
Flexible Abstraction Layers for VR Application Development

Gerwin de Haan∗ Michal Koutek† Frits H. Post‡

Delft University of Technology, The Netherlands

ABSTRACT

The development of domain-specific Virtual Reality applications is
often a slow and laborious process. The integration of the domain-
specific functionality in an interactive Virtual Environment requires
close collaboration between domain expert and VR developer, as
well as the integration of domain-specific data and software in a
VR application. The software environment needs to support the
entire development process and software life cycle, from the early
stages of iterative, rapid prototyping to a final end-user application.
In this paper, we propose the use of flexible abstraction layers in
the form of a dynamic scripting language, which act as the glue
between VR system components and external software libraries and
applications. First, we discuss the motivation and potential of our
approach, after which we overview related approaches. Then, we
describe the integration of a Python interpreter in our VR toolkit.
The potential of our integration approach is demonstrated by rapid
prototyping features, the flexible extension of core functionality and
the integration of an external toolkit. We conclude with an overview
of implications our approach has for the future development of new
framework features and application integration.

Keywords: Virtual Reality, Application Development, Scripting
Languages.

Index Terms: I.3.7 [Computing Methodologies]: Com-
puter Graphics—Virtual Reality; D.2.6 [Software]: Software
Engineering—Programming Environments

1 INTRODUCTION

After decades of experience with Virtual Environments, a large gap
still exists between developer and end-user experience. Although
the robustness of ’core’ VR technology increases, other funda-
mental issues in VR application development arise from the typi-
cal requirements that characterize custom VR applications. These
include the continuous involvement of end-users and interactivity
while maintaining performance. A highly flexible software archi-
tecture is needed to match the nature of the development and main-
tenance life-cycle of VR applications.

During our research on interaction techniques in Virtual Envi-
ronments, our VR software framework gradually evolved and ex-
tended. Recent application and framework refactoring efforts re-
vealed that productivity is limited by the long development cycles
that go into (re-)designing, (re-)implementing and debugging new
features in our C++ software architecture. This is a limiting factor
during our collaboration with domain experts, and influences the
direct applicability and acceptance of VR solutions.

In general, a VR application is built on the underlying VR frame-
work, which consists of a set of carefully orchestrated heteroge-
neous components. Especially in the early, exploring stages of col-
laboration with domain-experts, many changes continuously evolve

∗e-mail:g.dehaan@tudelft.nl
†e-mail:m.koutek@tudelft.nl
‡e-mail:f.h.post@tudelft.nl

Figure 1: Overview of the iVR software layers (see Section 3.1). The
VR application has native access to various components and exter-
nal software or through Python. Stars indicate Python bindings on
the underlying libraries. Arches indicate custom Python layers which
provide higher level abstractions.

the ideas on and the state of the VR application. The provided
framework API needs to be flexible enough to enable use and ex-
tensibility, while avoiding a bloated, overall up-front design. In
addition, there is also the need for expressive end-user modeling
and programming. Therefore, we opt for a continuous, rapid soft-
ware prototyping environment, in which many small features and
links between components can be tested and evaluated. A loosely
designed set of high level abstractions, reusable components and
code snippets allow developers and eventually experienced users to
use rapidly create complete applications by extending basic func-
tionality in an ad-hoc fashion.

We propose a VR application development paradigm based on
flexible abstraction layers through a single abstraction language.
The abstraction layers here are code fragments that abstract, com-
bine and wrap lower level code. The goal of this approach is to
facilitate (1) continuous, iterative software development, includ-
ing features such as rapid prototyping, profiling and debugging, (2)
flexible integration and configuration of heterogeneous VR and ex-
ternal software, (3) seamless evolution from early software proto-
types to flexible end-user applications and (4) ease-of-use, lowering
the learning curve and empowering end-users.

In this paper, we describe our work towards the proposed VR ap-
plication development paradigm of integrated rapid software proto-
typing. Here, the focus is on the flexible abstraction layers which
connect several aspects of our VR library, applications and exter-
nal, domain-specific toolkits and libraries. We first describe related
work in Section 2. Section 3 and 4 describe our prototype and sev-
eral examples. We conclude with a short discussion and our view
on future VR application development in Section 5.

2 RELATED WORK

Work on flexibility in application development and VR integration
can be found in VR-related approaches, as well as in more general
and domain-specific learning and problem solving environments.
Often, approaches are separated in system-specific facilities and
end-user application specific features.

In VR system frameworks, run-time flexibility —on a system



level— has been acknowledged and applied many times. The Bam-
boo [17] plug-in framework is an early system providing a mi-
cro kernel-based VR architecture in which all system elements are
pluggable components that could be added, removed, and replaced
at run time. In VR Juggler [3] the possibilities of run-time recon-
figuration of the VR system to a higher level than only the system
are described. The focus in these approaches is mainly on sys-
tem configuration flexibility, and less on flexibility of behavioral
aspects of specific VR application. In VHD++ [13], also the in-
tegration of domain-specific applications in such a framework is
discussed, while maintaining extensibility and flexibility. The ap-
proaches mentioned above achieve their flexibility through existing
and well documented software design patterns for the creation of a
solid system framework and protocols.

Dynamic scripting languages enable iterative design techniques,
allowing a dynamic approach to application and system design.
Many VR systems provide these facilities in their frameworks to
achieve development flexibility. As part of this work, we main-
tain an online overview 1 of VR frameworks and graphics APIs
in which scripting support is provided. In our prototype descrip-
tion we discuss scripting language features and their integration in
more detail. In all listed approaches, with Visum [7] being a no-
table exception, a C/C++ based VR kernel and graphics API is used.
Visum uses Python and PyOpenGL as the core of the framework.
The level of abstractions and scripting integration features differs
widely between systems. The common aspect of all approaches is
the availability of high level abstraction layers on top of the com-
plete VR framework. In addition, Coloseum3D [1], Panda3D [8]
and Avango [15] also use a scripting language as the main inte-
gration layer of various system components, providing low-level,
flexible access to developers and end-users.

Here, specification of interactivity is also main aspect of VR ap-
plication development. An early example of 3D graphics interac-
tion specification in a native scripting language can be found in
the Alice toolkit [5]. An analysis of describing and modeling in-
teraction behavior is given in [4]. Modeling languages are used
to avoid programming and validity issues for the end-user, while
maintaining flexibility. This can quickly become complex, as de-
scribing behavior beyond simple examples requires more elaborate
constructs (such as control-flow elements) and one needs to interact
with application code, on a VR system-level, but maybe also on a
domain-specific level through external software. Hendricks et al [9]
propose an interactive, scripting approach to overcome many issues
of this duality in modeling language. We want to provide the user
with a unified syntax and semantics for describing interactivity with
(external) application components.

In many domain-specific application areas rapid prototyping fa-
cilities were proposed, ranging from high level APIs and Domain
Specific Languages to full-blown Problem Solving Environments.
On many levels, scripting support is available. The tinkering during
experimentation and development proves useful [12] and is finding
its way into new software design methods such as extreme program-
ming and aspect-oriented design. SuperGlue [10] uses Scheme lan-
guage constructs for describing a visualization process of domain-
specific data. It is presented as an answer to the existing visual-
ization platforms that overemphasized ease-of-use by the use of
GUI, which failed to adequately address issues of extensibility.
VHD++ [13] uses stub components to which application developers
should connect their applications. Here, flexibility in this approach
is achieved by a strict communication protocol and design pattern.

3 PROTOTYPE DESCRIPTION

The main aspect of our proposed VR application development
paradigm is the use of abstraction layers, on which all interactive,

1http://visualisation.tudelft.nl/VRdev

programmable aspects of the VR application and individual com-
ponents are founded. Our current prototype implementation is a
first step towards the application of these abstraction layers in a VR
application development environment.

3.1 Software Layers

A schematic overview of our interactive Virtual Reality (iVR) sys-
tem is shown in Figure 1. This is a recent rewrite of our RWB
library [11], a closed, C++, OpenGL Performer based VR toolkit,
where its monolithic characteristics were transformed to a micro-
kernel approach, augmented with separate flexible components.
The set of components and domain-specific applications, combined
with the scripting language layer, now form the basis for creating a
VR application.

We selected Python as the unifying abstraction language layer
for multiple reasons. First, this General Purpose Language inte-
grates well with existing C and C++ code. The Python interpreter
can be extended or the interpreter can be embedded in the C ap-
plication. Second, a solid basis is provided by its wide availabil-
ity on various platforms, a large standard set of tools, and wrap-
pings of many (scientific) software packages. Its simplicity and
flexibility allow for a smooth transition from powerful lower-level
access to higher-level, more user-friendly constructs. Also, the in-
teractive introspection and self-parsing facilities enable us to ex-
tend the language with special purpose (such as domain-specific)
sub-languages.

3.2 Wrapping of existing software components

Abstraction layers in the high level scripting language form the ba-
sis for interactive control of various systems components. Special
conversion code is necessary to take care of the type and value con-
versions between the C++ and Python environments. This interme-
diate conversion code layer, the so called wrappers or binding, can
be created manually or (semi-) automated by external software. The
level of automation is determined by the wrapping method used and
the complexity of the C++ constructs.

Many Python wrapping generators exist, of which SWIG2 and
Boost.Python3 are the most popular. SWIG parses declarations in
header files to generate a intermediate Python and library file, which
expose the wrappings [2]. Boost.Python uses template meta pro-
gramming, and uses some helper code and the C++ compiler itself
to generate a wrapper library. Difficulties can arise when complex
data is communicated between two C++ components for which dif-
ferent wrapping generators are used. Other issues in performance
and usability also influence the choice of the wrapping solution, but
technical details are outside the scope of this document.

Our iVR toolkit intensively uses OpenGL Performer functional-
ity through PyPer [16], SWIG generated OpenGL Performer bind-
ings. We use SWIG to wrap our iVR library to avoid cross-wrapper
difficulties. In this way, we are safe to transparently mix Performer
data types and functions with iVR functions in a Python environ-
ment. We use two helpful SWIG provided features to enhance
the usability of our wrappings. First, SWIG Director classes en-
able cross language polymorphism, allowing for easy subclasssing
and extension of existing C++ classes in Python. Second, source
code documentation such as comments, parameter and data types
are made directly available in the Python interpreter. Using our
wrappings, we obtain most functionality directly in Python syntax.
The thin and adaptable layering of abstraction levels can provide
both flexibility and performance on a low-level, while on a higher
level the ease-of-use and expressiveness is maintained.

2http://www.swig.org/
3http://www.boost.org/libs/python/doc/



Figure 2: Interactive Notebook metaphor during VR development.
The worksheet shows code editing, loading/saving operations (A),
integrated graphics (B), and available documentation and command
completed parameters (C). The interactive graphics or controls in (B)
are generated by customizable Python helper code.

3.3 Control Beyond Wrapping

The structure and functionality of the generated wrappings do not
always match the requirements for interactive, run-time develop-
ment. First, a greater error robustness is required in both the wrap-
pings and the underlying software. Validity assertions and good
error handling, including documented error reports is necessary for
the interactive development. Second, the directly mapped language
constructs may not be on the right abstraction level for the task at
hand, for both the developer or end-user. The advanced program-
ming styles and thin abstraction layers in Python snippets enable the
use of more flexible software construction. Third, the control flow
from different software components must be combined. For exam-
ple, we need to combine the Python interpreter control, the OpenGL
Performer render loop, and even a physics engine. In our method
we opted for extending Python, which makes the Python interpreter
the overall controller of the VR application. This provides us with
many features to inspect system state and manipulate the control
flow. Finally, performance can be problematic if many operations
need to be performed in the Python interpreter. Normally, as much
of the code will be glue code and initial set-up code, the perfor-
mance bottleneck of the VR application will not be in the Python
handling. For improved performance one can resort to native C++
components and make use of multi threading and multi processing.

4 PROTOTYPE RESULTS

This section demonstrates the important features of the flexible ab-
straction layers through sample applications. A VR application can
be completely written in a script, which is executed by a standard
Python interpreter. The iVR functionality is directly available in the
running Python interpreter after importing its wrapping modules.

4.1 Run-time Prototyping

The Python interactive interpreter allows interactive control in cre-
ated scripts. It facilitates a run-time prototyping environment, be-
cause program functionality can be inspected, added and changed.
We use IPython, an enhanced interactive interpreter to enhance the
usability and interactivity of this process. IPython provides many
extra development features, including object and code inspection,
command history, integrated debugging and saving of interactive

Figure 3: Demonstration of bi-directional integration of VTK in the
VR environment. Graphical data from two VTK pipelines is shown in
the VR application. Callbacks from widgets directly control parame-
ters of the two VTK pipelines. The Python glue facilitates expressive
commands that combine VTK and VR statements

prototyping sessions. Both the regular and IPython interactive in-
terpreter are line-based concepts, where entered sets of lines are
interpreted and executed immediately. The use of small, saved
testing scripts leads again to a differentiation between saved code
and interactive code. We use experimental software developed in
our group for the construction of Python-based VR code using the
Notebook metaphor. This metaphor provides a unified worksheet
for the code, interleaved with interactive graphics (see Figure 2). It
provides a smooth transition from interactive prototyping to work-
ing code snippets. Graphical representations or interactive widgets
are created by the use of small helper snippets, which generate the
content based on special object types.

4.2 Internal Extensions

The iVR toolkit, with its abstraction layers and a set of standard
Python snippets, provides an accessible, high level VR application
skeleton from which development can start immediately. The user
can construct his application by using and extending a set of stan-
dard widgets, graphical objects and interaction techniques. The
close integration of Python and the original C++ code allows us
to, gradually, transform existing code toward Python oriented pro-
gramming methods. These extensions can range from simple wid-
gets, such as a simple valuator with custom behavior, to complete
custom interaction handling mechanisms.

Our recent Python-based iVR developments illustrate the flexi-
bility. We developed an event mechanism and state machine com-
ponents for interaction and behavior modeling. We use state charts,
a technique for modeling the system state with concurrent, hierar-
chical state machines. We combine run-time code inspection and
interactive state chart manipulation, providing a valuable insight
during the interaction development cycles. While the VR appli-
cation is running, state charts and transitions can be extended and
have their graphical representations generated. These new facilities
again form new abstraction layers that are easily extended. The use
of other external libraries and toolkits allows to further enhance the
development process. For example, one can think of GUI-based in-
teraction modeler on top of the current state chart abstraction layer.

4.3 External Software Integration

When integrating external software in VR application constructs,
the use of the abstraction layer shifts many difficulties to the wrap-



ping generation process. Once wrappings are available, or if soft-
ware is already in the abstraction language, constructions from the
various components can be mixed with less effort. The limitations
of this mixing are dependent on the data size and data format com-
patibility between the various components.

External software of special interest are domain specific appli-
cations and libraries and general-purpose functionality that can be
useful for analysis during development. In our current prototype,
we integrated matplotlib4, a Python package for mathematical plot-
ting, Graphviz [6], graph construction software, and the Visualisa-
tion ToolKit(VTK) [14], a data visualization package. The use of
Graphviz is demonstrated in previous Figure 2, where graphs are
integrated in the Notebook environment. This integration with the
VR application is currently uni-directional. This means that results
of Graphviz functions on data structures such as scene graph and
state machine hierarchy, are shown in the Notebook environment
only, and not directly back in the VE.

For VTK integration in our VR software we wrap the vtkActor-
ToPF library to do performance critical conversions from VTK to
Performer data, and provide a mixed iVR-VTK abstraction layer.
The end-user can mix VTK code directly with iVR constructions in
Python scripts, while the abstractions layers perform the underly-
ing communication between the external libraries. VTK generated
graphical objects are created by using VTK commands directly in
the VR script or by importing an external VTK example file. Fig-
ure 3 illustrates this bi-directional approach, where resulting ob-
jects are first-class objects in the VR application and can be directly
integrated with VR interaction and behavior.

The construction of real, domain-specific VR applications builds
upon the basic application skeleton using the integration and ex-
tension techniques described above. As the entire work flow is an
extensive and iterative process, a running VR prototype can be con-
structed and maintained throughout the cycles of development. As
wrappings and abstraction layers for the core functionality of the
external software packages are introduced, they can gradually be
connected with the VR components. During this process, inter-
active prototyping experiments with domain-experts and VR de-
velopers can lead to insights on new application requirements, for
example the need for specialized visualization and interaction tech-
niques.

5 CONCLUSIONS AND FUTURE WORK

The introduction of multiple abstraction layers in existing VR soft-
ware tool chains using dynamic languages such as Python provides
flexible development styles for VR application development. The
ease of programming and the multitude of abstraction layers al-
low both developers and end users to use expressive programming
commands at a suitable level of comprehension. A powerful func-
tionality included in Python and the availability of wrappings for
external software packages ease the process of application integra-
tion. We described the features and benefits of the abstraction lay-
ers through the gradual introduction of a Python layer in our exist-
ing, C++ based VR toolkit. The interactive scripting environments
give run-time access to the running application, providing an in-
teractive prototyping environment. Development efforts are shifted
towards the creation of wrappings and interactive development en-
vironments. For interactive use, greater error robustness is required
in both the wrappings and the underlying software, as well as useful
debugging information.

We are working towards a rapid VR prototyping paradigm that
provides a solid base for various development styles. The transfor-
mation towards interactive control through unified abstraction lay-
ers catalyzes the re-design of previous software mechanisms and a
change in development philosophy. We envision an integrated de-
velopment and run-time environment providing interactive control

4http://matplotlib.sourceforge.net

using higher level, visual programming and debugging tools. We
expect the abstraction layering and integration of external tools to
be key aspects in achieving this goal.

ACKNOWLEDGEMENTS

Part of this research has been funded by the Dutch BSIK/BRICKS
project. We thank SARA for providing PyPer, and Jorik Blaas for
the interactive notebook prototype.

REFERENCES

[1] A. Backman. Colosseum: 3d-authoring framework for virtual envi-

ronments. In E. Kjems and R. Blach, editors, Proceedings of the 9th

IPT and 11th Eurographics VE Workshop (EGVE) ’05, 2005.

[2] D. M. Beazley. Automated scientific software scripting with SWIG.

Future Gener. Comput. Syst., 19(5):599–609, 2003.

[3] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-

Neira. VR juggler: a virtual platform for virtual reality applicationde-

velopment. In Virtual Reality, 2001. Proceedings. IEEE, pages 89–96,

Yokohama, Japan, 2001.

[4] T. Burrows and D. England. Yable - yet another behaviour language.

In Web3D ’05: Proceedings of the tenth international conference on

3D Web technology, pages 65–73, New York, NY, USA, 2005. ACM

Press.

[5] M. J. Conway and R. Pausch. Alice: easy to learn interactive 3d graph-

ics. SIGGRAPH Comput. Graph., 31(3):58–59, 1997.

[6] J. Ellson, E. Gansner, E. Koutsofios, S. North, and G. Woodhull.

Graphviz and dynagraph – static and dynamic graph drawing tools.

In M. Junger and P. Mutzel, editors, Graph Drawing Software, pages

127–148. Springer-Verlag, 2003.

[7] D. Finkenzeller, M. Baas, S. Thring, S. Yigit, and A. Schmitt. Visum:

A vr system for the interactive and dynamics simulation of mecha-

tronic systems. In Proc. Virtual Concept 2003, Nov 2003.

[8] M. Goslin and M. R. Mine. The Panda3D graphics engine. Computer,

37(10):112–114, 2004.

[9] Z. Hendricks, G. Marsden, and E. Blake. A meta-authoring tool

for specifying interactions in virtual reality environments. In AFRI-

GRAPH ’03: Proceedings of the 2nd international conference on

Computer graphics, virtual Reality, visualisation and interaction in

Africa, pages 171–180, New York, NY, USA, 2003. ACM Press.

[10] J. Hultquist and E. Raible. Superglue: a programming environment for

scientific visualization. In Visualization, 1992. Visualization ’92, Pro-

ceedings., IEEE Conference on, pages 243–250, Boston, MA, USA,

1992.

[11] M. Koutek. Scientific Visualization in Virtual Reality: Interaction

Techniques and Application Development. PhD thesis, Delft Univer-

sity of Technology, 2003.

[12] J. Ousterhout. Scripting: higher level programming for the 21st cen-

tury. Computer, 31(3):23–30, 1998.

[13] M. Ponder, G. Papagiannakis, T. Molet, N. Magnenat-Thalmann, and

D. Thalmann. VHD++ development framework: towards extendible,

component based VR/AR simulation engine featuring advanced vir-

tual character technologies. 2003. Proceedings Computer Graphics

International, pages 96–104, 2003.

[14] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit.

Kitware, Inc., third edition, 2004.

[15] J. Springer, H. Tramberend, and B. Fröhlich. On scripting in dis-

tributed virtual environments. In Proceedings of the 4th IPT Work-

shop, June 2000.

[16] B. Stolk, F. Abdoelrahman, A. Koning, P. Wielinga, J.-M. Neefs,

A. Stubbs, A. de Bondt, P. Leemans, and P. van der Spek. Mining

the human genome using virtual reality. In EGPGV ’02: Proceedings

of the Fourth Eurographics Workshop on Parallel Graphics and Visu-

alization, pages 17–21, Aire-la-Ville, Switzerland, Switzerland, 2002.

Eurographics Association.

[17] K. Watsen and M. Zyda. Bamboo - a portable system for dynamically

extensible, real-time, networked, virtual environments. In VRAIS ’98:

Proceedings of the Virtual Reality Annual International Symposium,

page 252, Washington, DC, USA, 1998. IEEE Computer Society.


