
nt and
deling
at the
rantee
g sys-
vanced
ultiple
ality

the one
n the

rang-
. The
r and

a good
indeed
Rafael Bidarra

Eelco van den Berg

Willem F. Bronsvoort

Faculty of Information Technology and Systems,
Delft University of Technology,

Mekelweg 4, NL-2628 CD Delft,
The Netherlands

e-mail:
(R.Bidarra/E.vdBerg/W.F.Bronsvoort)@its.tudelft.nl

A Collaborative Feature Modeling
System
Collaborative systems are distributed multiple-user systems that are both concurre
synchronized. An interesting research challenge is to develop a collaborative mo
system that offers all facilities of advanced modeling systems to its users, while
same time providing them with the necessary coordination mechanisms that gua
effective collaboration. To achieve this, a web-based collaborative feature modelin
tem, webSpiff, has been developed. It has a client-server architecture, with an ad
feature modeling system as a basis for the server, providing feature validation, m
views and sophisticated visualization facilities. A careful distribution of the function
between the server and the clients has resulted in a well-balanced system. On
hand, the server offers all the functionality of the original feature modeling system. O
other hand, all desirable interactive modeling functionality is offered by the clients,
ing from display of feature model images to interactive model specification facilities
architecture of webSpiff, the distribution of model data, the functionality of the serve
the clients, and the communication mechanisms are described. It is shown that
compromise between interactivity and network load has been achieved, and that
advanced feature modeling with a collaborative system is feasible.
@DOI: 10.1115/1.1521435#
t

h

t

t

h
t

a
v
s

e

a

i

g

ted
pe
od-

rch
fers
ers,
rdi-
ong
tical
rize
new
ajor
s of
the
ture
in
are

-

ul-

ted

their
ve
el
the

ing.
gh-
um-
sys-

-
ext
f a
ci-
ble

ddi-
1 Introduction
In the last decade, research efforts in the areas of solid

feature modeling substantially contributed to the improvemen
computer-aided design~CAD! systems. A broad range of ad
vanced modeling facilities is now becoming available in high-e
commercial systems, amplified by continuous enhancement
interactive and visualization capabilities, and profiting from t
availability of ever faster and more powerful hardware. Still, the
improvements have their counterpart in the increasing size
complexity of such systems. At the same time, a number of
search prototypes are pushing the edge to even more adva
modeling facilities. For example, embodiment of richer seman
in feature models and validity maintenance of such models@1# and
physically-based modeling techniques@2# are among the curren
research issues.

A common characteristic of most current CAD systems is t
they run on powerful workstations or personal computers. In
action with the system is usually only possible if the user is
rectly working at the CAD station, although remote interaction
sometimes possible through a high-bandwidth local area netw
This situation is no longer satisfactory, as nowadays more
more engineers, often at different locations, are getting invol
in the development of products. It would be preferable if a u
could remotely browse and manipulate a model, via Internet, a
he were working directly at a powerful CAD station. A web-bas
system would be ideal for this, as it would facilitate access to
sorts of product information in a uniform, simple and famili
framework.

Even more attractive would be the support of collaborat
modeling sessions, in which several geographically distribu
members of a development team could work together on the
sign of a product. Typically, in such collaborative sessions, diff
ent participants would be provided with their own, applicatio
specific views on the product, e.g. for detailed desi
manufacturing planning or assembly planning@3,4#. In addition,
each session participant, as in traditional development tea
would be given his own competence and specific privileges by
system.

Contributed by the Computer Aided Product Development~CAPD! Committee
for publication in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN
ENGINEERING. Manuscript received Jun. 2002; revised Sept. 2002. Associate Ed
P. Wright.
192 Õ Vol. 2, SEPTEMBER 2002 Copyright ©
and
of

-
nd
s in
e

se
and
re-
nced
ics

at
er-
di-
is

ork.
nd
ed
er
s if
d

all
r

ve
ted
de-

er-
n-
n,

ms,
the

Some commercial tools that are now emerging provide limi
support for collaborative design activities. Meanwhile, prototy
systems are being developed which investigate collaborative m
eling possibilities.

Considering the state of the art, it is an interesting resea
challenge to develop a collaborative modeling system that of
all facilities of advanced feature modeling systems to its us
while at the same time providing them with the necessary coo
nation mechanisms that guarantee effective collaboration. Am
these mechanisms, solutions have to be provided to the cri
problems of concurrency and synchronization that characte
collaborative design environments. This paper presents a
web-based collaborative feature modeling system that is a m
step in the right direction. In Section 2, the main research issue
collaborative modeling systems are surveyed. In Section 3,
architecture of the proposed system is discussed. The struc
and functionality of the server and of the clients are described
Sections 4 and 5, respectively. Finally, results and conclusions
presented in Section 6.

2 Survey of Collaborative Modeling Systems
Collaborative systemscan be defined as distributed multiple

user systems that are both concurrent and synchronized.Concur-
rencyinvolves management of different processes trying to sim
taneously access and manipulate the same data.Synchronization
involves propagating evolving data among users of a distribu
application, in order to keep their data consistent.

These concepts being in general already rather demanding,
difficulty becomes particularly apparent within a collaborati
modeling framework, where the complexity and size of mod
data that has to be synchronized are typically very large, and
concurrent modeling actions taking place may be far-reach
This section briefly surveys collaborative modeling systems, hi
lighting the key aspects put forward by recent research, and s
marizing the lessons learned from a few tools and prototype
tems proposed so far.

2.1 Client-server Architecture. The requirements for con
currency and synchronization in a collaborative modeling cont
mentioned above lead almost inevitably to the adoption o
client-serverarchitecture, in which the server provides the parti
pants in a collaborative modeling session with the indispensa
communication, coordination and data consistency tools, in a

itor:
2002 by ASME Transactions of the ASME



l
r
b

o

a
o

t

e

n
r

n
m
y

f
,

f

a

t
p
I

e
h

o
c

l

i
x

u
e

be
odel

ther
ar-

sys-
an-
here

tex-
DE
tive
ne
-
ther

ow-
reby
o-
ne

by
m.
bal
en
all
two

ting
er is

lar
ncy
n-
lter-
s a

a-
en-
On
ep-
tral

ion
st be
ich
the
E

ds,

p-
es.
nd

in-
ems
ri-

ra-
tity,
can

this
ess
ities
ble,
rts
on-
r in
ore
ion.
ling
ely
tion to the necessary basic modeling facilities. For a survey
client-server architectures, see, for example, Ref.@5#.

In client-server systems it is important to balance the comp
ity of the client application and the network load. In a collabo
tive modeling context, client complexity is mainly determined
the modeling and interactive facilities implemented at the clie
whereas network load is mainly a function of the kind and size
the model data being transferred to/from the clients. A wh
range of solutions can be devised between the two extremes
called thin clientsand fat clients.

A pure thin-client architecture typically keeps all modelin
functionality at the server, which sends an image of its user in
face to be displayed at the client. Clicking on the image gener
an event, containing the screen coordinates of the interface l
tion the user clicked on. This event is sent to the server, wh
associates it with an action on a particular widget. Eventually,
action is processed, and an updated image of the resulting
interface is sent back to the client, where it is displayed. T
approach requires a continuous information stream between s
and clients, and is therefore very expensive in terms of netw
traffic. The response time would be intolerably high for ma
model specification actions, thus making it very ineffective to
motely participate in a modeling session.

On the other extreme, a pure fat client offers full local modeli
and interaction facilities, maintaining its own local model. Co
munication with the server is then often required in order to s
chronize locally modified model data with the other clients. In
collaborative environment where clients can concurrently mod
local model data, preventing data inconsistencies between di
ent clients becomes a crucial problem. In addition, fat clients
be effective, place on the platform running them the heavy co
puting power requirements of typical CAD stations. Finally,
clients are typically platform-dependent applications that requ
more complex installation and maintenance procedures, and
therefore less practical in a multi-platform environment, in p
ticular across various enterprises.

2.2 Current Tools and Prototype Systems. So far, only a
small number of commercial tools have been developed
somehow support collaborative design activities. For exam
tools for collaborative model annotation and visualization via
ternet are now becoming available, providing concepts such
shared cameras and telepointers@6–8#. However, such tools are
primarily focused on inspection, e.g. using simple polygon m
models, and do not support real modeling activities. In ot
words, they are valuable assistants for teamwork, but no real C
systems. To the best of our knowledge, there is currently only
commercial client-server system offering some synchronous
laborative modeling facilities, OneSpace@9#, but this system is
severely constrained by the model format into which it conve
all shared CAD models.

On the other hand, several prototype collaborative mode
systems have been described in literature. Some of these sys
will be shortly surveyed here, and their shortcomings identifie

CollIDE @10# is a plug-in for the Alias modeling system, en
hancing it with some collaborative functionality. Users of CollID
have private workspaces, where model data can be adjusted
pendently from other users. In addition, a shared workspace e
containing a global model, which is synchronized between
users participating in a collaborative modeling session. Users
copy model data between the private and shared workspace
order to create and adjust certain model data locally, and add
the model in the shared workspace. The architecture of CollI
poses severe restrictions to crucial collaborative modeling iss
In particular, no special measures have been taken to reduc
amount of data sent between the participants of a collabora
modeling session, resulting in delayed synchronization of
shared workspace and of the users’ displays. Also, since each
operates on a separate instance of the modeling system, ab
Journal of Computing and Information Science in Engineering
on

ex-
a-
y
nt,
of
le

, so-

g
ter-
tes
ca-

ich
his
user
his
rver
ork
y

e-

g
-
n-
a

ify
fer-
to
m-
at
ire
are
r-

hat
le,
n-
as

sh
er
AD
ne
ol-

rts

ing
tems
d.
-
E
nde-
ists
all
can
s, in
it to
DE
es.
the

tive
the
user
le to

perform modeling operations by itself, concurrency has to
handled by the users themselves in order to keep shared m
data consistent.

The ARCADE system@11# defines arefine-while-discussing
method, where geographically distributed users can work toge
on a design, interacting with each other in real-time. Every p
ticipant uses a separate instance of the ARCADE modeling
tem, and all ARCADE instances are connected to a session m
ager via Internet. A message-based approach was chosen, w
every change of the product model is converted into a short
tual message, which is sent to all other instances of ARCA
through the session manager. ARCADE provides a collabora
environment in which the network load is kept low. This was do
by including all modeling functionality in the distributed AR
CADE instances, which exchange only textual messages, ra
than large sets of polygons. A drawback of this approach, h
ever, is that the user application becomes rather complex, the
requiring much computational power. In addition, ARCADE pr
vides a primitive concurrency control mechanism, where only o
user can edit a particular part at a time.

CSM, the Collaborative Solid Modeling system proposed
Chan et al.@12#, is a web-based collaborative modeling syste
Within its client-server architecture, the server contains a glo
model, while every client owns a local copy of this model. Wh
a user has locally modified the model, this is propagated to
other users through the server. Concurrency is managed in
ways:~i! the model can be locked, using token passing, restric
it from being accessed by other users as long as some us
performing a modeling operation; and~ii ! functionality can be
locked, preventing certain functions from being used by particu
users. Clearly, such methods provide a very strict concurre
handling policy. In fact, they turn the clients into several indepe
dent modeling systems, just using the same product model a
nately. In a real collaborative modeling system, one expect
higher level of coordination support.

NetFEATURE@13# claims to be a web-based collaborative fe
ture modeling system. A server provides basic functions on a c
tral product model, including creation and deletion of features.
the clients, a local model is available, containing a boundary r
resentation of the product, derived from the server-side cen
model. The local model is used for real-time display, navigat
and interaction. For more advanced operations, the server mu
accessed. Updating the local model is done incrementally, wh
required a rather heavy naming scheme, severely reducing
modeling functionality of the system. Furthermore, NetFEATUR
uses, just like CSM, very strict concurrency handling metho
thus seriously limiting real collaborative modeling.

2.3 Conclusions. Collaborative modeling systems can su
port engineering teams in coordinating their modeling activiti
Instead of aniterative process, sending product data back a
forth among several team members, designing becomes aninter-
activeprocess, in which several engineers are simultaneously
volved to agree on design issues. Collaborative modeling syst
typically have a client-server architecture, differing in the dist
bution of functionality and data between clients and server.

Concurrency control is still a crucial issue in current collabo
tive environments. If a user is allowed to change a model en
while another user is also changing the same entity, problems
easily arise concerning consistency of the model. To avoid
situation, a strict concurrency control mechanism can limit acc
for other users. It depends on the application, whether all ent
of the design should be locked or just some of them. If possi
users should be allowed to simultaneously modify different pa
of the design, but this could lead to much more complicated c
currency control mechanisms. Also, one should always bea
mind that designing is a constructive activity. Users can theref
be given some responsibility for establishing a good collaborat

Current systems also often fall short in adequately hand
synchronization of model data among distributed clients. Tim
SEPTEMBER 2002, Vol. 2 Õ 193



t
u
t

s

g
m
n
n

l
e
d

p
t

s
e

u

e

u

u

i

d
e

f

o

t

v

er,
g
the

es-
e-

on.
ions
ncy
ans
es-
ing

th
BA

rs.
is
ct
ts
a
in-

the
m.
the
of

ol-
uct
.e.
ion
nd

es-

nd
, is

d-
this
of

era-
ed

e-
lso

d
iff

th

d-
ras
updating data over a network is difficult, since there is a cert
delay between the moment data is sent and the moment it is
ceived at another node of the network; during this time interv
the latter might try to manipulate data that is not up-to-da
Mechanisms to detect such conflicts should be available, and
covery mechanisms provided. Good locking can also help to av
such situations, but sometimes this may hinder users’ flexibili

For a collaborative CAD system to be successful, it sho
provide a good level of interactivity. Users will not be able
design properly if they have to wait a long time after every o
eration. But increasing interactivity by just porting more and mo
data and functionality to the clients is not a good solution eith
as synchronization problems would become critical.

In short, a good solution to the difficulties summarized abo
can be a web-based client-server approach, where the serve
ordinates the collaborative session, maintains a shared pro
model, and provides all modeling functionality, which otherwi
could be implemented only in very fat clients. The clients loca
specify modeling operations on a graphical model, and only hi
level semantic messages, as well as a limited amount of infor
tion necessary for updating the client data, is sent over the
work. This effectively limits the network load, while guaranteei
good client interactivity at acceptable response times. An imp
tant characteristic of such an architecture is that there is only
central product model in the system, which is very advantage
in case of a complex feature model. Clients send their mode
operations to the server, and receive feedback after any mod
operation has been performed on its central model, thus avoi
inconsistency between multiple versions of the same model.

3 webSpiff: A Balanced Architecture
In this section, we discuss the architecture of a system im

mented according to the above-mentioned solution: the proto
collaborative feature modeling system webSpiff.

3.1 Overview of webSpiff Architecture. webSpiff has a
client-server architecture. As a basis for the server, the Spiff
tem developed at Delft University of Technology was chos
which offers several advanced modeling facilities. First, it offe
multiple views on a product, each view consisting of a feat
model with features specific for the application corresponding
the view. webSpiff provides two such views: one for design a
another for manufacturing planning of parts. In the design vi
the feature model consists of both additive features~e.g. protru-
sions! and subtractive features~e.g. slots and holes!. In the manu-
facturing planning view, the feature model consists of only s
tractive features. Both views on a part are kept consistent
feature conversion@3#. Second, it offers feature validity mainte
nance functionality. This can guarantee that only valid feat
models, i.e. models that satisfy all specified requirements, are
ated by a user@1#. Third, it offers sophisticated visualization tech
niques, which visualize much more specific feature informat
than most other systems do. For example, feature faces tha
not on the boundary of the resulting object, such as closure fa
of a through slot, can be visualized too@14#. All these facilities are
computationally expensive, and require an advanced pro
model, including a cellular model with information on all featur
in all views @15#, which uses functionality provided by the 3D
ACIS Modeler@16#.

In webSpiff, some of the functionality of the original Spi
modeling system, in particular for interaction with feature mode
is moved to the clients. However, as soon as real feature m
computations are required, such as for executing modeling op
tions, conversion between feature views, feature validity main
nance and feature model visualization, they are performed a
webSpiff server, on a central product model, and their results
eventually exported back to the clients.

webSpiff consists of several components, as depicted in
global architecture diagram of Fig. 1. On the server side, two m
components can be identified: the Spiff modeling system, pro
194 Õ Vol. 2, SEPTEMBER 2002
ain
re-

al,
te.
re-

oid
y.
ld
o
p-
re
er,

ve
r co-
duct
e

lly
h-
a-
et-
g
or-
one
ous
ing
ling
ing

le-
ype

ys-
n,
rs
re
to

nd
w,

b-
by

-
re

cre-
-
on
t are
ces

uct
s

f
ls,
del

era-
te-
the
are

the
ain
id-

ing all feature modeling functionality; and the Session Manag
providing functionality to start, join, leave and close a modelin
session, and to manage all communication between Spiff and
clients.

The Session Manager stores information about an ongoing s
sion and its participants. It manages all information streams b
tween webSpiff clients and the Spiff process handling the sessi
Since several session participants can send modeling operat
and queries to the webSpiff server at the same time, concurre
must be handled at the Session Manager. Practically, this me
that parallel information streams have to be serialized. The S
sion Manager has been implemented using the Java programm
language@17#, and therefore its Remote Method Invocation~RMI!
facilities were chosen for supporting the communication wi
webSpiff clients, above alternative approaches such as COR
and SOAP.

The clients of webSpiff make use of standard web browse
When a new client registers with webSpiff, a Java applet
loaded, implementing a simple user interface, from which a dire
connection with the Session Manager is set up. Different clien
can connect from various locations, in order to start or join
modeling session. Using standard web browsers at the clients
creases accessibility and platform independence, but limits
complexity of the operations that can be implemented on the
Therefore, careful attention has been paid to make available to
clients, in an interactive way, as much functionality as possible
the original Spiff system.

Once connected to the server, a user can join an ongoing c
laborative session, or start a new one, by specifying the prod
model he wants to work on. Also, the desired view on the part, i
design or manufacturing planning, has to be specified. Informat
on the feature model of that view is retrieved from the server, a
used to build the client’s graphical user interface~GUI!, through
which the user can start active participation in the modeling s
sion; see Fig. 2.

Users can specify modeling operations in terms of features a
their entities; for example, a feature, to be added to a model
attachable to entities of features already in the model~e.g. faces
and datums!, rather than in terms of faces of the evaluated boun
ary representation of the product. Among other advantages,
approach avoids the well-known problem of persistent naming
model entities@1#. After a feature modeling operation, with all its
operands, has been fully specified, the user can confirm the op
tion. The operation is then sent to the server, where it is check
for validity and scheduled for execution. Notice that this can r
sult in an update of the product model on the server, and thus a
of the feature model in the view of each session participant.

In addition to the above functionality, several visualization an
interactive facilities have also been ported to the clients. webSp
clients provide two ways of visualizing the product model, bo
making use of so-calledcamerawindows. A camera window is a
separate window in which a graphical representation of the pro
uct model is shown. Each client may create as many came

Fig. 1 Architecture of webSpiff.
Transactions of the ASME



c
n
i

o

l

t
z

l
s

o

r

o

i

n-

e
st
sted
ot

e
UI
n-
is

-
It is
a-
ted.

at
ws
ons
ed.
ded
ble
re

d for
r the

e
f in
i-

en-
erver
e.

tion
m-

-
iven
ion
tion
cal
m-

ML

tion
tion

op-
sion
the

ent
ges,
more

tion
ling

the
lies

ch as
els,

can

nts
piff
as desired. First, a feature model image can be displayed. Se
a model can be rendered that supports interactive modificatio
camera viewing parameters, e.g. rotation and zoom operat
After the desired viewing parameters have been interactively
they are sent to the server, where a feature model image c
sponding to the new parameter values is rendered and sent ba
the client, where it is displayed. Finally, webSpiff cameras a
provide facilities for interactive specification of modeling oper
tions, e.g. assisting the user in selecting features or feature en
by having them picked on an image of the model. The visuali
tion and interactive functionality of webSpiff cameras is describ
in detail by van den Berg et al.@18#.

To support all these facilities, the webSpiff clients need to
cally dispose of some model data, as described in the next
section.

3.2 Model Data at the Clients. As explained above, only
one central product model is maintained at the server. This m
includes all canonical shapes, representing individual features
specific view, and the cellular model. Some model data, howe
is also required at the clients. This data is derived by the se
from the central model, but it does not make up a real feat
model. webSpiff clients need just enough model information to
able to autonomously interact with the feature model, with
continuously requesting feedback from the server.

Model data at the clients can be classified into the follow
categories.

Fig. 2 User interface of a webSpiff client: the user, working on
a design view, is modifying certain parameters of the corner
pocket at the left-hand side of the displayed model.
Journal of Computing and Information Science in Engineering
ond,
of

ons.
set,
rre-
ck to
so
a-
ities
a-

ed

o-
ub-

del
in a
ver,
ver
ure
be
ut

ng

Textual Data. This data is used for specific sets of model i
formation, mostly in list form. The most important are:

• List of feature classes: contains the names of all featur
classes available in a given view. It is used to fill a GUI li
widget when adding a new feature instance, and is reque
from the server at client initialization time. This list does n
need to be refreshed during a modeling session.

• List of feature instances: contains the names of all featur
instances in a given view of the model. It is used to fill a G
list widget when editing or removing an existing feature i
stance. This list is set upon initialization of the client, and
refreshed after each modeling operation.

• List of parameter values: contains the values of all param
eters of a given feature instance, in a pre-defined order.
used to fill various GUI entry widgets when editing the fe
ture instance, and is always queried before editing is star

Feature Model Images.Feature model images are rendered
the Spiff server in GIF format, and displayed in camera windo
at the clients. These images provide very powerful visualizati
of a feature model. Many visualization options can be specifi
For example, selected features may be visualized with sha
faces, and the rest of the model as a wire frame or with visi
lines only. Also, additional feature information, such as closu
faces of holes, can be visualized. A separate image is neede
each camera, and it must be updated every time the model o
camera settings are changed.

Visualization Model. The visualization model represents th
global shape of the product model, and is generated by Spif
VRML format @19#. It is used at the clients for interactively mod
fying the camera viewing parameters~e.g. rotating and zooming!.
Real-time rendering of this model is locally feasible, whereas r
dering of a smooth sequence of feature model images at the s
and transmitting it to the clients would be unfeasible in real tim
All cameras on a particular client use the same local visualiza
model, but each camera displays it with its own viewing para
eters.

Selection Model. The selection model is a collection of ob
jects representing the canonical shapes of all features in a g
view of the product. Its purpose is to support interactive select
of feature faces on a feature model image, during the specifica
of a modeling operation. Again, the selection model is identi
for all cameras on a client, each applying its own viewing para
eters. The selection model is also generated by Spiff in VR
format.

3.3 Data Communication. As obvious from this section,
the various components of webSpiff have to exchange informa
at several stages during a modeling session. Communica
among them plays therefore an important role in webSpiff.

webSpiff clients can specify modeling operations, camera
erations, and a variety of queries, and send them to the Ses
Manager. Communication between the Session Manager and
clients uses the RMI functionality provided in Java. Messages s
from clients to the Session Manager are simple textual messa
whereas messages sent in the reverse direction may contain
complex objects, such as model data files.

At the server, a socket connection is used as the communica
channel between the Session Manager and the Spiff mode
system. Textual messages are used to pass commands from
Session Manager to the Spiff modeling system. The system rep
using also textual messages, but several data structures, su
feature model images and the visualization and selection mod
are stored by Spiff into files, so that the Session Manager
easily propagate them to the clients.

4 The Server
As outlined in the previous section, the two main compone

of the webSpiff server are the Session Manager and the S
SEPTEMBER 2002, Vol. 2 Õ 195



z

t
m

h
i

r

i

v
n

e

a

d
w

e

n

e

i
e

i
p

n-

d
can
defi-

cy
mu-

for-
out.
allel

the
e at
an-

time,
al-
age
ost
s
data

by

s
nel,

, a
nt,
piff
her
the
ided
is

a-
does
eling

t a
el-
ves

edit
this
ed
to

the
per-
that
ent
rgu-
to

that

the
ive
gh
e-
ata
er-
ts
inly
odel

nt,
for
us,
tin-
modeling system. The functionality of Spiff has been summari
in Subsection 3.1. Therefore, this section is focused on the Ses
Manager, in particular its synchronization and concurrency m
agement mechanisms.

4.1 The Session Manager. Two important types of pro-
cesses run on the Session Manager; see Fig. 1. First, it main
for each client aClient Manager, which receives messages fro
its client, interprets them, and either processes a message itse
propagates it to the Spiff modeling system. Second, the Ses
Manager maintains anEvent Manager, including an event queue
that schedules the tasks received from all Client Managers, w
have to be passed on to the Spiff modeling system. The Cl
Managers and the Event Manager run independently from e
other, as so-called separateThreadsin Java.

Each Client Manager maintains a Client Profile, which sto
information about an individual client. This includes the us
identification, the modeling view he is working on, and a l
containing the names of the Cameras the client has opened.

Several types of tasks can be distinguished at the Client M
agers. First, session operations have to be handled. These in
starting a session, logging into and out of a session, and closi
session. Second, modeling operations can be received that ha
be forwarded to the Spiff modeling system, which, after execut
them, returns their result to the Session Manager. Third, cam
operations have also to be forwarded to the Spiff modeling s
tem. Fourth, queries about the feature model are directly answ
by the Session Manager, which keeps a record of up-to-d
model data. In this way, queries can be directly answered, with
involving the Spiff modeling system. The results of the last tw
types of tasks must be sent only to the client that issued the
quest. In all cases, sending results back to the clients is handle
the Event Manager, through the respective Client Managers
will be explained in the following subsection.

4.2 Data Synchronization. Model data at the clients is
never modified directly by the clients themselves. Instead, it is
task of the Session Manager to synchronize session particip
by sending them updated model data, after a modeling or cam
operation has been processed. Several types of feedback are
sible here, depending on the type of operation and whether
operation was successful.

When a client modifies any camera settings, the webS
server executes the corresponding camera operation, and a
feature model image is generated. Since the feature model rem
unaffected by camera operations, the server only needs to sen
new feature model image back to the client that requested
camera update.

However, after a modeling operation has been successfully
ecuted, the central model has been changed, so relevant up
model data has to be sent to all other session participants as
Messages are then sent to each client with the corresponding
dates, consisting of, possibly several, new feature model imag
new visualization model, and an incremental update of the se
tion model~containing only new and/or modified feature cano
cal shapes!. Also, additional information on the feature model
included in the messages, such as an updated list of featur
stances. Separate messages have to be created per client,
each client typically has different cameras, and therefore requ
different feature model images. Of course, model data will also
different for users of different modeling views. Upon receiving
update message, a client can extract the model data in ord
update its data structures.

In order to reduce ‘‘collaboration noise,’’ due to too many d
tracting updates, clients may analyze updates, and decide to
pone processing them until some convenient synchroniza
time. In any case, temporary local inconsistencies can still oc
at a client. Since transmitting model data from the server to
clients is not instantaneous, for a short period model data on
196 Õ Vol. 2, SEPTEMBER 2002
ed
sion
an-

ains

lf, or
sion

ich
ent
ach

es
er
st

an-
olve
g a

ve to
ing
era
ys-
red
ate
out
o
re-

d by
, as

the
nts,
era
pos-
the

piff
new
ains
d the
the

ex-
ated
ell.
up-
s, a

lec-
i-

is
in-

since
ires
be
ts
r to

s-
ost-

tion
cur
all
the

clients is not up-to-date. Avoiding conflicts arising from this tra
sitory mismatch will be dealt with in Subsection 5.2.

4.3 Concurrency Handling. Concurrency must be handle
at several stages. If this is not done properly, serious problems
arise, such as inconsistency of data structures, or processes in
nitely waiting for each other, i.e. deadlock.

Event Management.The most delicate case of concurren
occurs with event management at the Session Manager. Com
nication streams from all clients come together, requesting in
mation to be sent back and modeling operations to be carried
The Session Manager serializes data that arrives in par
streams.

As seen in Subsection 4.1, each client is represented in
Session Manager by a Client Manager. When two events arriv
the Session Manager at the same moment, only one Client M
ager should be able to add an event to the event queue at a
so the system must determine which Client Manager will be
lowed to add the event first. The Java programming langu
provides useful locking mechanisms for this purpose, the m
important being thesynchronizedmechanism. When a class i
accessed by a synchronized method, all its methods and
structures are locked, preventing them from being accessed
another process at the same time.

Conflicting Modeling Operations.webSpiff encourages user
to coordinate their actions, e.g. using the phone or a chat chan
in order to avoid conflicting operations. To assist in this goal
traffic light icon is displayed on the user interface of every clie
informing about the busy state of other clients and of the webS
server. This icon switches from green to yellow when anot
client starts specifying a modeling operation, and to red when
server starts executing a modeling operation. It has been dec
not to implement strict token passing policies, since modeling
considered to be a constructive activity. Additional communic
tion between users will always remain necessary, because it
not make much sense to have several users performing mod
operations simultaneously, without any coordination.

Still, it could happen that two clients simultaneously submi
modeling operation. Consider the following situation: the mod
ing operation that is handled first by the Session Manager remo
a certain feature, while the second modeling operation tries to
this same feature. In a single user modeling system, e.g. Spiff,
situation could not occur, since operations are always perform
serially: after a feature has been removed, it is not possible
subsequently edit it, since it cannot be selected anymore in
user interface. In webSpiff, however, where operations are
formed concurrently, an operation can be specified on features
no longer exist at the time of its execution. Therefore, the Ev
Manager always checks the existence of each operation’s a
ments, before issuing its execution in Spiff. A user requesting
execute an operation on no longer existing features is notified
the operation is not meaningful anymore.

5 The Clients
The webSpiff clients provide a remote user interface to

users of webSpiff. In order to offer them the same interact
functionality as the Spiff modeling system does, it is not enou
to just replicate the user interface of Spiff at the clients. As d
scribed in Subsection 3.2, webSpiff clients maintain some d
structures with model information, used to provide various int
active facilities. The interactive functionality of webSpiff clien
was briefly summarized in Subsection 3.1. This section ma
elaborates some communication issues regarding client m
data, in particular its synchronization at the clients.

Several components can be identified within a webSpiff clie
as shown in Fig. 3. The user interface is the component used
interactively specifying all operations, by means of panels, men
buttons and list boxes. Three major components can be dis
Transactions of the ASME



e
.

d

e
u
c
c

i
e
e

s

t

i
l
i
n

i

s

d

fi

l
f
i
s

ve
om-

p-
the
be

d-
.
not
be

by
will
tion
ate
ra-

ion
side

on
ould
ture,
on.
pa-
ified
the
ion
e to

ma-
.3,
ruc-
ssed
xpect-
ger,
ust

s to
ion.
ked

ys-
be
ly
vel-
such
tion
ent-
oach
ance
ity

eb-
sues
ur-
stri-
re-
full
red
ling
of

ted
n a
r-
col-
o
uite
d

guished, namely the View Panel, the Session Panel and the C
eras. The first two provide plain interfaces with standard widg
the latter functionality for graphical interaction with the model

5.1 The Communication Manager. The Communication
Manager on the client manages all communication with the S
sion Manager on the server. Two kinds of messages can be i
tified here:

a! messages whose response is not awaited, before the c
can be operated again; these messages include all mod
operations, such as adding, removing and editing a feat

b! messages whose response is awaited, suspending all a
ties on the client; these messages include queries and
era update messages.

When a message of type b! is sent, all activity on the client is
suspended until a reply to it is received. While in this state, ho
ever, it is still possible that other messages arrive at the cl
earlier than the expected response. These messages are stor
queue, and processed after the expected response has be
ceived and processed. An exception is made here for mess
concerning the update of state information; see the next sub
tion.

The reason that camera update messages fall into the se
category is that, after a camera operation has been specified
sent to the Session Manager, the interactive functionality can
be used any more to continue operating webSpiff. Specify
camera operations is typically done interactively, using the vi
alization model, whereas specifying modeling operations is ty
cally done using the feature model image, in combination with
selection model; see Subsection 3.2. However, after the view
parameters of the visualization model have been modified,
feature model image is inconsistent with both the visualizat
model and the selection model. As result, no entities for mode
operations can be selected on the feature model image unt
updated image arrives. For this reason, the client is suspe
until the new image has been received.

Messages sent by a client to the Session Manager take im
ceptible transmission times, as they consist of a compact st
argument of a single RMI call only. Messages received at a cl
from the Session Manager are, however, more complex, typic
containing multiple objects. The first object in all messages i
command string, which is parsed by the Communication Mana
to determine the message type, and how it should be handle
addition, messages can contain requested information on the
ture model, such as a list of feature instances, or model data
Such files are small, and therefore their transmission times
short. In the example of Fig. 2, a feature model image takes
than 10 Kbytes, the selection model less than 5 Kbytes per
ture, and the visualization model less than 50 Kbytes. Taking
account these file sizes, it can be questioned whether compre

Fig. 3 Architecture of a webSpiff client.
Journal of Computing and Information Science in Engineering
am-
ts,

es-
en-

lient
ling
re;
tivi-
am-

w-
ent
d in a
n re-

ages
sec-

cond
and

not
ing
u-

pi-
he
ing
the
on
ing
l an
ded

per-
ring
ent
ally

a
ger
. In
fea-
les.
are
ess
ea-
nto
sing

them before transmission to the clients would further impro
system throughput, due to the overhead introduced by the c
pression and decompression algorithms.

5.2 Synchronization. Before data structures can be u
dated, it must be made sure that the involved clients are in
right state for processing the update. Two types of data can
distinguished here:~i! updated model data, resulting from a mo
eling or a camera operation, and~ii ! updated state information
The order in which these updates are received at the clients is
known in advance, and several scenarios must therefore
handled. Two scenarios are described here.

In webSpiff, the feature model can be modified at any time
one of the users. After such a modification, new model data
have to be sent to all clients. At a client side, however, prepara
of a new modeling operation could be underway when the upd
arrives. It is not convenient to force the user to cancel his ope
tion, since it might well be that the user coordinated his operat
with the other users, e.g. using a communication channel out
webSpiff, in a way that the update does not have any influence
the modeling operation being specified. For example, a user c
be editing a feature, while the update concerns another fea
having no influence on the edit feature operation that is going
Canceling the operation in this case, would mean that all the
rameters that had been specified so far would have to be spec
again. Therefore, the user is allowed to continue specifying
modeling operation, but he is notified of the modeling operat
that has been carried out at the server. He can then choos
continue specifying his operation, or to cancel it himself.

Besides updating model data at the client, also state infor
tion, such as the traffic light icon mentioned in Subsection 4
must be kept up to date. The difference with the other data st
tures is, however, that state information must always be proce
as soon as possible. Whereas other messages that arrive une
edly can be put into a queue at the Communication Mana
awaiting their processing, the most recent state information m
become available to the client immediately, since its purpose i
inform the user of the current state of the modeling sess
Therefore, for every incoming message, it is immediately chec
whether it is a state update message.

6 Results and Conclusions
Current trends in product development demand from CAD s

tems not only advanced modeling facilities, but also that these
concurrently available to distributed multiple users, effective
supporting collaboration sessions among the members of a de
opment team. This paper addresses the new challenges of
requirements. The problems of concurrency and synchroniza
in a collaborative modeling system can best be handled if a cli
server architecture is adopted. Moreover, a web-based appr
has additional advantages, although this requires a careful bal
between the conflicting requirements of good client interactiv
and low network load.

A new web-based collaborative feature modeling system, w
Spiff, has been presented that provides a solution for many is
involved in collaborative modeling systems, including conc
rency, synchronization and user interaction. The proposed di
bution of functionality between the server and the clients has
sulted in a well-balanced system. On the one hand, the
functionality of an advanced feature modeling system is offe
by the server. On the other hand, all desirable interactive mode
functionality is offered by the clients, ranging from display
feature model images to interactive selection facilities.

All functionality described in this paper has been implemen
in the webSpiff prototype system. The webSpiff server runs o
Linux workstation, with a Pentium 4 running at 1.6 GHz. Its pe
formance exceeds that required for supporting synchronous
laborative modeling sessions, which will typically involve n
more than 10 users. The Java-based client application is q
simple. So far, webSpiff clients running on Unix, Windows an
SEPTEMBER 2002, Vol. 2 Õ 197



i

l

e
n

s
t

g

a
u

n

nd

ter

ver

-

A.

Col-

or

n-
At-

he
g,

ic
-S.
9.
al-

tion
ed

st-

In-
l-
Linux platforms have successfully participated in collaborat
sessions. The only requirement at the client side is that it need
have a Java-enabled web browser, with the Java3D API insta
The webSpiff portal has a demo version available on Internet
users to experiment with, atwww.webSpiff.org.

Secure transmission and data protection are important issu
any collaborative modeling environment. Although they were
directly considered in the scope of this project, they should
ceive careful attention, possibly profiting from alternative comm
nication protocols such as SOAP.

As Internet technology rapidly improves, faster and better c
laboration becomes possible. It can therefore be expected
although the development of collaborative modeling system
still at its early stages, such systems will soon play an impor
role in the product development process.

Acknowledgments
This article is a revised version of the paper CIE-21286, pre

ously published in the Proceedings of ASME 2001 Design En
neering Technical Conferences. We thank the reviewers for m
valuable comments.

References
@1# Bidarra, R., and Bronsvoort, W. F., 2000, ‘‘Semantic feature modellin

Comput.-Aided Des.,32~3!, pp. 201–225.
@2# Kagan, P., Fischer, A., and Bar-Yoseph, P. Z., 1999, ‘‘Integrated Mechanic

based CAE System,’’ Proceedings of Solid Modeling ‘99—Fifth Symposi
on Solid Modeling and Applications, Bronsvoort, W. F. and Anderson, D
~Eds.!, ACM Press, New York, pp. 23–30. Also in: Comput.-Aided Des.,32~8/
9!, pp. 539–552.

@3# de Kraker, K. J., Dohmen, M., and Bronsvoort, W. F., 1997, ‘‘Maintaini
Multiple Views in Feature Modeling.’’ Proceedings of Solid Modeling ‘97—
198 Õ Vol. 2, SEPTEMBER 2002
ve
s to
led.
for

s in
ot
re-
u-

ol-
that,

is
ant

vi-
gi-
any

.’’

lly-
m
.C

g

Fourth Symposium on Solid Modeling and Applications, Hoffmann, C.M. a
Bronsvoort, W.F.~Eds.!, ACM Press, New York, pp. 123–130.

@4# Hoffmann, C. M., and Joan-Arinyo, R., 1998, ‘‘CAD and the Product Mas
Model,’’ Comput.-Aided Des.,30~11!, pp. 905–918.

@5# Lewandowski, S., 1998, ‘‘Frameworks for Component-Based Client/Ser
Computing,’’ ACM Comput. Surv.,30~1!, 3–27.

@6# Parametric, 2001, Pro/ENGINEER 2001i . Parametric Technologies Corpora
tion, Waltham, MA.http://www.ptc.com.

@7# SDRC, 2001, I-DEAS. SDRC, Milford, OH.http://www.sdrc.com.
@8# Kaon, 2001, HyperSpace-3DForum. Kaon Interactive Inc., Cambridge, M

http://www.kaon.com.
@9# CoCreate, 2002, One Space Suite Solution, CoCreate Software, Inc., Fort

lins, CO.http://www.cocreate.com.
@10# Nam, T. J., and Wright, D. K., 1998, ‘‘CollIDE: A Shared 3D Workspace f

CAD,’’ Proceedings of the 1998 Conference on Network Entities, Leeds.
@11# Stork, A., and Jasnoch, U., 1997, ‘‘A Collaborative Engineering Enviro

ment,’’ Proceedings of TeamCAD ‘97 Workshop on Collaborative Design,
lanta, GA, pp. 25–33.

@12# Chan, S., Wong, M., and Ng, V., 1999, ‘‘Collaborative Solid Modelling on t
WWW,’’ Proceedings of the 1999 ACM Symposium on Applied Computin
San Antonio, CA, pp. 598–602.

@13# Lee J. Y., Kim, H., Han, S. B., and Park, S. B., 1999 ‘‘Network-centr
Feature-based Modeling.’’ Proceedings of Pacific Graphics ‘99, Kim, M.
and Seidel, H.-P.~Eds.!, IEEE Computer Society, Los Alamitos, pp. 280–28

@14# Bronsvoort, W. F., Bidarra, R., and Noort, A., 2002, ‘‘Feature Model Visu
ization,’’ To be published in: Computer Graphics Forum,21~4!.

@15# Bidarra, R., de Kraker, K. J., and Bronsvoort, W. F., 1998, ‘‘Representa
and Management of Feature Information in a Cellular Model,’’ Comput.-Aid
Des.,30~4!, 301–313.

@16# Spatial, 2002, 3D ACIS Modeler, Version 7.0. Spatial Technology Inc., We
minster, CO.http://www.spatial. com.

@17# Sun Microsystems, 2002 The Sun Java™ Technology Homepage.http://
java.sun.com

@18# van den Berg, E., Bidarra, R., and Bronsvoort, W. F., 2000, ‘‘Web-based
teraction on Feature Models,’’ In:From Geometric Modeling to Shape Mode
ing, Cugini, U. and Wozny, M.~Eds.!, Kluwer Academic Publishers, Dor-
drecht, pp. 99–112.

@19# Ames, A., Nadeau, D., and Moreland, J., 1997,The VRML 2.0 Sourcebook,
Second Edition, John Wiley & Sons, New York.
Transactions of the ASME


