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Figure 1: Possible game scenario with lighting using bent normals: 2048× 1024 pixels, 60.0 fps, including direct light and
DOF on an Nvidia GF 560Ti. Environment mapping produces natural illumination, while bent normals cause colored shadows.

Abstract
Ambient occlusion (AO) is a popular technique for real-time as well as offline rendering. One of its benefits is a
gain in efficiency due to the fact that occlusion and shading are decoupled which results in an average occlusion
that modulates the surface shading. Its main drawback is a loss of realism due to the lack of directional occlusion
and lighting. As a solution, the use of bent normals was proposed for offline rendering. This work describes how
to compute bent normals and bent cones in combination with screen-space ambient occlusion. These extensions
combine the speed and simplicity of AO with physically more plausible lighting.
The definitive version is available at diglib.eg.org.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—I.337 [Computer Graphics]: Color, Shading, Shadowing and Texture—

1. Introduction

Ambient occlusion (AO) is a nonphysically-based approxi-
mation of environmental lighting and gives an impression of
global illumination. It achieves high performance by com-
puting an average occlusion that is used to modulate surface
shading without respecting the directionality of light. Con-
sequently, the approximation is not always acceptable, for
example when used in conjunction with environment map-
ping.

Landis addressed the directionality issue by introducing
so-called bent normals [Lan02]. While AO stores an average
occlusion, bent normals are modified normals bent according
to an estimate of the direction that is most unobstructed, i. e.,
the average unblocked direction. Bent normals can then be
used to compute an illumination response that is closer to an
actual sampling of the environment map. A useful property
of bent normals is that they can usually be easily integrated
in rendering engines. Basically, they can directly be used for
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shading just like standard normals, but result in an improved
accuracy.

One popular incarnation of AO is its implementation in
screen-space (SSAO) [Mit07, SA07, BSD08, RGS09, LS10,
HBR∗11]. In this paper, we will describe a technique to
extend SSAO. Our idea is to keep the simplicity of SSAO by
relying on a screen-space solution, but to add the advantages
of bent normals. Furthermore, we describe a new entity: bent
cones that capture the distribution of unoccluded directions
by storing the average direction and their variance. Hereby,
rendering quality and precision are improved.

2. Related Work

The remarkable importance of occlusion as a visual cue was
first described by Langer and Zucker [LZ94]. They found
that the human ability to understand shape from shading
combines common directional lighting and shadows, as well
as soft ambient lighting and ambient occlusion (AO) found
on a cloudy day.

Miller [Mil94] introduced accessibility shading that was
modified by Zhukov et al. [ZIKS98] to AO. It is an approx-
imation to the rendering equation [Kaj86] for the outgoing
light Lo at a location x in direction ωo and assumes environ-
mental illumination and diffuse surfaces:

Lo(x,ωo) :=
1
π

∫
Ω+

Li(x,ωi)V (x,ωi)(n ·ωi) dωi,

where Ω
+ is the upper hemisphere, n is the surface normal,

Li the incoming light and V the visibility function that is zero
when a ray is blocked and one otherwise. AO assumes that V
can be moved outside the integral, as

Lo(x)≈ AO(x) 1
π

∫
Ω+

Li(x,ω)(n ·ω) dω,

where

AO(x) :=
1

2π

∫
Ω+

V (x,ω) dω. (1)

Basically, AO decouples shading and the directional depen-
dency of visibility: light from all directions is equally attenu-
ated by the average blocking over all directions. Whether the
AO assumptions apply depends on the lighting and materi-
als [YCK∗09].

In the production setting considered by Landis [Lan02],
ray-tracing was used to compute the hemispherical integral
of AO using Monte-Carlo integration: a set of rays R is cast
into the hemisphere to evaluate V , and the result is averaged:

AOMC(x) :=
1
|R| ∑

ω∈R
V (x,ω)≈ AO(x).

The idea of bent normals dates back to Landis [Lan02]
where it was proposed as a generalization of AO. Bent nor-
mals are the mean free direction scaled by the mean occlu-
sion and are used for shading instead of the surface normals.

Different from AO, their definition includes the direction ω

inside the integral:

N(x) :=
1
π

∫
Ω+

V (x,ω)ω dω. (2)

For lighting computations, bent normals simply replace the
surface normal and the visibility term:

Lo(x)≈
1
π

∫
Ω+

Li(x,ω)(N(x) ·ω) dω.

The Monte-Carlo computation of bent normals NMC(x) re-
quires to multiply visibility with the direction, which is as
computationally simple and efficient as AOMC alone. Differ-
ent to common normals, bent normals are not normalized and
include AO in their length.

Due to its success in offline production, considerable ef-
fort was made to support AO in interactive rendering. Pharr
and Green [PG04] used several shadow maps to compute
ambient occlusion for a single static object and mention
that their method generalizes to bent normals as well. Bun-
nell [Bun05] compute AO in dynamic scenes using a finite-
element approach that approximates the surfaces as a hierar-
chy of discs. AO occlusion is gathered at vertices or pixels
in a fast GPU multipole approach. The incorrect linear sum-
mation of visibility of different occluders can be improved
with a multi-pass approach. The method can compute bent
normals and even full indirect illumination. Rigidly trans-
formed static objects can benefit from a pre-computation that
stores AO in a discrete 3D grid [KL05, MMAH07]. In con-
trast, SSAO works for dynamic scenes and received much
interest [Mit07, SA07, BSD08, LS10]. It has many desirable
properties, including output-sensitivity (AO is computed for
visible pixels only) and it avoids intermediate data struc-
tures. Further, computations are simplified, no assumptions
are made about the geometry besides the requirement to ren-
der the scene into a deferred shading buffer [ST90]. While
screen space allows for directional effects as well [RGS09],
computing bent normals in screen space was not proposed to
our knowledge. Nonetheless, working in screen space is in-
herently approximate because of incomplete information, but
its efficiency made SSAO a core component in most modern
real-time rendering engines.

In its most basic form [Mit07], SSAO (Fig. 2) is computed
for a pixel i by comparing its camera space location xi with
other pixel’s camera space position x j in a pixel neighborhood
Pi ⊂ N:

AOss(i) :=
1
|Pi| ∑

j∈Pi

d(∆i j)≈ AOMC(xi), (3)

where ∆i j := x j−xi. One possible implementation of d(∆)
is dx(∆), defined as:

dx(∆) :=

{
0 if ∆.z > 0
1 else

.

The pixels Pi to compute occlusion at pixel i are usually
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Figure 2: Illustration of our main variables

chosen to be neighboring pixels in screen space [Mit07], or
the projection of a set of sample points near to xi in world
space [SA07]. Improvements are possible by accounting for
outliers that should not cast shadows [SA07, RGS09, LS10],
and by including the normal at the i-th pixel [RGS09]:

dxn(∆,n) :=

{
0 if zmax > ∆.z > 0 and (∆ ·n)> 0
1 else

.

Instead of gathering occlusion from a neighborhood P, Shan-
mugam and Arikan [SA07], as well as McGuire [McG10] use
a splatting approach to distribute AO from surfaces to pixels.

The underlying assumption of SSAO is, that summing
occlusion of “nearby” occluders approximates true visibility.
However, visibility is a nonlinear effect: two occluders behind
each other in one direction do not cast a shadow twice. Hence,
other approaches [OS07] find the correct occlusion for a
set of directions in screen space via ray marching in the
depth buffer. Alternatively, one can also compute a horizon
angle [Max88, BSD08]. As an in-between solution, others
[SKUT∗09, LS10] considered the free volume over a height
field of depth values inside a sphere around a pixel as a better
approximation.

3. Our Technique

In this section, we will describe our approach for interactive
AO and GI based on screen-space bent normals. We will first
introduce their computation (Sec. 3.1), and then generalize
them to bent cones (Sec. 3.2).

3.1. Bent normals

We will here describe the basic implementation along the
lines of the original Crytek SSAO [Mit07]. There, the original
continuous AO defined in world space (Eq. 1), was solved
in a discrete way in screen space (Eq. 3). We will apply this
idea to the continuous world-space bent normals (Eq. 2),

and compute them in discrete screen space. To this end, we
aggregate unoccluded directions ∆i j:

Nss(i) :=
(

∑
j∈Pi

d(∆i j)
)−1

∑
j∈Pi

∆i j

|∆i j|
d(∆i j)≈ N(xi).

The basic principle behind our approach is that, when com-
puting AO in screen space, the direction ∆i j and its visibility
d are known and can be used to accumulate a mean direc-
tion that defines the bent normal. Our technique is mostly
orthogonal to the type of SSAO used, allowing for different
implementations of d. The bent normal can then be used for
lighting (Sec. 3.3) in place of the original normal.

3.2. Bent cones

Bent cones are bent normals augmented by an angle. Inspired
by the estimation of the variance of a von Mises-Fisher dis-
tribution on spheres [MJ00], we compute the angle directly
from the mean direction, which is the non-normalized bent
normal:

C(i) := (1−max(0,2 |Nss(i)|−1))
π

2
.

Hereby, the variance of the unoccluded direction is directly
reflected by the length of the bent normal. The max-function
ensures that the bent cones of unoccluded points exactly cover
the hemisphere.

Bent normal and bent cone define a spherical cap of visibil-
ity, which allows us to use illumination methods that compute
the incoming light inside a spherical cap (Sec. 3.3). Most
importantly, instead of using the cone as a visibility approxi-
mation, we only restrict the directions from which we gather
light. We still rely on AO to estimate the average visibility,
which can be more complicated than a single cone. Thus, the
cone might cover incorrect directions, but AO accounts for a
plausible darkening.

3.3. Pre-convolved lighting

Bent normals and cones are most useful in combination with
a shading model that computes the illumination coming from
a set of directions, such as pre-convolved environment maps
[HS99] or irradiance volumes [GSHG98].

Environment maps assume distant illumination, i. e.,
Li(x,ωi) ≈ Li(x′,ωi) ∀x,x′ ∈ R3. Dropping the spatial de-
pendency on x, we simply write: L′i(ωi).

Pre-convolution of distant illumination computes a direc-
tional function Lp(ωo). For every outgoing direction ωo, it
convolves the distant illumination L′i(ωi) and the geometric
term (cosine of incoming light and normal):

Lp(ωo) :=
1
π

∫
Ω+

L′i(ωi)(ωo ·ωi) dωi.

To query this environment map, the bent normal is used in
place of ωo.
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However, to be correct, pre-convolution has to assume
no shadows or at least, that visibility can approximately be
moved outside the integral. In practice, this means the lighting
result is just multiplied with a shadow term (AO). We propose
to include visibility inside the pre-convolution leading to a
tri-variate function

Lc(ωo,α) := t
1
π

∫
Ω+

L′i(ωi)V̄ (ωi,ωo,α)(ωo ·ωi) dωi,

t := (1− cos(α))−1

that stores the outgoing radiance for a bent cone in direction
ωo with angle α (Fig. 3). The function V̄ returns one if ωi
and ωo form an angle smaller than α and zero otherwise.
Note, that by doing so, with increasing α the pre-convolved
values get larger. As we do not use the bent cone as visibility
approximation (cf. Sec. 3.2), we introduce the normalization
term t. Thus, we get equal results Lc independent of α if L′i is
constant. The mean direction Nss(i) and angle C(i) of the bent
cone replace ωo and α to look-up a convolved environment
map.

α = 90°α = 45°α = 10°

Figure 3: Pre-convolution of distant lighting (left) into a
series of triple products of light, BRDF, and visibility of cones
with varying angle α (left to right: 10, 45, and 90 degrees).

3.4. Geometric Term

We use a heuristic to apply the geometric term in our bent
cones. It needs to be a part of the pre-convolution because
the incoming light per direction is only known at this time.
Correctly integrating the geometric term would be five-
dimensional: 2D for the mean direction (bent normal), 1D for
the angle of the cone, and 2D for the surface normal. We can
approximate it by:

(ω ·n)≈ (ω ·N(x))(N(x) ·n).

If (N(x) ·n)≈ 1, (ω ·N(x)) approximates the correct geomet-
ric term very well, while (N(x) ·n) vanishes by definition. If
N(x) and n diverge, the heuristic returns near correct results
for light directions close to the bent normal ((ω ·N(x))≈ 1),
as (ω · n) ≈ (n ·N(x)). Additionally, the angle of the bent
cone becomes smaller, such that the error for light direc-
tions within the cone remains small for all possible cones
(cf. Fig. 4). The heuristic regards the original normal and
should be preferred to only using (ω ·N(x)). Further, it avoids
a 5D pre-convolution and gives correct results for unoccluded
points (where n = N(x)).

Figure 4: 2D examples of our approximation of the geomet-
ric term. The top rows shows the evaluated term, the bottom
shows the error (compared to a normal with direction up-
wards; left). Directions with overestimation are red, while
underestimation is green compared to the correct geometric
term. The bent normal is increasingly rotated in the images
to the right. The heuristic ensures correct weighting for unoc-
cluded directions (bent normal and normal are equal; left).
The more normal and bent normal diverge (images to the
right), the greater the error becomes. However, at the same
time, the angle of the bent cone becomes smaller and the
error within the cone remains low. Note, that the bent cone
can have a different size than shown.

4. Implementation

Variants For our experiments, we combined the approach
with several methods: Crytek2D [Mit07] uses a 2D sam-
pling pattern to distribute samples in screen space. For higher
quality, we perform jittering and reject samples outside the
unit disc. Crytek3D [Mit09] uses a 3D sampling pattern to
distribute samples in space that are projected to screen space.
We generate samples on the unit hemisphere, optionally add
ray-marching steps to increase the visibility test quality, and
apply randomized offsets in each direction to turn aliasing
into more eye-pleasing noise. HBAO [BSD08] uses random
3D directions orthogonal to n that are marched to find the
highest horizon angle. The samples are distributed on the
unit disc and transformed according to n. Again, randomized
offsets are used. We rely on OpenGL 3 and store all sample
patterns in uniform variables.

Interleaved sampling [KH01] allows for using only a low
number of samples per pixel, which is important for perfor-
mance. Here, using a randomization pattern of size m×m
applies different sample sets for neighboring pixels, which
prevents banding artifacts and turns under-sampling in noise.
To blur the noisy AO and bent normals a geometry-aware
blur [LSK∗07] regarding position and normal discontinuities
is used. When applying an 16×16 interleaved sampling pat-
tern and using 2×2 super-sampling for anti-aliasing, a single
sample is enough for AO. Bent cones require at least 4 sam-
ples. Instead of interpolating the bent normal directly, we
compute the difference between normal and bent normal and
blur this difference. The result is added to the original high-
frequency normals. Hereby, the details in the normal field
itself are preserved and the bent information is propagated.
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Pre-convolved lighting For pre-convolved environment
maps, we store Lp as a floating point-texel cube texture. Pre-
convolution including visibility is tri-variate and can be stored
most efficiently using the recent cube map array extension
of OpenGL. This extensions stores an array of cube maps,
that can be accessed with a direction and an index. We dis-
cretize α to 8 levels and apply linear filtering between the
levels, which has shown to be sufficient. More efficiently, in
the context of glossy reflections Kautz and McCool [KM00]
propose to store the third dimension in cube map MIP levels.

5. Results

a) b) c)

Figure 5: Our approach is largely orthogonal to the partic-
ular SSAO implementation used: two-dimensional sampling
(Crytek2D, (a)), three-dimensional sampling (Crytek3D,
(b)), horizon-based ray-marching (HBAO, (c)).

In this section we present our results that increase accuracy
while adding only a small performance penalty compared to
SSAO. For the following images, we used the 3D sampling
pattern with three ray-marching steps, which best approxi-
mates the integrals Eq. 1 and 2.

A performance breakdown of Fig. 1 at resolution
2048×1024 on an Nvidia Geforce 560Ti is as follows: 4.2 ms
for AO and bent normals, 4.7 ms for geometry-aware blurring,
1.5 ms for the deferred shading buffer, and 1.6 ms for direct
light with PCF shadows. The overhead for bent normals com-
pared to AO only using the same number of samples is 7 %
for the computation and 25 % for the blur, in total less than
11 %.

a) b) c) e)

d)

Figure 6: Lighting using ray-tracing (a), SSAO (b), and our
screen-space bent normals (c). Details have more articulated
lighting when AO (d) is enhanced by our bent normals (e).

Lighting using our bent normals is closer to a reference
solution than AO alone (Fig. 6). It can be seen how AO

decouples lighting and visibility, which leads to grey shadows
that are perceived as a change of reflectance, rather than an
effect of lighting. Our screen-space bent normals are similar
to real bent normals (Fig. 7) which leads to only a small
difference between lighting using accurate bent normals and
our bent normals. The reference solutions were created using
ray-tracing, using several hundred samples.

a) b) c) e)

d)

Figure 7: Ray-traced bent-normals (a), our screen-space
bent normals (b), and the 8× angle difference (c). Ray-traced
bent normal details (d) are similar to our approximation (e).

a) b) c)

Figure 8: Environment map importance sampling (IS) (a),
SSDO [RGS09] (b), and SS bent cones (c). IS requires 32
samples per pixel (18.8 ms), SSDO 16 samples (12.5 ms),
and bent cones only 8 samples (6.0 ms) to achieve the results
(1024×1024 resolution; 2×2 super-sampling). All techniques
use three ray-marching steps per sample for the SS visibility
tests, a 8×8 interleaved sampling pattern, and an according
geometry-aware blur.

Bent cones improve on bent normals as they do not gather
light from all directions in the upper hemisphere of a point.
Ritschel et al. [RGS09] regard the directionality of light
by applying a brute-force sampling for unblocked directions
(SSDO). This implies an additional texture lookup, which
results in an overhead of about 10 % in execution time. Even
more important, noise appears if the sample count is not in-
creased. In our tests, we required 16 to 24 samples per-pixel
in combination with interleaved sampling to avoid visible
artifacts. Our bent cones produce smooth results with 8 sam-
ples with similar quality. SSAO returns good results with
such a low number of samples and the cone does not need
to be very accurate (Fig. 8). Additionally, we compared our
technique to importance sampling of the environment map
(IS), which requires at least 32 samples to achieve equal
quality. Note, in contrast to sampling-based techniques, bent
cones are not able to handle high-frequency illumination.
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Thus, we used low-frequency illumination changes only to
allow for a fair comparison. Else, bent cones simply blur the
high-frequencies, SSDO requires many more samples (up to
hundreds), and IS at least 64 samples.

6. Discussion and Conclusion

Screen-space bent normals improve accuracy of shading with-
out imposing much additional computation costs. Bent cones
are easy to compute and regard the directionality of light by
reducing the directions from which light is gathered. If the
actual visibility configuration is not well approximated by a
cone, they fall back to lighting with bent normals, possibly
adding light from blocked directions (Fig. 9). However, our

Bent normal: N(xi)
Bent cone:  C(xi)

Sample: xi

Figure 9: Bent normals and cones assume blockers to form
a simple horizon. In case of more complex occlusion such as
depicted here, the direction can diverge.

approach shares these limitations with previous SSAO tech-
niques. Our approach can extend several different SSAO tech-
niques and delivers higher speed at a similar quality as SSDO.
In future work, we plan to investigate other representations
of the occlusion function, specular BRDFs, new interpolation
methods, a combination with irradiance volumes [GSHG98]
for local pre-filtered directional occlusion, as well as the use
of Gaussians to approximate visibility [GKMD06, GKD07].
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