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ABSTRACT

An idea product modeling system should support both part
modeling and assembly modeling, instead of just either of them as
is the case in most current CAD systems. A good basis for such
integration is multiple-view feature modeling, as it allows
focusing on different aspects of the product, while at the same
time maintaining the consistency among all model views.

This paper presents a framework that supports synchronous
collaborative sessions via the Internet, among members of a
distributed development team, with such a modeling system. The
framework provides facilities for creating a hierarchical product
structure, with single and compound components, and meanwhile
assigning tasks to team members. The actual design of a single
component is supported by aweb-client specialized in part design,
whereas the gspecification of assembly relations among
components is supported by a web-client speciaized in assembly
design.

All clients make use of the same server, which runs a multiple-
view feature modeling kernel and maintains the complete product
model, guaranteeing the consistency between the part design and
the assembly design views. In addition, the server keeps all clients
up to date and manages all communication.

Categories and Subject Descriptors

J.6 [Computer-Aided Engineering]: Computer-aided design
(CAD), Computer-aided manufacturing (CAM); 1.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling —
modeling packages
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1. INTRODUCTION

Current modeling systems adequately support either modeling of
parts or modeling of assemblies, usually by a single user only. In
particular for complex products, this leads to a lot of undesirable
exchange of product data, back and forth, between different users
and systems. Future modeling systems should therefore support
integrated modeling of parts and assemblies by a team of
development engineers.

Multiple-view feature modeling is a good basis for integrated
modeling of parts and assemblies [15]. It offers different views on
a product for parts and assemblies, each view containing a
specific feature model. For each part, there is a part detail design
view, describing the part in terms of design form features, and a
part manufacturing planning view, describing the part in terms of
manufacturing form features. In addition, there is an assembly
design view for the whole product, describing one or more
assemblies in terms of components and connection features
between these components. The part and assembly views are kept
consistent, i.e. changesin one view on a part are propagated to the
other view on the part, but aso to the assembly design view, and
changes in the assembly design view are propagated to the part
views that are involved. In this way, real integration of part and
assembly modeling is achieved.

The approach to integrated modeling just described can be very
helpful to a single engineer who is responsible for the
development of a complete product [6]. In practice, however,
usually severa engineers are involved in the development of a
product. Thisis obvious for complex products consisting of many
parts, but can even be the case for relatively simple products. In
both cases, one can think of different experts for the design of the
parts, the manufacturing planning of the parts, and the assembly
design of the complete product. Indeed, product development
teams nowadays involve more and more engineers. Three essential
characteristics of the working procedure of such teams can be
summarized as follows:

e team members, often geographicaly distributed, need to
work on (at least part of) the same product data;

¢ due to outsourcing of some components, team members may
even be scattered over different companies, each one with its
own design practice, CAD tools and data formats, further
complicating the previous aspect;

e collaboration among team members plays an increasingly
important role in solving design conflicts as early as possible
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Figure 1. Geometry camera windows for detail design view (a) and manufacturing planning view (b) on a part that is
used in a bicycle frame.

in the design stage, but travel time and costs, and other well-
known inconveniences, prohibit frequent physical meetings.

Due to their interdependencies, it is not likely that conveniently
supporting these characteristics can be achieved by three separate,
independent solutions. Instead, synchronous collaborative
modeling sessions via the Internet are gaining attractiveness, as
they indeed alow several team members to remotely coordinate
their design work and discuss design issues of mutual relevance.

However, systems that support real collaborative design of parts
or of assemblies are hardly available, let aone systems that
support collaborative, integrated design of parts and assemblies.

In this paper, a collaborative framework is presented that does
support integrated design of parts and assemblies. It supports
synchronous collaborative sessions via the Internet, among several
members of a product development team. There are specialized
web-clients for part detall design and part manufacturing
planning, and for assembly design. All clients make use of the
same server, which runs a multiple-view feature modeling kernel,
and takes care of al communication. This paper focuses on the
top-down product structuring and task assignment and on the
actual collaborative part and assembly modeling, but aso
describes the most sdient aspects of the client-server
communication.

Section 2 summarizes the underlying approach to integrated part
and assembly modeling. Section 3 discusses the state of the art in
collaborative modeling and introduces the new collaborative
framework. Section 4 elaborates the product structuring and task
assignment, and Section 5 the collaborative part and assembly
modeling. Section 6 describes the data exchange between the
clients and the server. Section 7 presents some conclusions.

2. INTEGRATED PART AND ASSEMBLY

MODELING

Noort et al. [15] have recently presented an integrated approach to
part and assembly modeling. This approach is the basis for the
collaborative modeling framework presented in this paper, and is
therefore summarized in this section.
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Most commercial modeling systems now adequately support part
modeling. These systems are typically feature modeling systems,
allowing a user to store functiona information on the parts in a
model. However, such systems offer only limited facilities to
represent assembly information [8]. The relations between the
components in an assembly usually have to be specified using
low-level relations, such as mate and aign. In addition, these
systems usually provide only a single interpretation of the product
for both part and assembly design, whereas part and assembly
design focus on different aspects of the product. There are some
research systems that adequately support modeling of assembly
aspects of a product, but their models are, in turn, less suitable to
support part design [9, 10, 24].

The main problem of having separate part and assembly modeling
systems s that part-oriented requirements cannot be automatically
checked during assembly design, and vice versa. To be able to
perform such checks, information has to be exchanged from one
system to the other, sometimes by hand, possibly leading to
inconsistency of the models in the two systems. A solution to this
problem is the approach to integrate part and assembly modeling
summarized here. It supplies the user with the functionality of
both a part modeling system and an assembly modeling system,
maintains integrated part and assembly models, and thus solves
the problems of data exchange and inconsistency.

This approach is based on the multiple-view feature modeling
concept, which provides specialized interpretations of a product
for different product development phases by means of views. Each
view has its own feature model of the product, with features
relevant for the corresponding development phase. Here, there are
a detail design view and a manufacturing planning view for each
part, and an assembly design view for the whole product. All
views are kept consistent, i.e. changes in one view are
automatically propagated to the other views. The three types of
views, and the way these are kept consistent, will be shortly
described now.

The feature model of a part detail design view contains instances
of form feature classes present in the feature library for part detail
design. A form feature class contains a generic feature shape, and
possibly several constraints that have to be satisfied for all
instances of the class, e.g. for a hole feature that the radius should
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Figure 2. Windows of a geometry camera for a component of a bench vice (a), a hierarchical graph camera (b) and a
relational graph camera (c) for the complete bench vice assembly.

be within some interval and that its entrance face should remain
open. In addition to these feature constraints, there can be model
constraints on one or severa form feature instances, e.g. that two
slots should be at some prescribed distance.

To visualize the feature model of a part detail design view, one or
more geometry cameras can be used. A geometry camera can use
several line visualization and shading techniques, in various
combinations [5]. It can provide insight into the feature model by
visualizing all sorts of engineering information, e.g. highlighting
al features of a specific class, al closure faces of subtractive
features or al intersections of features. See Figure 1(a) for a
geometry camera window for a part detail design view.

To create the feature model of a part detail design view, modeling
operations are available to add, remove and change the parameters
of a feature or a model constraint. After each operation, the
validity of the model is checked on the basis of al feature and
model constraints in the model. If the model is no longer valid,
i.e. any of these congtraints is violated, the user is assisted in
making it valid again [3].

The feature model of a part manufacturing planning view is
similar to that of a part detail design view, but with instances of
form feature classes present in the feature library for
manufacturing planning. Whereas the library for part detail design
contains both additive (material adding) and subtractive (material
removing) features, the library for manufacturing planning
contains only subtractive features. Again geometry cameras can be
used to visualize the feature model of a manufacturing planning
view; see Figure 1(b) for a geometry camera window for the
manufacturing planning view for the same part as shown in Figure
1(a). Although the manufacturing planning view of a part will
usualy be derived from the part detail design view, it is aso
possible to directly modify the feature model of the manufacturing
planning view to improve manufacturability of the part. For the
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latter, the same modeling operations are available as for the part
detail design view.

The feature model of the assembly design view contains
components and connection features between components; a set
of components connected by connection features forms an
assembly. A component is either a single component or a
compound component. A single component represents a part in
the assembly design view. A compound component encapsulates
an assembly for further assembly modeling operations, by hiding
its internal structure of components and connection features, and
dealing with the boundary of the assembly only. A connection
feature is an instance of a connection feature class present in the
feature library for assembly design. A connection feature class
contains a description of the types of the form features needed on
the components for the connection, severa constraints that specify
the relations between the components, such as the internal
freedom of motion, but aso the way the connection can be
established [10]. A connection feature instance determines the
relative position and orientation between the components
involved. Examples of connection features are arib-dot and a pin-
hole connection feature.

A component contains the reference geometry of the component,
i.e. the boundary of the part or assembly related to that
component, and in addition the form features of the connection
features on the component. So, only the regions of the component
that are relevant for assembly are described by form features, but
the rest of the component is not.

To visualize the feature model of the assembly design view, both
geometry cameras and graph cameras can be used [5]. A geometry
camera shows the reference geometry of a component with lines,
and the form features of the connection features on the component
with shaded faces (see Figure 2(a)). Graph cameras show the
structure of an assembly. A hierarchical graph camera shows the
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Figure 3. If a detail design view on a part (a) and the assembly design view on the related component (b) become
inconsistent because a form feature for a connection feature is added to the component (c), then the feature model
of the part is updated accordingly (d). The resulting invalid feature model of the part is made valid again by reducing
the size of the passage (e), thus increasing the distance between the passage and the new form feature, and the
reference geometry of the component is updated accordingly (f).

hierarchy of an assembly with its components and their
subcomponents (see Figure 2(b)). A relational graph camera
shows the connections between the components (see Figure 2(c)).

To create the feature model of the assembly design view,
operations are available to add a connection feature between
different components, to change the parameters of a connection
feature, to remove a connection feature, to make a compound
component out of an assembly, and to turn a compound
component back into an assembly. Adding a connection feature
between components requires the appropriate form features, e.g. a
pin and a hole for a pin-hole connection feature, to exist on the
components. If such a form feature does not yet exist in the
assembly design view, it has to be created. If the shape for the
form feature aready exists on the reference geometry of the
component, the form feature can be created by feature
recognition; otherwise the form feature can be created by adding
the form feature, including its shape, to the reference geometry.
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The part detail design views, the part manufacturing planning
views and the assembly design view are kept consistent, by
automatically propagating changes made in one view to the other
views. The detail design view and the manufacturing planning
view on a part are kept consistent by feature conversion [12]. The
part detail design views and the assembly design view are kept
consistent by linking the part models to the related single
components in the assembly model. When a form feature for a
connection feature is added to some component, and this changes
the shape of the component, this change is propagated to the
feature model of the related part in its detail design view by
feature conversion again. When a part detail design view is
changed, the reference geometry of the related single component
in the assembly design view is updated. See Figure 3 for an
example of keeping several views consistent.

Integration of detail design and manufacturing planning of parts,
and assembly design of the whole product, can be very profitable.
It enables requirements on parts to be taken into account during



assembly design, by propagating changes made in the assembly
design view to the relevant part detail design views, and indirectly
to the related part manufacturing planning views, where
requirements on the part can be checked. The other way around, it
aso enables requirements on assemblies to be taken into account
during part design, by propagating changes made in the part detail
design or the part manufacturing planning view to the assembly
design view, where requirements on the assembly can be checked.
For the checking, or more in general for the modeling, it is
advantageous to provide specialized views on a product for part
and assembly modeling, because these focus on those product
aspects that are relevant for their type of modeling.

The concept of integrated part and assembly modeling can already
be very useful to support a single engineer in the development of
a complete product, but will become even more valuable when it
is made available to a team of engineers involved in the
development of a product. This is the subject of the rest of this

paper.

3. COLLABORATIVE PRODUCT

MODELING

In this section, we first analyze proposals that have emerged so far
in the area of collaborative product development, and then
describe the main characteristics of our new collaborative
framework.

3.1 Stateof theArt

All three aspects of the working procedure in current devel opment
teams mentioned in Section 1 are very poorly supported, if at al,
by current CAD systems. So far, only a smal number of tools
have been developed that somehow support collaborative design
activities. For example, tools for collaborative model annotation
and visudization via Internet are now becoming available,
providing concepts such as shared cameras and telepointers [11,
23]. However, such tools are primarily focused on inspection,
using simple polygon mesh models, and do not support rea
modeling activities. In other words, they are valuable assistants
for teamwork, but no real CAD systems.

Some recent efforts have explored the possibility of enhancing
existing CAD systems with collaborative facilities. For example,
several commercial CAD systems are now offering functionality
for multi-user, token-based asynchronous manipulation of a CAD
model [16, 17].

To the best of our knowledge, there are only two commercial
system currently offering some synchronous collaborative
modeling facilitiess OneSpace [7], with a client-server
architecture; and Alibre Design [1], with a peer-to-peer
architecture, involving Alibre CAD stations. Both systems are
severely constrained by the model format into which they convert
all shared CAD models.

The requirements for concurrency and synchronization in a
collaborative modeling context lead almost inevitably to the
adoption of a client-server architecture, in which the server
provides the team members not only with the indispensable
communication, coordination and data consistency tools, but also
with the necessary modeling facilities. In client-server systems it
is important to balance the complexity of the client application
and the network load. In a collaborative modeling context, client
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complexity is mainly determined by the modeling and interactive
facilities implemented at the client, whereas network load is
mainly a function of the kind and size of the model data being
transferred to/from the clients. Some collaborative modeling
prototype systems follow a fat client scheme [14, 19]. Fat clients
are able to manipulate their local copy of the model data. This
choice leads to good interactive and visualization facilities, but
comes at the cost of a rather heavy network load due to the
frequent synchronization of model data among clients.
Furthermore, fat clients are typically platform-dependent
applications that require more complex instalation and
maintenance procedures, and are therefore less practica in a
multi-platform environment, in particular across various
enterprises. Other prototype systems follow a thin client scheme
[4, 13, 18]. Thin clients can profit from the use of feature models
a the server, where all modeling operations are performed. A
limited amount of model data, required at the clients for real-time
display, navigation and interaction, is derived at the server and
broadcast incrementaly to the clients, thus keeping the network
load at acceptable levels.

For a collaborative modeling system to be successful, it should
combine agood level of interactivity with the sort of visualization
typically provided by conventional CAD systems. Users will not
be able to design adequately if they have to wait along time after
every operation. But increasing interactivity by just porting more
and more data and functionality to the clients is not a good
solution either, as synchronization problems would then become
critical. A web-based client-server approach is more appropriate
in such contexts.

The prototype system webSpiFF described by Bidarra et al. [4] isa
system that follows this approach. It provides collaborative part
modeling capabilities to its clients, who can connect to the server
to work together using the design view and/or the manufacturing
planning view on a part.

The server has two main components: the SPiFF modeling system
and the Session Manager. The SpiFF modeling system provides all
feature modeling functionality, including multiple views on a part,
and advanced visuaization and validity maintenance of feature
models. It maintains a central product model, which includes a
cellular model for the geometric representation of a part, and
canonical shapes representing the individual features in each
view. The Session Manager provides functionality to start, join,
leave and close a collaborative session, to coordinate the session,
and to manage al communication between SpiFF and the clients.
In particular, the Sesson Manager collects all operations
requested by the various clients, and schedules them for execution
at the SpIFF system.

webSpIFF clients perform operations locally as much as possible,
e.g. regarding visualization of, and interaction with, their feature
model, and only high-level messages, e.g. for specifying modeling
operations, as well as a limited amount of model data necessary
for updating the client information, are sent over the network. In
particular, as soon as real feature model computations have to be
executed, such as required by modeling operations, by conversion
between feature views and by feature validity maintenance, these
are executed at the server, on the central product model, and their
results are eventually exported back to the clients. An important
advantage of using a central product model in this architecture is
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that inconsistencies among multiple versions of the model data at
different clients are avoided.

The next subsection briefly introduces our new collaborative
framework for integrated part and assembly modeling, which
capitalizes on the webSpiFr facilities just described.

3.2 A New Collaborative Framework for
Integrated Product Modeling

The new webSpIFF collaborative framework presented here
substantialy expands the capabilities referred to in the previous
subsection in a number of ways.

First, webSpiFF now provides a scheme for hierarchicaly
structuring a product into components. In this scheme, each
component is assigned to one or more team members, responsible
for its actual development.

Second, the webSpiFF server can now concurrently support several
groups of users, each group collaboratively working on its own
component of the product.

Third, besides modeling on part-oriented views, webSPIFF now
aso provides specialized clients with modeling capabilities for
assembly design, eg. to specify assembly relations between
components, possibly developed by other team members, by
means of connection features.

Finaly, because a the server the SPIFF modeling system
seamlessly integrates in its central product model the part- and
assembly-oriented views described in Section 2, the propagation
of model changes among components can now be fully exploited.

Before we elaborate in Section 5 how collaborative modeling
takes place in this framework, we describe in Section 4 how it
supports collaborative structuring of a product into components,
and how tasks are assigned to members of the product
development team.

4. TOP-DOWN PRODUCT STRUCTURING
AND TASK ASSIGNMENT

To be able to assign tasks to the members of a development team,
a product to be developed has to be structured in some way. We
use the well-known hierarchical product structure for this. In line
with the integrated approach for part and assembly design
discussed in Section 2, a product consists of a number of
components. Each component can either consist of a number of
subcomponents or be a part; the first type of component iscalled a
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compound component, the second type a single component.
Subcomponents in a component are related to each other by
means of connection features. See Figure 4 for a simplified
example of ahierarchical product structure.

In our approach, product structuring and task assignment go hand
in hand. A so-called principa product designer has to start up the
hierarchical structuring process for a new product. He can do this
by setting up a new product structure, i.e. giving a name to the
product, specifying the main components the product consists of,
and assigning these components to himself or to other team
members (see Figure 5(a), left). This can be easily performed
using the Product Navigator, which provides al functionality for
building the product structure and visuadizing it as it evolves (see
Figure 5(a), right).

For each component, the team member to whom it was assigned
has to specify whether it is a single component (see Figure 5(b))
or a compound component. In the latter case, he aso has to
specify the subcomponents it consists of, and assign each to a
team member (see Figure 5(c)).

The product structuring continues recursively in this way, until all
components at the lowest level in the hierarchy are single
components (see Figure 5(d), which corresponds to the product
structure of Figure 4). So the product is structured in a top-down
way, creating as many levels as desired by the team members, and
meanwhile the components are assigned to team members.

Notice that product structuring and task assignment are detached
from the actua modeling of components. Part modeling of a
single component can start as soon as it has been designated as
such. Assembly modeling of a compound component can only
start once its subcomponents have been modeled. In both cases,
the Product Navigator reports the fact to the team member(s) to
whom the component was assigned.

Several activities can be done simultaneously in the whole
product development process. First, product structuring and task
assignment can be done simultaneously for different branches of
the product structure. Second, product structuring and task
assignment can still be going on in certain branches of the product
structure, while in other branches parts or even compound
components are aready being modeled. Third, modeling of
different parts and compound components can aso be done
simultaneously. So, a product can be developed collaboratively in
the sense that several team members can concurrently work on
independent tasks.
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5, Shared camera - detail design

(a) detail design view
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Figure 6. Shared cameras of two team members with different views on the same part.

However, the possibilities of collaboration go much further. In
particular, it is possible that severad team members are
collaboratively working on the development of a same
component. The concept of the modeling scope of a team member
is important here. It is defined as the set of components he has
modeling rights for, and contains the components assigned to him,
supplemented with al their subcomponents in the product
structure. So for team member E in Figure 5(d), it consists of the
set {frame, rear fork, left leg, rod, right leg, rear wheel, beam}.
This notion of modeling scope is based on the assumption that the
development team is also hierarchicaly structured, and that a
team member should have modeling rights for all subcomponents
which in the end constitute a component assigned to him,
regardless of whether these were assigned to him or to other team
members. A team member can also extend the modeling scope of
another team member, by granting the latter modeling rights for a
component in his own modeling scope. For example, in order to
exploit design similarities between the two wheels, team member
B could grant modeling rights for the front wheel to team member
G (not depicted in Figure 5(d)).

Two or more team members with modeling rights for a component
can collaboratively model the component, in the sense that they
have access to the corresponding feature model and can modify it
in a synchronized way. The next section discusses how this actual
modeling is done.

5. BOTTOM-UP PART AND ASSEMBLY
MODELING

As mentioned in the previous section, a team member can start
modeling a part as soon as it has been assigned to him. On the
other hand, modeling of a compound component by the team
member to whom it was assigned, can only start as soon as its
subcomponents have been created. So the actual modeling activity
is a bottom-up process, starting at the leafs of the hierarchica
product structure.

If two or more team members have modeling rights for the same
part or compound component, they can collaboratively work on it.
This is called collaborative part modeling and collaborative
assembly modeling, respectively.
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5.1 Collaborative Part Modeling

Team members with the appropriate modeling rights can work
together on the same part, performing modeling operations
available in their view: detail design view and/or manufacturing
planning view; see Section 2. Typicaly each team member will
have a geometry camera displaying the feature model of his view.
After any of the team members has performed a modeling
operation on the part, al the others will also have the model
updated in their cameras. Because al of them have the same
modeling rights, several modeling operations on the part may be
concurrently specified and sent to the server. Such concurrency is
handled at the server, by seriaizing the operations.

It may well occur, however, that modeling operations are
conflicting, eg. in the sense that an operation unintentionaly
cancels the effect of another operation. For this reason, webSpIFF
encourages team members to coordinate their actions using some
conferencing facility (phone, chat channel, etc.). In addition to
this, webSpIFF provides team members with so-called shared
cameras. All participants in a shared camera share the same
viewing parameters on the visualized product geometry, possibly
in different views (see Figure 6). These parameters are
permanently synchronized, so that every time one user
interactively modifies them, the shared cameras of the other users
are automatically updated. webSpiFF also provides each user of a
shared camera with a persondized telepointer [22]. The
telepointers of all participants are constantly updated in al shared
cameras. In this way, eg. when discussing some model detail,
participants in a shared camera can always trace back where each
interlocutor is pointing at.

When a modeling operation results in an invalid part model at the
server, i.e. one or more constraints are no longer satisfied, the
Session Manager takes the role of coordinating the validity
recovery process. In the example of Figure 7(a), the crown part
model becomes invalid as a result of increasing the depth of a
pocket, which isin fact turned into a passage feature. Initialy, the
team member who issued the operation is presented a validity
maintenance panel (see Figure 7(b)), where useful information on
the particular invalid situation is given, together with validity
recovery hints [3]. This team member can specify corrective
modeling actions himself and/or hand over the validity
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maintenance panel to a colleague involved, until they agree on the
corrective actions and issue their execution.

At any moment during a collaborative modeling session, a team
member may invite a colleague to join a discussion on a part in
his modeling scope, either simply as an advisor, e.g. as participant
in ashared camera, or as a participant with full modeling rights.

5.2 Collaborative Assembly Modeling
Collaboration is aso possible in the assembly design view, among
team members who have modeling rights on some compound
component. As explained in Section 2, modeling operations in
assembly design view consist of creating, modifying or removing
connection features, which specify how components should be
connected to each other. For example, in the model structure of
Figure 5(d), the front fork lies in the modeling scope of team
members A and B, and therefore they can establish together the
connections between the two legs and the crown of the front fork
(see Figure 8(a) and (b)).

An important aspect here is that establishing a connection feature
may require the creation of the respective form features on the
components involved. As explained in Section 2, because of the
integration of al views, these component changes are propagated
downwards in the hierarchy to the respective parts, where new
features are also created. It may occur that one such form feature
causes the part it is located on to become invalid. In these cases,
the collaborative validity maintenance scheme mentioned in
Subsection 5.1 assists the team members involved in recovering
validity again.

Similarly to what was described in the previous subsection, team
members can discuss assembly issues, eg. where and how to
create a connection feature, using shared camera and telepointer
facilities. In the assembly design view, these facilities are
available for both geometry and graph cameras. In addition, if
assembly considerations require adjustments in any of the single
components, the team members can either switch to that
component’s part design view and directly adjust it, or invite the

397

team member(s) to whom that part has been assigned to join the
discussion and perform these adjustments. Because of the
integration of all views, changes performed on a part are now
propagated upwards in the hierarchy to the compound
components which contain the part. So, for example, in the
assembly model of Figure 8(b), if users A and B find that the legs
of the front fork are too close to each other, they can decide to
extend the crown in its part design view, after which they can
check whether the modification satisfies the front fork
requirements in assembly design view (see Figure 8(c)).

6. CLIENT-SERVER DATA
COMMUNICATION

The clients of webSpiFF make use of standard web browsers.
When a team member connects to the webSPIFF server, a Java
applet is loaded. This so-called Product Navigator implements a
simple user interface, from which a direct connection with the
Session Manager is automatically set up. Different team members
can connect from various locations, in order to start or join a
modeling session. As became clear from Subsection 3.1, the
choice for thin clients requires a good communication and
synchronization mechanism with the webSpiFF server. This
section describes in some detail the model data required at the
clients;, and how the Session Manager deds with data
synchronization.

The Session Manager has been implemented using the Java
programming language [21], and it makes extensive use of the
Remote Method Invocation (RMI) facilities for the
communication with the webSpiFF clients.

6.1 Model Data at the Clients

Several visudization and interactive facilities have been
implemented at the clients. First, a variety of images of a
component can be displayed in cameras: for a geometry camera, a
geometry image of the component; for a graph camera, its
hierarchical or relational graph. As pointed out in Section 2, these
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Figure 8. Three components (a) are connected into the front fork assembly of a bicycle (b),
of which the crown part is subsequently adjusted to make room for the front wheel (c).

images provide very powerful visualizations of a feature model.
Second, interactive modification of viewing parameters, eg.
rotation of a model, can be performed on a geometry camera.
After the desired viewing parameters have been interactively set,
they are sent to the server, where a geometry image corresponding
to the new viewing parameter values is rendered and sent back to
the client, where it is displayed. Finaly, both types of cameras
provide facilities for interactive specification of modeling
operations, e.g. assisting the user in selecting features by having
them picked on an image of a component.

To support al these facilities, the webSpiFF clients need to locally
dispose of model data. However, as explained in Subsection 3.1, a
central product model is maintained at the server. Therefore,
client model data has to be derived at the server from this central
model. Besides text data, necessary for the client’s user interface,
including an XML description of the product structure for the
Product Navigator, model data at the clients can be classified into
the following three categories:

e Mode images

Both geometry and graph images are rendered by SpiFF, and
distributed in GIF format. A separate image is needed for
each camera, and it must be updated every time the model or
the camera settings are changed.

Visualization model

The visualization model represents the globa shape of a
component, and is generated by SpiFFin VRML format [2]. It
supports interactive modification of viewing parameters for
all geometry cameras. Real-time rendering is locally feasible,
whereas rendering of a smooth sequence of geometry images
a the server and transmitting it to the clients would be
unfeasible in real time. All geometry cameras on a particular
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client, including any shared cameras, use the same
visualization model, but each camera displays it with its own
viewing parameters.

Selection model

The selection model is a collection of three-dimensional
objects representing the canonica shapes of all featuresin a
given view of a component. Its purpose is to support
interactive selection of feature faces on a geometry image,
during the specification of modeling operations. Again, the
selection model is identical for all geometry cameras on a
client, each applying its own viewing parameters. The
selection model is also generated by SpiFFin VRML format.

Model data at the clients is never modified directly by the clients
themselves. Instead, it is updated by the webSpIFF server, as will
be explained in the following subsection.

6.2 Data Synchronization

Two important types of processes run in the Session Manager at
the webSpPIFF server (see system architecture in Figure 9). Firdt, it
maintains a Client Manager for each client, managing all
communication with it. A Client Manager receives messages from
its client, interprets them, and either processes a message itself, if
possible, or propagates it to the SPiFF modeling system. Second,
the Session Manager maintains an Event Manager, including an
event queue that schedules the tasks received from al Client
Managers, which have to be passed on to the SpiFF modeling
system.

Several types of tasks can be distinguished at the Client
Managers. First, session operations have to be handled. These
involve starting a session, logging into and out of a session, and
closing a session. Second, modeling operations can be received
that have to be forwarded to the SpiFF modeling system, which,
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Figure 9. Simplified webSpPIFF architecture

after executing them, returns their result to the Session Manager.
Sending these results back to the clients is handled by the Event
Manager, through the respective Client Managers. Third, camera
operations have also to be forwarded to the SpiFF modeling
system. Fourth, queries about a feature model are directly
answered by the Session Manager, which keeps a record of up-to-
date product datain order to reduce response times.

When the webSPIFF server executes a camera operation, a new
model image is generated. Since the corresponding feature model
remains unaffected by camera operations, the server only needs to
send the new model image back to the client that requested the
camera update.

However, after a modeling operation has been executed on a
component, its feature model has been changed, so relevant
updated model data will eventually have to be sent to all session
participants using that component. Messages are then sent to each
client with the corresponding updates, consisting of, possibly
several, new model images, a new visuaization model, and an
incremental update of the selection model (containing only new
and/or modified feature canonical shapes). Also, additional
information on the feature model is included in the messages,
such as an updated list of its feature instances. Separate messages
have to be created per client, since geometry cameras typicaly
have different settings per client, and therefore require different
geometry images. Of course, the feature model information will
also be different for users of different views. In order to reduce
“collaboration noise”, due to too many distracting updates, clients
may analyze updates, and possibly decide to postpone processing
them until some convenient synchronization time.

Findly, implementing the shared cameras in webSPIFF was
straightforward, because every client aready disposes locally of
its own visualization model, introduced in the previous
subsection. The only requirement here is the propagation of the
changing viewing parameters, together with the coordinates of the
telepointers, to al participants involved, so that these can be
adjusted for the local shared camera. This is effectively handled
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via the Session Manager, which receives from every client the
modified parameters, and forwards them to the other users.

7. CONCLUSIONS

A new collaborative framework has been presented that supports
integrated design of parts and assemblies. Collaborative sessions
via the Internet, among several members of a product
development team, are possible. A product can be hierarchicaly
structured, with compound and single components, and
meanwhile tasks can be assigned to team members. During the
actua modeling, each team member can have his own specific
view on the product, in particular a part detail design view, a part
manufacturing planning view, or an assembly design view. All
these views are kept consistent, by using a central product model.

The collaborative framework not only offers possibilities to
simultaneously work on independent tasks in a product
development process, but also synchronous facilities to realy
collaborate on the design of a same component. Together with the
integration of part and assembly modeling, this means a major
step forward in collaborative modeling.

The chosen client-server architecture and the functionality of the
clients imply that both the computational requirements for the
clients and the network load are low. The server, on the other
hand, can become rather heavily burdened for complex products
and large development teams. However, we believe that problems
arising in this respect may be solved by using a distributed server
approach, because independent components of a product can be
handled by different servers, running their own modeling kernel,
but coordinated by a single Session Manager.

A useful extension would be to incorporate conceptual design and
assembly planning views in this collaborative framework. The
former would allow a more flexible specification of components
and interfaces prior to the definition of detailed geometry; the
latter would bring in assembly seguencing and other assembly
considerations. Together, these would represent another important
step towards a collaborative and integrated product modeling
system covering the entire product life cycle.
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