
High-Performance Volume Rendering for 3D Heart Visualization

Andre Maximo
COPPE-UFRJ

andre@lcg.ufrj.br

Ricardo Marroquim
COPPE-UFRJ

ricardo@lcg.ufrj.br

Claudio Esperança
COPPE-UFRJ

esperanc@cos.ufrj.br

Rodrigo Weber dos Santos
DCC-UFJF

rodrigo@dcc.ufjf.br

Cristiana Bentes
DESC-UERJ

cris@eng.uerj.br

Ricardo Farias
COPPE-UFRJ

rfarias@cos.ufrj.br

Abstract

Cardiovascular diseases are the the leading cause of
death and disability in the world. Non-invasive tecniques
are required to reduce the number of deaths as well as the
patients quality of life. These techniques usually rely on 3D
visualization of MRI or CT data. In this work we describe
how improved volume rendering techniques, combined with
graphics cards programming can provide interactive visu-
alization of the heart internal structures. Our main focus
here is to provide doctors with high-performance 3D im-
ages for evaluating patient heart anatomy and performance.
Our idea is to take full advantage of the triangle-rendering
hardware to provide interactive frame rates.

1 Introduction

Cardiovascular diseases are the the leading cause of
death and disability in the world. The numbers are increas-
ing as the epidemic of heart disease and stroke continues. In
Brazil, about 4 million people suffer from heart failure. The
health burden of cardiovascular diseases is matched by its
economic burden. In São Paulo, for example, medical ex-
penses for diagnostic tests, surgeries and hospital use about
20% of the public health funds.

Therefore, early diagnosis and treatment are the key to
reduce the number of deaths and the economic burden in
Brazilian Health System (SUS). Seeing inside the heart and
evaluating its health are the first steps in deciding on the
best treatment. Today, there are a number of tests that can
be performed without any surgery involved [7, 8]. These
tests, however, require high quality heart images. Recently,
biomedical imaging modalities such as MRI, CT or Ul-
trasound have become essential in generating high quality
heart images in order to identify and localize structures and
abnormalities. To understand the data generated by these

devices, however, physicians and researchers need to visu-
alize the heart in a lifelike way. To do so, 3D visualization
techniques are needed.

Most of traditional tools and techniques for volume vi-
sualization allow researchers to explore only the surface of
3D datasets. Direct volume rendering techniques, on the
other hand, convey more information than surface render-
ing methods, enabling the viewer to fully reveal the internal
structure of 3D data. For the heart visualization applica-
tion, direct volume rendering techniques are crucial to gain
detailed insight into the heart, in order to examine, explore
and precisely pinpoint problem areas before determining fi-
nal treatment strategies.

Nevertheless, direct volume rendering is notoriously a
memory and computationally intensive task. Recently,
the increasing capability and performance of commercial
graphics hardware made hardware-assisted volume render-
ing systems a fast alternative for the visualization of med-
ical data. In this paper we present a volume renderer for
heart data that is implemented in the programmable Graph-
ics Processor Unit (GPU) of recent graphics cards. Our idea
is to show how the use of the graphics hardware can im-
prove the performance of the heart 3D visualization, pro-
viding a deeper insight of the data with interactive times.

2 Related Work

Hardware-accelerated volume rendering is nowadays
widely used for visualization. There are a number of works
in this area. Steinet al. [10] developed a new volume
rendering approximation using 2D texture mapping. This
method attenuated the artifacts produced by linearly ap-
proximating the non-linear opacity effects. Röttgeret al.
[6] improved Stein’s results by using 3D textures and gen-
eralized it for non-linear transfer functions. Lumet al. [3]
proposed a faster method to compute the pre-integration.
This work also introduced lighting effects that produced



more accurate rendering while producing less artifacts. Es-
pinha and Celes [2] propose a new hardware-based ray-
casting (HARC) algorithm, introduced by Weileret al. [12].
They implement the HARC algorithm using partial pre-
integration.

Our rendering algorithm is based on the Projected Tetra-
hedra (PT) technique introduced by Shirley and Tuchman
[9]. The PT algorithm has grown in importance in recent
years due to the advance of programmable graphics hard-
ware. Wylie et al. [14] adapted the Shirley and Tuchman al-
gorithm to programmable graphics hardware using the ver-
tex shader. The use of programmable graphics card was fur-
ther explored by Weiler et al. [13], as an extension of their
earlier View Independent Cell Projection algorithm (VICP)
[11].

None of these works, however, explore the use of
hardware-accelerated volume rendering to generate realis-
tic 3D images of medical MRI data. The work by Zhanget
al [5] builds a real-time 3D rendering engine based on ray-
casting, directly running on the graphics vertex and frag-
ment processors, in which the OpenGL Shading Language
(GLSL) is utilized as a GPU programming API. They pro-
pose a new dynamic volume texture binding scheme, em-
bedded it into our 3D rendering engine to permit real-time
visualize the dynamic beating heart. The work by Roberet
al [1] describe a flexible framework for GPU-based multi-
volume rendering, which provides a correct overlaying of
an arbitrary number of volumes and allows the visual out-
put for each volume tobe controlled independently. Their
tool is specific for the rendering of functional brain images,

3 Volume Rendering Algorithm

Many algorithms for direct volume rendering have been
proposed in the past, e.g. cell projection, ray casting and
sweep-plane. Our approach is based on cell projection,
where each polyhedral cell of the volumetric data is pro-
jected onto the screen [4]. Our idea is to take full advan-
tage of the triangle-rendering hardware to provide interac-
tive frame rates. More specifically, we implemented a al-
gorithm for tetrahedral projection that is based on the Pro-
jected Tetrahedra (PT) algorithm [9]. Following we give a
brief description of the PT algorithm and after that we ex-
plain our approach.

3.1 Projected Tetrahedra Algorithm

In a nutshell, the PT algorithm consists in projecting the
tetrahedra onto the screen space and composing them in vis-
ibility order. Each projected tetrahedron is decomposed into
triangles, and an approximation of the ray integral is used to
compute the color and opacity values for the vertices. When
rasterizing the primitives, an absorption illumination model

is used to compute the color of the pixels by summing the
contributions of every semi-transparent triangle in back-to-
front order.

The tetrahedra’s projected shape is classified into one of
four possible cases. Each possible case defines a projec-
tion class, and generates a different decomposition into tri-
angles. For each projection, thethick vertex is defined as
the entry or exit point of the ray segment that traverses the
maximum distance through the tetrahedron. All other pro-
jected vertices are calledthin vertices. The scalar values of
the ray’s entry and exit points (sf andsb) are determined by
interpolating the scalars of the thin vertices. The distance
traversed by the ray segment is the thicknessl of the cell.

3.2 Our Approach

Our algorithm is divided in two main parts and, conse-
quently, in two different shaders. In the first step, all datais
processed per tetrahedron, that is, the projection class, the
thick vertex properties, and thez coordinate of the tetrahe-
dron’s centroid are computed. The second step interpolates
the vertices’ scalar values to compute color and opacity val-
ues for each fragment.

To speed up the rasterization process, we make use of
vertex arrays and the primitives are drawn as triangle fans
(GL TRIANGLE FAN ). To draw each fan correctly the
order and number of vertices must be determined in the
first step which are passed to the second one, as will be
described.

3.2.1 Sorting

One of the bottlenecks of the Cell Projection algorithm is
the need to sort the cells in visibility order before rendering.
The centroids of each tetrahedra are calculated and used by
a CPU sorting algorithm, to put them in depth order.

Two sorting algorithms are used in our implementation:
a quicker but less precise bucket sort is used whenever
the viewing transformation is changing, whereas a standard
O(nlogn) merge sort algorithm is employed for still frames.

3.2.2 First Step

The first shader computes the scalar value at the thick ver-
tex, the cell’s thickness and determines the vertex order and
number of triangles in the fan. All data used in this shader
is stored in GPU memory by creating three differentRGBA
textures: the Tetrahedral Texture, the Vertex Texture and
the Classification Texture. The Vertex Texture stores the
x, y andz coordinates and the scalars for each vertex. The
Tetrahedral Texture stores the four values which are used for
retrieving the four vertices of the tetrahedron from the Ver-
tex Texture These two texture lookups eliminate the need



for vertex attributes and reduce the data transfer overhead
from CPU to GPU.

The vertices are then projected to screen coordinates and
the projection class is determined by means of tests simi-
lar to the ones used by Wylie’s [14], in his method, except
that we expanded the set of test to treat also, all degenerate
cases. In addition, our method avoids computational redun-
dancy by performing the tests once per tetrahedron rather
than once per vertex.

3.2.3 Second Step

The second step linearly interpolates vertex colors. Each
final color is computed by interpolating the valuessf , sb

and l of the triangle’s vertices. The color is computed by
evaluating the chromaticity and extinction coefficient (τ )
of the transfer function at the average interpolated value
(sf + sb) /2. The opacity, on the other hand, is estimated
by

α = 1 − e−τl. (1)

Finally, the pixels are composited in back-to-front order,
and, for each new color added to the frame buffer, the new
final color is computed by:

Cnew = Alpha × Color + (1 − Alpha) × C, (2)

whereC andCnew are the previous and new colors stored
in the frame buffer, andColor andAlpha are the interpo-
lated scalar and thickness values. Alpha is the transparency
factor.

We used two different 1D textures in the second step, one
for the transfer function table values and another one for
the opacity calculation with values obtained with Equation
1, that is, Tex1D(u) = e−u, for u sampled over interval
[0, 1], in order avoid on-the-fly computing the exponential
function.

4 Experimental Results

Our experimental environment consists of a Intel Pen-
tium IV 3.6 GHz, 2 GB RAM, with a nVidia GeForce 6800,
256 MB graphics card, PCI Express 16x bus interface, from
the Computer Graphics Laboratory at COPPE/UFRJ. All
rendered image are512x512 in size.

4.1 Dataset

We tested our visualization method with three different
datasets, acquired by a MRI catscan. The first sequence was
taken upwards, from the feet to the head, labeled as down-
up. The second goes from front to back, while the third
goes from left to the right. Each sequence has dimensions

256x256x20, or 1.3 million hexahedra. This represents 6.5
million tetrahedra.

For the down-up sequence, Figure 1 shows part of the
heart, but only a slice, making it impossible to see the in-
ternal structures. Figure 2 shows two images created by
the three-dimensional rendering technique of cell projec-
tion. Figure 2.a presents the result generated by using a
more opaque transfer function, which hides some internal
details. Figure 2.b, created with a more transparent trans-
fer function, allows the visualization of internal structures
in more details.

Figure 1. Slice of the MRI of the heart taken
from the down-up sequence.

Figure 3 brings five slices of the MRI to compare with
the two images shown in Figure 4, created by our cell pro-
jection method. It must be noted also, that using volume
rendering, it is possible to visualize the dataset from any
desired point of view, and yet see the complete structure of
the body.

Figure 5 shows one slice of the MRI taken from the left
side to the right. The problem with this sequence is that
due to the low resolution, twenty slices for all width of the
body, only eight slices contain cross sections of the heart.
Figure 6 is the rendered image. It can be noted the very low
resolution obtained.

4.2 Performance Evaluation

Table 1 shows more details about the three sequences
used in our tests. We trimmed the datasets to eliminate re-
gions of noise, and brought down a little bit the size of the
datasets. The table also shows the frame rate, about0.34
frame per second, and the number of tetrahedra projected
per second, about two million cells per second.

The graphics card programming introduced a very pow-
erful resource to improve the cell projection method, even
though some modifications had to be made to the implemen-
tation to adequate each step of the process to the limitations
imposed by the current graphics hardware.



(a) More opaque

(b) More transparent

Figure 2. a) In this figure, the transfer func-
tion was set more opaque. b) With a slightly
more transparent transfer function, it is pos-
sible to see more internal estructures of the
heart.

Data Vertices Tetrahedra fps M tets/s

Down-Up 1.27 M 5.98 M 0.35 2.183
Front-Back 1.27 M 5.98 M 0.34 2.091
Left-Right 1.27 M 5.98 M 0.33 2.067

Table 1. Performance and computed data
from original datasets.

It must be noted that medical data are usually acquired
in regular grid format. To represente the geometry of these
type of grid, one can make use of eight neighboring vertices
of the grid, to define an information unit of the 3D data,
called voxel, which is a hexahedral cell. A grid composed
by hexahedra cells is said to be a hexahedral grid. By the
other hand, the current limitations of the graphics cards, we
could only implement the cell projection algorithm to treat
tetrahedal cell. To visualize the hexahedral grid, we have
to convert, each hexahedral cell into 5 tetrahedral cells, to
send them to the graphics hardware. The drawback of this
procedure is that, since our method stores the data informa-
tion, inside the graphics card, using texture memory of the

(a) Slice 4 (b) Slice 5

(c) Slice 6 (d) Slice 7

(e) Slice 8

Figure 3. Each slice shows part of the heart
structure, but does not allow the visualiza-
tion of the whole structure.

card, the size of the file that can be treated is limited by the
available card’s memory. In our tests, we could only pro-
cess up to 6.5 million tretrahedra cells. This limits the size
for the treatable regular grids to be at most:100x100x100,
which leads to5M cells. This would be a safe data size.

5 Conclusions

In this work we presented a volume rendering algorithm
for the 3D visualization of medical data that takes full ad-
vantage of modern graphics hardware. Our approach is
based on the implementation of a cell projection algorithm
in the Graphics Programming Unit (GPU). Our focus was
to develop an interactive volume rendering engine to pro-
vide doctors with high-performance 3D images engine to
evaluate patient anatomy and performance.

We tested our algorithm with three datasets obtained
from MRI scanner and obtained0.4 frames per seconds,
projecting up to 6 millions tetrahedral cells.

As future work we intend to extend our implementation
to run on graphical clusters. For this end, we intend to dis-



(a) More opaque

(b) More transparent

Figure 4. Once again, it is possible to investi-
gate internal structures. (a) It is shown more
information, including part of the lung, while
in (b) using more transparency, only the heart
structure appears.

tribute the data between the nodes of the cluster, dimin-
ishing the limitation for the number of voxels that can be
processed. Even if a node receives more voxels that it can
project, a scheme will be implemented to project the set in
layers, which will fit in the graphics card’s memory, and
perform a final compositing, afterwards. Another scheme
that will be implemented is a segmentation over the raw
data, to precisely define the region of interest, bringing fur-
ther down the size of data to be projected, and more impor-

(a) Slice 10

Figure 5. Central slice from MRI taken from
left to right.

Figure 6. Due to the very low resolution of
this sequence, it is very difficult to distin-
guish any information out of this rendered
image.

tant, to generate cleaner rendered images.

References

[1] F. R. E. T. T. F. T. Ertl and M. Knauff. Gpu-based multi-
volume rendering for the visualization of functional brain
images. InIn Proceedings of SimVis, pages 305–318, 2006.

[2] R. Espinha and W. Celes. High-quality hardware-based ray-
casting volume rendering using partial pre-integration. In



SIBGRAPI ’05: Proceedings of the XVIII Brazilian Sympo-
sium on Computer Graphics and Image Processing, page
273. IEEE Computer Society, 2005.

[3] E. Lum, B. Wilson, and K.-L. Ma. High-quality light-
ing and efficient pre-integration for volume rendering. In
IEEE TVCG Symposium on Visualization 2004. The Joint
Eurographics-IEEE TVCG Symposium on Visualization
2004, 2004.

[4] A. Maximo, R. Marroquim, C. Esperanca, and R. Farias.
Gpu-based cell projection for interactive volume rendering.
In to appear in Brazilian Symposium on Computer Graphics
and Image Processing, 2006.

[5] R. P. Qi Zhang; Eagleson and T.M. Real-time visualiza-
tion of 4d cardiac mr images using graphics processing units
biomedical imaging: Macro to nano. In3rd IEEE Interna-
tional Symposium on Volume, pages 343–346, April 2006.

[6] S. Rttger, M. Kraus, and T. Ertl. Hardware-accelerated vol-
ume and isosurface rendering based on cell-projection. In
VIS ’00: Proceedings of the conference on Visualization ’00,
pages 109–116, Los Alamitos, CA, USA, 2000. IEEE Com-
puter Society Press.

[7] R. W. d. Santos, F. O. Campos, L. N. Ciuffo, A. Nygren,
W. Giles, and H. Koch. Atx-ii effects on the apparent lo-
cation of m cells in a computational human left ventricu-
lar wedge. Journal of Cardiovascular Electrophysiology,
17(Suppl 1), 2006.

[8] R. W. d. Santos and H. Koch. Interpreting biomagnetic fields
of planar wave fronts in cardiac muscle.Biophysical Jour-
nal, 88(5), 2005.

[9] P. Shirley and A. A. Tuchman. Polygonal approximation
to direct scalar volume rendering. InProceedings San
Diego Workshop on Volume Visualization, Computer Graph-
ics, volume 24(5), pages 63–70, 1990.

[10] C. Stein, B. Becker, and N. Max. Sorting and hardware as-
sisted rendering for volume visualization. In A. Kaufman
and W. Krueger, editors,1994 Symposium on Volume Visu-
alization, pages 83–90, 1994.

[11] M. Weiler, M. Kraus, , and T. Ertl. Hardware-based view-
independent cell projection. InVVS ’02: Proceedings of the
2002 IEEE Symposium on Volume visualization and graph-
ics, pages 13–22, Piscataway, NJ, USA, 2002. IEEE Press.

[12] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based
ray casting for tetrahedral meshes. InVIS ’03: Proceed-
ings of the 14th IEEE conference on Visualization ’93, pages
333–340, 2003.

[13] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based
view-independent cell projection.IEEE Transactions on Vi-
sualization and Computer Graphics, 9(2):163–175, 2003.

[14] B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno. Tetra-
hedral projection using vertex shaders. InVVS ’02: Pro-
ceedings of the 2002 IEEE Symposium on Volume visualiza-
tion and graphics, pages 7–12, Piscataway, NJ, USA, 2002.
IEEE Press.


