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a b s t r a c t

Noise-like artifacts are common in measured or fitted data across various domains, e.g. photography,
geometric reconstructions in terms of point clouds or meshes, as well as reflectance measurements
and the respective fitting of commonly used reflectance models to them. State-of-the-art denoising
approaches focus on specific noise characteristics usually observed in photography. However, these
approaches do not perform well if data is corrupted with location-dependent noise. A typical example
is the acquisition of heterogeneous materials, which leads to different noise levels due to different
behavior of the components either during acquisition or during reconstruction. We address this
problem by first automatically determining location-dependent noise levels in the input data and
demonstrate that state-of-the-art denoising algorithms can usually benefit from this guidance with
only minor modifications to their loss function or employed regularization mechanisms. To generate
this information for guidance, we analyze patchwise variances and subsequently derive per-pixel
importance values. We demonstrate the benefits of such locally-guided denoising at the examples
of the Deep Image Prior method and the Self2Self method.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Data containing high levels of noise poses a huge problem for
any applications in entertainment, advertisement, and design.

mmersive experiences of scenes and objects rely on respec-
ive high-fidelity depictions and are significantly impacted by
oisy data resulting from the capture or modeling process. Un-
ortunately, certain types and levels of noise cannot be avoided
uring data capture. Physical or economic constraints might af-
ect the choice of the sensor or the amount and quality of the
ata that can be handled while meeting requirements regarding
he computational burden for a task. Therefore, methods are
ypically designed to be robust to noisy data. Whereas certain
ypes of noise including sensor noise can typically be handled
obustly, the robustness to other noise types including compres-
ion artifacts or missing data is often still lacking and relies on
ophisticated denoising methods.
In the field of appearance capture and modeling – which is

oncerned with creating photo-realistic virtual models that cap-
ure details regarding surface geometry and reflectance behavior
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Fig. 1. We present a novel approach to remove spatially concentrated noise
from images. Given a noisy input image (top row), a guidance map (middle
row) can be used to control the denoising intensity of state-of-the-art denoising
algorithms in a spatially-varying manner. We propose a fully automatic way
to generate such guidance information by detecting noisy pixels in the input
(middle row, bottom half). Hereby, corrupted pixels of the input can be denoised
while preserving fine details in others (bottom).

of their real-world counterparts – noisy 3D measurements, inac-
curate calibration and image noise have to be dealt with. Often-
times, these are corrupted by non-uniform location-dependent
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oise as depicted in Fig. 1. The typical way to handle such data
s to apply image restoration algorithms like super-resolution,
enoising and inpainting, which aim at recovering an original
mage x from its corrupted version x̃. This can be stated in terms
f the optimization problem

rgmin
x

E(x; x̃) + R(x) (1)

ith the data term E(x; x̃) and a regularization term R(x). In
ontrast to the task-specific data term, finding a good prior R(x)
s challenging. For a surjective mapping g : θ ↦→ x, Functional (1)
orresponds to

rgmin
θ

E(g(θ ); x̃) + R(g(θ )). (2)

s shown by Ulyanov et al. [1], the choice of a good (possibly
njective) mapping g allows getting rid of the prior term. By
efining g(θ ) as fθ (z), where f is given by a deep neural network
ith parameters θ and using a fixed input z, we obtain

rgmin
θ

E(fθ (z); x̃), (3)

hich can be solved based on gradient descent, i.e. we opti-
ize the neural network’s parameters to finally represent the
earched restored version of the image x∗

= fθ∗ (z) based on
he optimal network weights θ∗. In other words, the underlying
nverse problem is regularized by the deep network itself. Other
pproaches [2,3] combined this approach with additional priors.
These restoration methods like the Deep Image Prior are hard

o control, which poses a problem in the above example of data
orrupted with location-dependent noise. Applying the Deep Im-
ge Prior approach without modification results in either loss of
ine details or carrying over large amounts of artifacts.

In this paper, we propose a method to control the training
f state-of-the-art learning-based denoising algorithms to enable
uccessful restoration of such data. At the example of the restora-
ion of fitted spatially-varying bidirectional reflectance distribu-
ion function (SVBRDF) textures that describe the reflectance
ehavior of surfaces, we show how characteristic properties of
ccurring artifacts can be leveraged to guide the optimization.
n particular, we introduce spatially varying guidance by means
f a per-pixel importance value, which can be calculated in a
ully automatic manner by analyzing patchwise variances in the
mage. Based on two exemplary denoising approaches [1,4], we
how how to utilize the per-pixel importance values during the
enoising process with only minor modifications to the orig-
nal algorithms (see Fig. 1). We validate the potential of our
pproaches in comparison to the respective original algorithms
ithout modifications as well as another learning-based state-of-
he-art denoising method [5], where our approaches outperform
he baselines in terms of image quality of the restored images.

. Related work

In the context of model-based optimization for inverse prob-
ems such as restoration, denoising, superresolution and deblur-
ing, it is well-known that the typically involved regularization
erm has a significant influence on the resulting performance.
herefore, lots of effort has been spent on finding good denoiser
riors. Total variation [6,7] has been widely applied, but the
esults may exhibit watercolor-like artifacts. Further approaches
nclude Gaussian mixture models (GMM) [8] and the computa-
ionally expensive K-SVD denoiser prior [9]. Furthermore, non-
ocal means [10] as well as block-matching and 3D filtering
BM3D) [11] tend to oversmooth irregular structures for im-
ges that do not exhibit self-similarities. As leveraging the cor-
elation between different color channels by jointly handling
 d

2

hem has been shown to lead to better performance in compar-
son to the independent handling of color channels [12], several
orks focused on color priors (e.g. [13–15]). Popular techniques
uch as CBM3D [13] rely on first decorrelating the image into
luminance-chrominance color space and subsequently apply-

ng the gray BM3D method for each transformed color chan-
el separately. However, the resulting luminance-chrominance
olor channels still remain correlated [16], which indicates that
t might be beneficial to jointly handle RGB channels.

Instead of the aforementioned hand-designed approaches, re-
ent work particularly focused on learning-based methods to
ind the respective color image priors capturing characteristics of
he given data. The learned deep CNN denoiser prior by Zhang
t al. [17] benefits from the parallelization of the inference on
he GPU and exploits the prior modeling capacity offered by deep
rchitectures. Building on this work, the denoising algorithm
y Yang et al. [18] utilizes ensemble learning to improve on
he results, while Quan et al. [19] designed a complex-valued
NN to leverage insights from classical image recovery algo-
ithms. However, the approach involves a training on a large
ataset of thousands of clean/noisy image pairs. Despite rely-
ng on an image dataset for training as well, Recorrupted-to-
ecorrupted [20] lifted the requirement for clean images in the
ataset by proposing to learn a mapping of corrupted images to
ther corrupted images following the same noise distribution but
ith the noise being independent of the noise in the input image.
onsequently, the clean image can be found by the averaging of
ultiple corrupted images. In contrast, the untrained approach
y Ulyanov et al. [1] on Deep Image Priors (DIPs) shows that
ow-level statistics of a single input image can be sufficiently
aptured by the structure of a single DIP generator network.
nvariance to adversarial perturbations and the suppression of
on-robust image features are particularly achieved in the early
terations [21] after which overfitting starts to occur. To avoid the
eed for early stopping, i.e. finding a suitable number of iterations
here the image prior does not overfit to noise characteristics
r artifacts, other works rely on Bayesian approaches [22,23] or
nder-parametrization based on deep decoder approaches [24]
o prevent the overfitting and reach a stable convergence behav-
or. Further work on DIPs focused on optimizing the underlying
etwork architecture as part of the denoising process [25,26].
he potential of such deep priors have also been demonstrated
or hyperspectral image denoising [27,28] and even for surface
econstruction [29–31].

A similar approach, which in contrast to DIP is not relying
n early stopping, has been introduced with Self2Self by Quan
t al. [4]. Instead of finding a mapping from fixed noise to the
nput image, they use a similar U-Net architecture to find a map-
ing from a noisy input image to a clean image directly. Reg-
larization is handled by employing a Bernoulli input masking
cheme as well as dropout in the decoder layers.
More recently, CVF-SID [5] has been proposed as an approach

or self-supervised single image denoising by disentangling clean
mage, signal-dependent noise and signal-independent noise in
n end-to-end fashion. In the field of nonblind image deconvo-
ution, Chen et al. [32] introduced a spatially-adaptive dropout
cheme to handle the solution ambiguity introduced by the de-
lurring problem. While also assuming the input image to be
orrupted by Gaussian white noise, they rely on the assumption
f the noise being uniformly distributed over the image and
ndependent of the image signal in order to denoise the image

uring the deblurring process.
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. Methodology

The goal of our work is to widen the range of problems, com-
only used learning-based self-supervised single image denois-

ng algorithms can be successfully applied to. While not being the
nly use-case for our work, we are specifically targeting the prob-
em of denoising images with an arbitrary number of channels
orrupted with location-dependent noise instead of noise being
niformly distributed over the whole image. Current state-of-the-
rt algorithms tend to either introduce additional blurriness in
riginally clean pixels or are not capable of sufficiently removing
he noise from the image.

We first propose the calculation of importance images based
n an estimated per-pixel noise level. Subsequently, we present
xemplary minor adjustments to the Deep Image Prior (DIP)
s well as the Self2Self (S2S) method in order to guide their
enoising process according to the importance values.

.1. Inference of a guidance map

We propose the guidance of image processing operations like
enoising based on a guidance map in terms of a per-pixel im-
ortance value m(x, y) for pixel (x, y), where values close to 1
ndicate that the pixel of the input image should be preserved
n the denoised image while pixels with importance close to 0
hould be denoised as much as possible as they are assumed to
ave a low signal-to-noise ratio. Note, that this importance is
irectly related to the noise level of a pixel via

(x, y) = 1 − n(x, y), (4)

where n(x, y) is the noise level for pixel (x, y). While calculating
the true noise level from the image signal is an underconstrained
problem, for the purpose of the guidance map it suffices to find a
rough estimate of it as we can rely on the natural regularization
capabilities of the underlying denoising algorithms. If working
with RGB images, noise level estimates are calculated indepen-
dently for all channels. The maximum over the noise levels of
all channels is calculated before the remapping step described in
Section 3.1.3. For the remainder of this section, we assume to be
working with grayscale images for notational simplicity.

3.1.1. Variance-based noise level estimation
Building on the assumption that noisy regions usually have

a high variance, the naive way would be to estimate the per-
pixel noise level as patchwise variance of the respective pixel
neighborhood. The variance for such a neighborhood N (x, y) ⊆ I
is defined as

nvar(x, y) =
1

|N (x, y)|

∑
(x′,y′)∈N (x,y)

(I(x′, y′) − µ(N (x, y)))2 (5)

and the mean over an arbitrary set of pixels P is defined as

µ(P) =
1

|P|

∑
(x′,y′)∈P

I(x′, y′). (6)

However, this noise level estimate is prone to erroneously high
values at discontinuities in the input image which we typically
want to preserve in the denoised image making this method
applicable only for very smooth images.

3.1.2. SVD-based noise level estimation
To alleviate the aforementioned problem and allow for better

adaptation to local noise characteristics, we apply a local noise
level estimation. For this purpose, we propose to split the pixel
neighborhood N (x, y) into two disjoint subsets N (x, y) and
lower

3

Nupper(x, y) depending on whether the respective pixel is below
or above the patch mean µ(N (x, y)), such that

N (x, y) = Nlower(x, y) ∪ Nupper(x, y) (7)

and

Nlower(x, y) ∩ Nupper(x, y) = ∅. (8)

Subsequently, pixels of both subsets are lifted into R3

N 3
{lower,upper}(x, y) =

{( x′

y′

I(x′, y′)

)⏐⏐⏐⏐⏐ (x′, y′) ∈ N{lower,upper}(x, y)

}
,

(9)

where ·{a,b} combines equations for ·a and ·b for notational sim-
plicity. Afterwards, covariance matrices MN 3

{lower,upper}
can be con-

structed to perform an singular value decomposition (SVD) (de-
pendence on the pixel (x, y) omitted for notational simplicity)

MN 3
{lower,upper}

= U{lower,upper}Σ{lower,upper}V T
{lower,upper}, (10)

where σ{lower,upper},i = Σ{lower,upper},ii, i.e. the diagonal entries of
matrices Σ{lower,upper}, are the singular values. We are looking for
the smallest singular value

σ{lower,upper},min = min
i∈{1,2,3}

σ{lower,upper},i (11)

of each subset as this value can be interpreted as the variance, and
therefore the amount of noise, of the subset in normal direction
of a plane fitted to the respective pixels. As this analysis is
conducted for both subsets of pixels individually, the approach
is robust against image discontinuities in contrast to relying on
the patchwise variance directly. Additionally, due to the SVD,
smooth color gradients are not detected as noise either. These
two partial noise level estimates can be reduced to an estimate for
the whole patch by choosing an appropriate reduction operator.
Experiments have shown that the results are best using the mini-
mum of σlower and σupper. We argue, that an additional robustness
against detecting high-frequency details in the image as noise is
more important than additional accuracy in estimating the noise
level. The noise level can therefore be estimated as

nsvd(x, y) = min
s∈{lower,upper}

σs,min(x, y). (12)

3.1.3. Remapping
Despite noisy pixels having usually higher estimated noise

level values n{var,svd}(x, y), we can still observe significant values
for clean image pixels as well. Non-zero noise level estimates
might prevent the full overfitting of the denoising network to
clean pixels and thus can introduce unwanted blurriness for
respective pixels. To avoid this, we apply a remapping technique
to generate the final guidance images.

We observed that the square root of the estimated noise levels,
i.e. the standard deviation of pixel values, for clean pixels roughly
follows a Gaussian distribution as depicted in Fig. 2. By calculating
a histogram over the noise levels of all pixels, we find the bin with
the highest pixel count as this is assumed to be the peak of the
distribution with mean value

√
npeak. Remapping our estimated

noise level values using (2
√
npeak)2 = 4npeak as lower bound and

the 95th percentile n0.95 as upper bound and clamping to [0, 1]
inally yields robust guidance images

{var,svd}(x, y) = 1 −
n{var,svd} − 4npeak

. (13)

n0.95 − 4npeak
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Fig. 2. Remapping procedure: Square root of estimated noise levels, i.e. the standard deviation of pixel values, roughly follows a Gaussian distribution for noise-free
pixels. By finding the peak of the distribution, the respective pixels can be discarded (left) and the remaining part up to the 95th percentile is remapped to [0, 1],
resulting in a robust guidance map (middle). This holds for other examples as well (right).
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Fig. 3. Original DIP: Based on a noisy input image, a modified U-Net [33] is
trained to map a fixed noise image to the noisy input image itself. Over the
course of the training, natural image content is learned first due to the inherent
regularization capabilities of the network. Early stopping is applied to stop the
training process as soon as maximum quality is reached. If the network is trained
further, the network output will finally converge to the actual noisy input image.

3.2. Guided Deep Image Prior

The generated guidance images can easily be used in state-of-
he-art denoising algorithms, such as DIP [1]. This approach uses
neural network as natural prior for image restoration tasks in-
luding denoising. As depicted in Fig. 3, the input for the network
s a fixed noise image with 32 channels consisting of uniformly
istributed random numbers in the range [0, 0.1]. Iteratively, the
etwork learns a mapping from the noise image to the noisy input
mage by minimizing an L2-loss. During this training process,
he network learns the more natural low-frequency components
4

of the noisy input image first, while the high-frequency com-
ponents are only learned in later stages. Hence, by interrupting
the training process before the network learns to reconstruct the
unwanted noise, we can consider the network output as denoised
image. For further regularization, random noise drawn from the
normal distribution N(0, 1/30) is added to the network input in
each step to further regularize the training process.

As in the original approach, the output of the network is
smoothed over multiple iterations with an exponential weight
according to

I i
= 0.01Î i

+ 0.99I i−1, (14)

where I i is the output image in iteration i and Î i is the actual
network prediction. This way, artifacts accidentally produced by
the trained network are mostly smoothed out resulting in more
accurate restorations.

Where not stated differently, we are using the same hyper-
parameters as the original approach in the denoising setting. In
particular, we thus configure the network to have an encoder
and a decoder each consisting of five double convolution layers
with 128 filters. Each double convolution also contains batch
normalizations and LeakyReLU activation functions. Reflection
padding is used as it is described to work best by the authors [1].

Using the standard L2-loss as proposed by Ulyanov et al. [1]
results in missing fine details in clean parts while the artifacts
are already being learned by the network in corrupted ones
and therefore being carried over to the output image. Since the
artifacts are potentially restricted to some parts of the noisy
input image due to systematic reasons, we propose a guided loss
function to have further control over the restoration process.

We use guidance image described in Section 3.1 for this pur-
pose. Depending on a pixel’s importance we stop the training
process early by weighting down the loss induced by the respec-
tive pixel according to a weight wi

dec(x, y). This weight depends
on the current iteration number i reducing the respective pixels
contribution to the loss over time. The resulting loss term is

Li
dec =

1
|I|

∑
(x,y)∈I

((Î i(x, y) − I(x, y)) · wi
dec(x, y))

2. (15)

he decay weight wi
dec(x, y) is chosen to have an exponential

all-off after an initial warm-up phase with full contribution to
he loss (dependence on the pixel (x, y) omitted for notational
implicity):

i
dec =

{
1 i < κw

(i−κw )·κr
(16)
(0.9 + 0.1 m) · (1 − κc) + κc else,
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Fig. 4. Decaying per-pixel weight for DIP enables to locally control the denoising
effect. After an initial warm-up phase (here κw = 225) with full denoising
intensity, the weight decays exponentially (here κr = 0.15) and converges
against a fixed lower bound (here κc = 0.2 for visualization purposes but set to
κc = 0.02 during all experiments).

Fig. 5. Original S2S: A modified U-Net [33] is trained as an autoencoder to map
a noisy input image to itself. During the training, two different regularization
mechanisms are applied: First, Bernoulli masking is performed to split the noisy
image into a subset of pixels used as network input and the other pixels being
used as target image in the loss function. This way, the loss is calculated only
on pixels unseen by the network in the respective iteration. Second, dropout in
the decoder layers of the network further help to prevent the autoencoder to
learn the noise.

where κw specifies the number of initial warm-up iterations
without any decay of the weight, while κr controls the decay rate
nd κc specifies a lower bound for the contribution of a single
ixel. Note that we designed wi

dec to converge to κc instead of 0
n order to avoid artifacts where the guidance image does not fit
he degenerate areas perfectly. We rely on the natural image prior
roperty of the network itself to prevent overfitting to noise for
hese pixels. We are using κw = 225, κr = 0.15 and κc = 0.02 for
ll our experiments. Corresponding plots are depicted in Fig. 4.

.3. Guided Self2Self

The second exemplary algorithm we are taking a closer look
t here is S2S [4]. Similarly to DIP, this algorithm relies on the
nherent regularization capabilities offered by neural networks.
n contrast to DIP though, as depicted in Fig. 5, S2S uses an U-Net
ike network to map the noisy image to the restored image. To
revent overfitting, the authors add two additional regularization
echanisms: masking of the network input image and loss as
ell as dropout in the decoder layers.
The masking is performed by applying Bernoulli sampling to

he input image such that we get a mask containing a 1 with
robability pm and a 0 otherwise. Thus, this mask can be used
o divide the pixels of the input image in two subsets. Before
he image is given to the network, it is multiplied by the mask.
herefore, only the first subset of pixels is contributing to the
etwork output. Additionally, the L2 loss is modified to only use
ixels which were not visible to the network in the respective
teration. Intuitively, the network is optimized to predict unseen
ixels as close to the noisy input image as possible.
The dropout in decoder layers is another means of regular-

zation. In contrast to most approaches relying on dropout, it is
ot deactivated in test mode. Instead, the network is evaluated
ultiple times with random dropout to simulate the training
5

of multiple separate networks and averaging of the respective
results. The authors have shown that this improves the quality
of the resulting images.

Similarly to our modified DIP approach we are using the ori-
ginal authors’ architecture and hyperparameters where not ex-
plicitly stated otherwise.

Analogously to DIP, S2S results in unwanted blurriness in clean
regions which is a problem for our setting of spatially concen-
trated noise. Additionally, we have no control over the denoising
intensity, which can be problematic if the signal-to-noise ratio
is low in the input image. To alleviate these issues, we propose
a generalization of S2S to allow the utilization of our guidance in-
formation as well as an additional denoising intensity parameter.

As in the original algorithm, the goal is to generate two binary
image masks — Mi for masking the network input image and
Mt for masking the difference image in the loss function. The
underlying key idea here is to make the network overfit pixels
with high-importance but denoise the image where importance
is low. We achieve this by sampling the binary masks based on
per-pixel probabilities p{i,t} defined as

pi = pimp · 1 + (1 − pimp) · pm · pd (17)

pt = pimp · 1 + (1 − pimp) · (1 − pm) · pd. (18)

with

pimp(x, y) = m(x, y)κm , (19)

controlling the overfitting to high-importance image parts based
on the guidance image m. Furthermore, κm controls the denoising
strength for pixels with medium importance values (we set κm =

2 in all experiments) and pd is a probability to discard a pixel
completely from both masks to further increase the denoising
effect. Where not stated explicitly, we use pd = 0.01 for our
experiments.

Intuitively, resulting masks can be thought of as linear inter-
polation between no masking happening at all, i.e. M{i,t} = I, and
standard S2S input masking according to pimp with an additional
probability pd of pixels being considered neither in network input
nor in the loss calculation.

The original S2S approach samples disjoint input and target
masks. To replicate this behavior in our generalization, for each
pixel j we have to handle four separate cases during sampling
with their respective probabilities:

Pr(j ∈ Mi ∧ j ∈ Mt ) = pb = pimp (20)

Pr(j ∈ Mi ∧ j ̸∈ Mt ) = pi = pm · pd · (1 − pimp) (21)

Pr(j ̸∈ Mi ∧ j ∈ Mt ) = pt = (1 − pm) · pd · (1 − pimp) (22)

Pr(j ̸∈ Mi ∧ j ̸∈ Mt ) = pn = 1 − (pb + pi + pt ). (23)

Note that setting pimp = 0 and pd = 1 yields the original S2S
algorithm.

To ensure that the network is able to overfit high importance
pixels, we also modify the dropout used in the decoder layers to
use a modified dropout weight

p̂dropout = pimp · 0 + (1 − pimp) · pdropout (24)

per neuron. For inner decoder layers with lower resolution, down-
sampled importance images are used accordingly.

4. Results

4.1. Test data

We evaluate the potential of our guided denoising approach
using the diffuse textures of 14 different SVBRDFs produced by

the fitting network of Merzbach et al. [34]. The measurements
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Fig. 6. Estimated noise level for two different images (top row) containing spatially concentrated noise. Using only the patchwise variance (middle row) erroneously
yields high values for discontinuities in the image. Conducting the SVD-based analysis of the patches (bottom row) helps to filter out these errors.

Fig. 7. Comparison of the results of the original DIP and S2S approaches with our modified variants. First row: Diffuse texture of the Pantora SVBRDF fit. Second
row: Network-fitted textures used as input for all tested algorithms. Third and fifth row: Original denoising algorithms DIP and S2S. Fourth and sixth row: Out
modified versions of the DIP and S2S algorithms using SVD-based guidance images.

6
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Fig. 8. Renderings of two different SVBRDFs fitted by the fitting network of Merzbach et al. [34] without denoising (left), denoised diffuse texture using our guided
IP variant (middle) and denoised diffuse texture using our guided S2S variant (right).
or all of these materials are publically available in the UBOFAB19
atabase [34].
The UBOFAB19 database uses the Geisler-Moroder variant [35]

f the Ward BRDF [36] with Schlick’s Fresnel approximation
erm as this model is expressive enough for a large variety of
eal-world materials. The model is parameterized based on the
hading normal ns ∈ R3, the diffuse albedo ad ∈ R3, the
pecular albedo as ∈ R3, the lobe roughness parameters σx
R and σy ∈ R, the anisotropy angle α ∈ R and the 0-inclination

eflection coefficient F0 ∈ R. We only apply our restoration
rocess to the diffuse textures, since these are responsible for
ost of the artifacts in the final renderings. The diffuse textures
f Pantora [37] SVBRDF fits as depicted in the first row of Fig. 7
re considered to be the ground truth as they are also used as
abels for training the fitting network of Merzbach et al. Note,
owever, that the SVBRDFs fitted by the network do not only
ontain a high amount of noise but are also very likely to be
iased. Therefore, we cannot expect to achieve perfect results
ndistinguishable from ground truth using only image restoration
ethods.

.2. Noise level estimation

Resulting estimated noise levels of two different textures us-
ng the naive patchwise variance and the more sophisticated
VD-based approach are shown in Fig. 6. Both methods success-
ully assign high noise levels to actually noisy regions in the
mage. While the naive approach already performs well, the SVD-
ased algorithm reduces unwanted high values at discontinuities
ignificantly. This is clearly visible in the upper regions of the
ellow image, where the abrupt transition of yellow to gray
ixels yields high patchwise variance values but low SVD-based
oise levels as the individual subsets Nupper and Nlower can be
pproximated well by a plane. As the SVD-based noise level
stimation performs better than the naive method without mean-
ngful disadvantages, we are using the former for all denoising
xperiments.
7

Table 1
Quantitative comparison of several denoising approaches
on a set of 14 diffuse textures of network fitted SVBRDFs
using the diffuse textures of the respective Pantora fits as
ground truth.
Algorithm PSNR (↑) SSIM (↑)

Input 25.9294 0.5437
CVF-SID [5] 27.8025 0.6085
DIP-Base [1] 26.8042 0.5846
DIP-Ours 27.5713 0.6265
S2S-Base [4] 27.4815 0.6149
S2S-Ours 27.8747 0.6197

4.3. Denoising

Fig. 7 depicts denoising results on two different textures. The
network fitted textures contain strong noise artifacts especially
in shiny areas of the captured fabric. Both, DIP and S2S, fail
to remove these artifacts in a satisfactory manner, while at the
same time blurring out the clean structure of the fabric. The
modified algorithms are able to produce images which are mostly
clean of colorful artifacts, but for the red fabric, our DIP vari-
ant seems to remove more details than necessary. More fine
details are preserved using the guided S2S approach. On the
yellow fabric, both of our algorithms produce similar results
clearly outperforming their original counterpart respectively. The
strong denoising effect of our guided approaches can also be
seen in the rendered SVBRDFs in Fig. 8. The results rendered
with denoised diffuse albedo textures are containing much less
disturbing colorful artifacts.

A quantitative comparison can be found in Table 1 compar-
ing our guided denoising methods with CVF-SID [5], DIP [1]
and S2S [4] on a dataset of 14 different images. We are cal-
culating PSNR and mean SSIM for all images and average the
respective values. For both images, higher values are better. Our
guided denoising algorithms not only outperform their origi-
nal complement, but also perform slightly better than another
state-of-the-art learning-based denoising algorithm.
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Fig. 9. Comparison of S2S-Base (second row) and S2S-Ours (third row) on three natural images and one texture corrupted with spatially concentrated white noise
first row, inset shows guidance map used for S2S-Ours). We used pd = 1 for these experiments.
o
f
m

u
o
p
t
p

Additional results on natural images and a completely differ-
nt texture are depicted in Fig. 9. We used pd = 1 for these
xperiments. In contrast to the original S2S method, our guided
pproach is able to preserve fine details in clean pixels.

.4. Limitations

While being able to distinguish between clean and noisy image
arts well in our examples, it is easy to construct artificial scenar-
os in which our SVD-based noise level estimation fails. However,
 o

8

ur results suggest, that it should work well in practice as we can
allback to the natural regularization capabilities of the denoising
ethods.
We are able to adaptively denoise a partially noisy image

sing our guided denoising algorithms and therefore are able to
vercome some of the original approach’s limitations, but other
roblems with the respective approaches remain untouched. As
he original DIP, our guided version is still relying on hyper-
arameter tuning. Despite working out for our examples, the
ptimal number of training iterations and the choice of wi
dec
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ontrol parameters might not be the same for every noisy input
mage, which might also be the reason for oversmoothing of noisy
egions for the red fabric in Fig. 7. Similarly, independent of being
uided or not, S2S has to be tuned to the variance of the expected
oise since it was not able to remove strong noise out of the box.
Finally, Fig. 9 suggests, that the guided algorithms might pro-

uce slightly stronger artifacts in noisy pixels in comparison to
he original approaches for some images. However, depending on
he use-case, this is preferable over loss of details in clean pixels.

. Conclusion and future work

In this work, we have shown the limitations of off-the-shelf
enoising algorithms regarding their capability of handling im-
ges which contain location-dependent noise-like artifacts. We
roposed a novel method for detecting such noisy pixels and uti-
izing this additional information to guide state-of-the-art learn-
ng-based denoising approaches with only minor modifications.
epending on the nature of the underlying denoising approach,
he generated guidance images can be used to either stop the
raining process early for parts of the image while continuing the
raining process in others, or it can be used to guide stochastic
egularization approaches. By incorporating this additional guid-
nce information, the resulting denoising algorithms were able
o beat their original counterparts as well as outperform another
tate-of-the-art denoising algorithm.
Since our results suggest that other denoising algorithms could

enefit from our guidance information in a similar manner, this
hould be tested as part of future research.
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