conversion and multiple-view feature
modelling are other subjects that have not yet been
tackled in the context of freeform features. Severa
topics mentioned above come together here, such as
parameterisation of features, validity specification and
maintenance, and feature recognition.

Research on freeform feature modelling is in its
preliminary stage. A survey on the most important
concepts has been produced [18], and some initial
implementation work has been done.

CONCLUSIONS

Four essential developments in feature modelling
were discussed in this paper. Here, some conclusions
about these developments and some future work are
discussed.

The semantic feature modelling approach has turned
out to be a very useful and powerful way of fulfilling a
major goal of feature modelling: storing and
maintaining the design intent in a product model.

However, more research should be done on defining the
semantics of features. Although severa types of
constraints are now available to impose certain validity
conditions on models, many other validity conditions
should be made available in a generic way as well. As
an example one can think of general accessibility con-
ditions for a hole. Ways to specify such requirements,
and to solve the corresponding constraints, should be
found.

Multiple-view feature modelling is becoming even
more attractive when also product development phases
are supported in which the geometry does not have to
be fully specified, i.e. conceptual design, and in which
not only single parts but also assemblies are dealt with,
i.e. assembly design. Although an initial implementa-
tion of a system that supports this has been described,
many extensions can be thought of. In particular, more
views can be introduced and the conversion between
views can be further automated.

Collaborative feature modelling is a very interesting
option for collaborative modelling in general, because
it offers al advantages of multiple-view feature
modelling to the participants in a collaborative session.
A web-based prototype system has been presented for
collaborative modelling of parts. Currently, we are
working on extensions to include collaborative
conceptua and assembly modelling, by including views
for these product development phases in the system.

Freeform feature modelling is a very promising and
useful extension of regular-shaped feature modelling.
However, many intricate problems have to be solved, in
particular feature attachment, feature validity mainte-
nance and feature recognition and conversion.

Altogether, we believe that the developments
discussed in this paper contribute to making feature
modelling more mature, and thus even more attractive
as the way of product modelling in the future.

REFERENCES

[1] Bronsvoort WF, Bidarra R, Dohmen M, van
Holland W and de Kraker KJ. Multiple-view
feature modelling and conversion. In: Geometric
Modeling: Theory and Practice - The State of the
Art. Strasser W, Klein R and Rau R (eds). Berlin,
Springer, 1997, 159-174.

[2] ShahJJand Méantyla M. Parametric and Feature-
based CAD/CAM; Concepts, Techniques and
Applications. New York, John Wiley & Sons,
1995.

[3] Bidara R, de Kraker KJ and Bronsvoort WF.
Representation and management of feature
information in a cellular model. Computer-Aided
Design, 1998, 30 (4): 301-313.

[4]

(5]

6]

[7]

(8]

[9]

[10]

[11]

Bronsvoort WF and Jansen FW. Feature
modelling and conversion — Key concepts to
concurrent engineering. Computers in Industry,
1993, 21 (1): 61-86.

Hoffmann CM and Joan-Arinyo R. On user-
defined features. Computer-Aided Design, 1998,
30 (5): 321-332.

Parametric. Pro/ENGINEER, version 2000i.
Parametric Technology Corporation, 2000,
Waltham, MA.

Bidarra R and Bronsvoort WF. Semantic feature
modelling. Computer-Aided Design, 2000, 32
(3): 201-225.

Gao S, Chen Z and Peng Q. Feature validity
maintaining based on local feature recognition.
In: CD-ROM Proceedings of the 2000 ASME
Design Engineering Technical Conferences and
Computers and Information in Engineering
Conference, September 10-13, Baltimore,
Maryland, USA, New York, ASME.

Ulrich KT and Eppinger SD. Product Design and
Development (Second Edition). Boston,
Irwin/McGraw-Hill, 2000.

Bullinger HJ and Warschat J. Concurrent
simultaneous engineering systems; the way to
successful product development. Berlin,
Springer, 1995.

De Martino T, Falcidieno B and Hassinger S.
Design and engineering process integration
through a multiple view intermediate modeller in

[12]

[13]

[14]

[15]

[16]

[17]

[18]

a distributed object-oriented system environment.
Computer-Aided Design, 1998, 30 (6): 437-452.
Hoffman CM and Joan-Arinyo R. CAD and the
product master model. Computer-Aided Design,
1998, 30 (11): 905-918.

van Holland W and Bronsvoort WF. Assembly
features in modeling and planning. Robotics and
Computer Integrated Manufacturing, 2000, 16
(4): 277-294.

Bronsvoort WF, Noort A, van den Berg J and
Hoek GFM. Product development with multiple-
view feature modeling. In: CD-ROM
Proceedings of FEATS 2001 - Internationa |FIP
Conference on Feature Modeling and Advanced
Design-For-The-Life-Cycle Systems, June 12-14,
2001, Vaenciennes, France.

Bidarra R, van den Berg E and Bronsvoort WF-.
Collaborative modeling with features. In: CD-
ROM Proceedings of the 2001 ASME Design
Engineering Technical Conferences, Pittsburgh,
Pennsylvania, USA, New York, ASME.

Piegl LA and Tiller W. The NURBS Book
(Second Edition). Berlin, Springer, 1995.

Au CK and Yuen MMF. A semantic feature
language for sculptured object modelling.
Computer-Aided Design, 2000, 32 (1): 63-74.
van den Berg E, Bronsvoort WF and Vergeest
JSM. Freeform feature modelling: concepts and
prospects. Submitted for publication, 2001.

