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Abstract—Conventional edge-detection methods suffer from the dislocation of

curved surfaces due to the PSF. We propose a new method that uses the isophote

curvature to circumvent this. It is accurate for objects with locally constant

curvature, even for small objects (like blood vessels) and in the presence of noise.
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1 INTRODUCTION

MANY clinical applications ofmedical imaging require that edges be

accurately located. An example is the diagnosis of a vascular

disease, where the grading of stenoses is an important factor in

determining the treatment therapy [1]. However, inherent to the
acquisition step is a blurring effect, which can be modeled by the

convolutionwith a point-spread function (PSF). This blurring function

causes conventional edge-detection methods to inaccurately locate

edges, leading to errors in quantification and visualization.
The dislocation of curved edges due to the PSF was shown

several times in the literature. Vessel quantification measurements

have shown that an adaptive threshold causes an error in the

diameter estimation of cylindrical structures [1], [2], [3]. Frangi et al.

[1] andKrissian et al. [4] used a simplifiedmodel to approximate the

cross-section of a tube. Later, Krissian et al. [5] showed that the

radius estimation of tubes in CT images can be improved by

modeling the PSF correctly.
Many deconvolution methods have been proposed to undo the

blurring caused by the PSF, which include approximations of the

inverse filter and iterative methods [6]. Most deconvolution

methods are ill-posed and, hence, unstable and noise enhancing,

which deteriorates the result [7]. Regularization can be used to

reduce the sensitivity to noise at the expense of a considerable

increase in computational cost for iterative methods [8].
We propose a new noniterative edge-localization method that

yields an exact correspondence between the edge that is detected

and the true surface of objects in the real word. The locally

measured isophote curvature is used to correct for the dislocation

of the curved surface due to Gaussian blurring, in 2D and 3D [9].

The analysis in this paper and the proposed method are applicable

where the images show rather homogeneous objects and where the

PSF can be approximated by a Gaussian. Although the PSF is not

completely isotropic and shift invariant for computed tomography

(CT) [12], this approximation can safely be made for CT and

several other medical acquisition modalities [10].
This paper is organized as follows: In Section 2, existing

methods for edge detection are summarized. In Section 3, the
dislocation of curved edges is analyzed mathematically. An
approximation for curved surfaces in 3D is made in Section 4.
Section 5 is about the implementation of the proposed method.
Finally, in Section 6, experimental results are discussed.

2 EXISTING EDGE-DETECTION METHODS

Object boundaries are usually detected with first and second-order

derivatives. The gradient, i.e., a vector of first-order derivatives,may

indicate the presence of an edge and the maximum of the gradient

magnitude is commonly used to locate edges. The zero-crossings of

the second-order derivative in the gradient direction (Lww) are

located where the gradient magnitude is maximal [13]. For

simplicity, the zero crossings of the Laplacian (�L) can also be used

to locate edges [14]. The Laplacian is easy to calculate, but the zero

crossings are not located where the gradient is maximal [15], [16].

However, our goal is not to find the position of maximal gradient in

theblurred image, but to find the locationof the edgebefore blurring.

For example, if the edge of a circular object with radius R is not

defined as the positionwhere the gradient is maximal after blurring,

but as the location before blurring, the zero-crossing positions r0 of

both methods (�L and Lww) give a dislocation of the curved edges.

Thedislocation ðr0 �RÞ of thesemethods goes in opposite directions

(Fig. 1). �L gives an overestimation and Lww gives an under-

estimation of the radius. The dislocation is caused by the isophote

curvature � in relation to the standard deviation � of the Gaussian

blurring. Since both�L and Lww appear to be dislocated in opposite

directions, Verbeek and van Vliet [18] proposed the PLUS operator,

which sums �L with Lww. This operator reduces the dislocation of

curved edges. Mendonça et al. [17] recently proposed a two-step

method that fits a curve through the zero crossings of Lww and

corrects for thebias in the localizationby shifting the curve according

to the dislocation that is known if the curvature is locally constant.

Wewill derive a filteringmethod that corrects for thedislocation and

does not require curve extraction. The methods are analyzed in the

next section.

3 ANALYSIS OF CURVED EDGES AND SURFACES

In this section, the dislocation of edge detectors is mathematically
analyzed and a new operator is derived. The zero crossings of this
operator are located exactly at surfaces with locally constant
curvature. First, the notation, assumptions, and problem definition
arementioned. The filter is derived for 2D and 3D in Sections 3.4 and
3.5, respectively. Finally, at the end of this section, conclusions will
be drawn.

3.1 Background and Notation

Partial derivatives will be denoted by subscripts, as inMx for
@M
@x or

Lyy for @2L
@y2 .

Derivatives are calculated in a locally fixed coordinate system
(gauge coordinates). The vector w is defined in the direction of the
gradient and vector v (and u, in 3D) are perpendicular to w. Thus,
Lww is the second-order derivative in the gradient direction. The
first order derivative in the gradient direction (Lw) is equal to the
gradient magnitude and the first-order derivative tangential to the
isosurface (Lv) is equal to zero.

The isophote curvature in 2D is denoted by �. In 3D, it consists
of two values (the principal curvatures, �1 and �2, sorted by
magnitude, j�1j > j�2j). The vectors corresponding to these values
are perpendicular to the gradient and perpendicular to each other.
The sum of principal curvatures will be denoted as �� ð¼ �1 þ �2Þ.
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3.2 Assumptions

Three assumptions are made during the derivation.

3.2.1 Homogeneous

Regions are rather homogeneous. Therefore, edges can be modeled

by the Heaviside unit step UðxÞ.

3.2.2 Constant Curvature

The curvature is assumed to be locally constant. Locally constant

curvaturemeans that the curvature is constant inside the footprint of

the blurring function. The unblurred objects M ¼ UðR� rÞ with

constant curvaturewill be a disk (interior of circle) in 2D, a ball (solid

sphere) and a cylinder in 3Dwith radial coordinate r (distance to the

origin) and radius R.

3.2.3 Gaussian PSF

The shape of the PSF, which causes the blurring, is assumed to be

Gaussian:

G ¼ 1

ð
ffiffiffiffiffiffiffiffiffiffi
2��2

p
ÞN

exp � ~rr:~rr

2�2

� �
; ð1Þ

where � is the standard deviation, N is the number of dimensions,

and ð~rr:~rrÞ is the dot product of the position vector with itself. In

Cartesian coordinates, the position vector ~rr ¼ ½x; y; z�T .
The blurred object L is defined as an N-dimensional convolu-

tion: L ¼ M � G.

3.3 Problem Definition

The most commonly used edge detectors are the detectors of Canny

[13] andMarr-Hildreth [14] basedonLww and�L, respectively. Fig. 1

shows that both dislocate the edges in opposite directions. ThePLUS

operator (Lww þ�L) results in an edge detector with a better

localization. However, if �� is larger than 0:2, the performance of the

PLUS operator also diminishes (as shown in Section 6). The equation

of the PLUS operator in 2D can be written as:

PLUS ¼ Lww þ�L ¼ 2 Lww � 1

2
�Lw

� �
: ð2Þ

We want to correct for the dislocation of curved surfaces.

Therefore, we use the curvature term in (2) to obtain a better

localization. This can be achieved by solving:

Lww � �ð��Þ �Lw ¼ 0 ð3Þ

for the function �ð��Þ, where �ð��Þ is expected to be approxi-

mately 0.5 for small values of �� (like the PLUS operator). The

product of the standard deviation of the Gaussian blurring � and

the local isophote curvature � is taken as the parameter of this

function �ð��Þ because it is a dimensionless quantity and,

therefore, scale invariant.

3.4 Curved Edges in 2D

The simplest object with (locally) constant curvature in 2D, is a
disk M ¼ UðR� rÞ. The position vector, expressed in polar
coordinates, is: ~rr ¼ ½r cosð�Þ; r sinð�Þ�T . The derivatives of M are:

Mx ¼ �cosð�Þ�ðR� rÞ
My ¼ �sinð�Þ�ðR� rÞ

Mw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y

q
¼ �ðR� rÞ

Mww ¼
M2

xMxx þ 2MxMxyMy þM2
yMyy

M2
x þM2

y

¼ �0ðR� rÞ

�M ¼ Mxx þMyy ¼ �0ðR� rÞ � �ðR� rÞ
r

:

ð4Þ

The gradient magnitude of the blurred object Lw can be obtained by
the convolution of Mw with a Gaussian G. The final equations are
rotation invariant. Therefore, we may choose Ly ¼ 0 and Lw ¼ jLxj
without loss of generality.

Lx ¼ Mx � G

¼
Z 1

0

Z 2�

0

�Mxð~��ÞGð~rr�~��Þd� d�

¼
Z 1

0

Z 2�

0

�� cosð�Þ �ðR� �Þ

1

2��2
e�

�2þr2�2r � cosð���Þ
2�2

� �
d� d�

¼ �R
1

2��2
e�

R2þr2

2�2

Z 2�

0

cosð�Þe
rR cosð���Þ

�2 d�

Lw ¼ R

�2
e�

R2þr2

2�2 I1
rR

�2

� �
;

ð5Þ

where Inð�Þ is the modified Bessel function of the first kind. Lww

can be derived from Lw. These results are in agreement with the
result of Mendonça et al. [17]. As shown in (4), �L can be
calculated from Lw and Lww.

Lww ¼ e�
r2þR2

2�2 �R2

�4
I0

rR

�2

� �
þ rR

�4
þ R

r�2

� �
I1

rR

�2

� �� �

�L ¼ e�
r2þR2

2�2 �R2

�4
I0

rR

�2

� �
þ rR

�4
I1

rR

�2

� �� �
:

ð6Þ

The curvature � can be obtained from �L ¼ Lww þ Lvv ¼
Lww � �Lw. Notice that � ¼ 1=r. Finally, an edge detector with zero
crossings at position r0 ¼ R can be defined, Lww � ��Lw ¼ 0, and
this equation can be solved for �.

� ¼ 1þ r2

�2
� rR

�2
I0

rR
�2

� �
I1

rR
�2

� �

¼ 1þR2

�2
� R2

�2

I0
R2

�2

� �
I1

R2

�2

� � ðat r ¼ RÞ:

ð7Þ

Curvature is inversely proportional to the radius. This can be used
to define � as a function of ��:

�ð��Þ ¼ 1þ 1

��

� �2

1�
I0

1
��

� �2� �

I1
1
��

� �2� �
0
@

1
A: ð8Þ

This equation is shown in Fig. 2. If �� approaches zero, then � ¼
0:5 and our operator becomes the PLUS operator. For �� > 0:5, the
entire object is inside the center part of the Gaussian PSF. The � in
(8) avoids dislocation of the zero crossings for an object with
locally constant curvature in 2D. So, the proposed method can
locate the edge of a disk without a bias.
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Fig. 1. The zero-crossings r0 of the Laplacian (�L) and the second-order derivative
in the gradient direction (Lww) are dislocated in the opposite direction. Therefore,
the PLUS operator (�Lþ Lww) was proposed by Verbeek and van Vliet [18].



3.5 Curved Surfaces in 3D

The curvature term of the PLUS operator in 3D depends on the

sum of curvatures.

PLUS ¼ 2 Lww � 1

2
ð�1 þ �2ÞLw

� �
: ð9Þ

Therefore, the � in the 2D problem definition is replaced by the

sum of curvatures �� in 3D:

Lww � ��� Lw ¼ 0 ðr ¼ RÞ: ð10Þ

Simple objects in 3D with constant curvature and different ratios of

�2=�1 are balls (�2=�1 ¼ 1) and cylinders (�2=�1 ¼ 0). Both objects

are described below.

3.5.1 Ball

The derivation for a ball is similar to that of a disk. The position

vector, expressed in spherical coordinates is: ½r cosð�Þsinð�Þ;
r sinð�Þsinð�Þ; r cosð�Þ�T . The derivatives ofM are:

Mx ¼ �cosð�Þsinð�Þ�ðR� rÞ
My ¼ �sinð�Þsinð�Þ�ðR� rÞ
Mz ¼ �cosð�Þ�ðR� rÞ

Mw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y þM2

z

q
¼ �ðR� rÞ

Mww ¼ ðM2
xMxx þM2

yMyy þM2
zMzzþ

2ðMxðMxyMy þMxzMzÞ þMyMyzMzÞÞ=
ðM2

x þM2
y þM2

z Þ ¼ �0ðR� rÞ

�M ¼ Mxx þMyy þMzz ¼ �0ðR� rÞ � �ðR� rÞ
r

:

ð11Þ

The gradient magnitude of the blurred object Lw can be calculated

by a convolution. We choose Lx ¼ 0, Ly ¼ 0, and Lw ¼ jLzj without

loss of generality.

Lz ¼
Z 1

0

Z �

0

Z 2�

0

�2sinð�ÞMz Gð~rr�~��Þ d�d�d�

¼ �e�
r2þR2

2 �2
R
R �

0 sinð�Þ cosð�Þ e
rR

�2
cosð�Þd�ffiffiffiffiffiffi

2�
p

�3

Lw ¼ e�
r2þR2

2�2
rRþ �2ð Þe�

rR

�2 þ rR� �2ð Þ e
rR

�2ffiffiffiffiffiffi
2 �

p
r2 �

:

ð12Þ

Lww can be derived from Lw, and �L from these two.

Lww ¼ e�
ðrþRÞ2

2�2ffiffiffiffiffiffi
2�

p
r3 �3

ðr3Rþ 2rR�2Þ 1þ e
2rR
�2

� �
þ

�

ð2�4 þ r2ðR2 þ �2ÞÞ 1� e
2rR
�2

� ��

�L ¼ e�
ðrþRÞ2

2�2

rR 1þ e
2rR
�2

� �
þ ðR2 þ �2Þ 1� e

2rR
�2

� �
ffiffiffiffiffiffi
2�

p
r �3

:

ð13Þ

The sum of curvatures �� can be obtained with �L ¼ Lww � �� Lw.

Notice that the sum of curvatures on a ball is �� ¼ 2=r, because each

of the two principal components of isophote curvature is 1=r.

Finally, an edge detectorwith zero crossings at position r ¼ R can be

defined, Lww � ��� Lw ¼ 0, and this equation can be solved for �,

resulting in:

� ¼
2 R

�

� �4þ2 1� e2
R
�ð Þ2

� �
þ R

�

� �2
3þ e2

R
�ð Þ2

� �

2 1� e2
R
�ð Þ2 þ R

�

� �2
1þ e2

R
�ð Þ2

� �� � : ð14Þ

Replacing R by 2=�� will define � to be a function of the product of

�� and �.

�ð���Þ ¼

2 2
���

� �4
þ2 1� e

2 2
���

� �2
0
@

1
Aþ 2

���

� �2
3þ e

2 2
���

� �2
0
@

1
A

2 1� e
2 2

� ��

� �2

þ 2
���

� �2
1þ e

2 2
���

� �2
0
@

1
A

0
@

1
A

:
ð15Þ

This equation is shown in Fig. 3. It can be used to locate the edge of

a ball without a bias.

3.5.2 Cylinder

For a cylinder, the 3D Gaussian can be decomposed in one

component in the direction of the central axis of a cylinder

(z-direction) and two components in the cross-sectional plane.

Because all derivatives in the z-direction are zero, the solution for the

cylinder is identical to that of the disk after replacing the 2D � by the

3D �� in (8). This function � is used to accurately quantify the

diameter of tubular structures (such as blood vessels).

3.6 Conclusion of the Analysis

An unbiased edge detector was derived for blurred disks, balls, and

cylinders. For small values of ��, function � approaches 0:5 and our

operator approximates the PLUS operator, as expected. Increasing

�� yields different values for �. Instead of extracting a contour in

2D at the zero crossings of Lww and estimating the required

dislocation, as Mendonça et al. proposed [17], we designed an

edge-detector with its zero-crossings at the correct location that can

also be applied in 3D.
The analysis helps us to obtain a better understanding of the

small-vessel radius-estimation results of others [1], [2], [3], [4] and

it yields more accurate quantification. The accuracy of the new

edge detector will be verified in Section 6.
The function �ð���Þ, which avoids dislocation, is not invariant

to the ratio between the principal isophote curvatures. � is not the

same for a cylinder (�2=�1 ¼ 0) and a ball (�2=�1 ¼ 1). It is different

for small values of �� (e.g., for �� smaller than 0:2). Therefore, a

more general approximation for curved surfaces is presented in the

next section.
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Fig. 2. Function � in (8) allows the localization of edges with locally constant

curvature in 2D without a bias.

Fig. 3. Function� in (15) can be used to locate the edge of a ball in 3Dwithout a bias.



4 APPROXIMATION FOR CURVED SURFACES IN 3D

Because � is not invariant to the ratio �2=�1, the sum of curvature
components does not give enough information to correct for the
dislocation of the curved surface. Therefore, not only the sum of
curvature components, but also the ratio between the curvature
components is used to correct for the dislocation. These two
dimensionless parameters allow the creation of a two-dimensional
look-up table in a limited domain, with ��� (that was used in the
previous section) on one of the axis. An approximation of � as a
function of ��� and �2=�1 is:

�ð���;
�2

�1
Þ � � 1þ �2

2

2�2
1

þ 3

2
� �2

2

2�2
1

� �

e

ð� ��Þ2
4 6:7�7:2 � 1:0374

5
2
�4�2

�1ð Þ2
� �

:

ð16Þ

Equation (16) was obtained with a toroidal object (donut)—as a
model of a curved vessel—stored in a discrete data set. For several
values of the two radii of the toroid,we computed the corresponding
value of � that produced the unbiased edge location and a function
was fitted numerically through the values of �.

5 IMPLEMENTATION

In this section, the steps needed for implementation of the
proposed method are described.

5.1 Implementation in 2D

Steps for implementation in 2D are listed below.

5.1.1 Derivatives

Separable Gaussian derivatives are used to calculate the first-
and second-order derivatives of the image [11]. The blurring of
the PSF and the Gaussian operators can be taken into account
using: � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
psf

þ�2op

p
.

5.1.2 Curvature

The derivatives are used to calculate Lw, Lww and �L, using (4).
After that, � can be calculated using � ¼ ðLww ��LÞ=Lw. In edge
regions, Lw will be larger than zero.

5.1.3 Zero Crossings

The zero crossings of the filter Lww � �ð��Þ�Lw must be detected
to show the edges. To speed up the calculations, a 1D look-up table
(LUT) can be used for �, indexed by the product of � and � (Fig. 2).

5.2 Implementation in 3D

Steps for implementation in 3D are listed below.

5.2.1 Derivatives

Gaussian derivatives are calculated. The total blurring is made
isotropic in the x, y, and z-direction using � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
psf

þ�2op

p
.

5.2.2 Curvature

The derivatives are used to calculate Lw, Lww, and �L using (11).
After that, �� can be calculated using �� ¼ ðLww ��LÞ=Lw.

5.2.3 Zero Crossings

The zero crossings of the filter Lww � �ð�� �Þ�� Lw must be
detected to find the location of the surfaces.

. To detect spherical structures, use (15) to fill a 1D LUT,
indexed by the product of �� and �.

. To detect cylindrical structures (like vessels), use (8) to fill
a 1D LUT, indexed by the product of �� and �.

. If the ratio �2=�1 is not approximately 1 or 0, (16) can be
used to fill a 2D LUT.

The two principal components of the isophote curvature (�1

and �2), which can be used if the 3D object does not resemble a
cylinder or a sphere, are derived from the equations in the article
by van Vliet and Verbeek [19], which result in:

�G ¼ L�4
w ½L2

xðLyyLzz � L2
yzÞþ

L2
yðLxxLzz � L2

xzÞ þ L2
zðLxxLyy � L2

xyÞþ
2ðLyLzðLxzLxy � LxxLyzÞ þ LxLzðLyzLxy

� LyyLxzÞ þ LxLyðLxzLyz � LzzLxyÞÞ�
�H ¼ ��=2

�1 ¼ �H þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
H � �G

q

�2 ¼ �H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
H � �G

q
:

ð17Þ

The two principal components should be sorted by magnitude.
Therefore, they must be swapped if �H is smaller than zero.

6 EXPERIMENTS AND RESULTS

Theproposedmethodwas testedonsynthetic imagesandonCTdata
to verify the accuracy and robustness of the algorithm. Synthetic
images were obtained by first blurring a continuous object, then
sampling, and, finally, adding white Gaussian noise. The CT data
was obtained with a Philips Mx8000 IDT 16-slice CT scanner.

After creation of the images, the method proposed in this paper
wasused to locate the edges.Thezero crossingswereused to indicate
the edge at subvoxel accuracy. We used continuous Gaussian
derivatives to interpolate the blurred derivatives of the image (as
shown by van den Boomgaard and van der Weij [20] and ter Haar
Romeny [21]).

In the Section 6.1, an experiment is described to validate the
theory and to make a comparison with other methods. In the
Section 6.2, the results of the edge localization of small circular
objects are shownto study the robustness for sampling. InSection6.3,
the sensitivity of the algorithm in the presence of noise is studied. In
the Section 6.4, the behavior of themethod on an imagewith varying
curvature is shown. In Section 6.5, our approximation for objects in
3D that are not spherical or cylindrical is verified. Section 6.6 shows
that the assumptions are valid for CT data, using quantitative
measurements of aphantom.And, Section 6.7 shows that themethod
can be applied to the CT data of a real patient.

6.1 Localization Accuracy

An experimentwas performedwith a disk in a digitized 2D image to
compare the location errors of variousmethods (Fig. 4). Equation (6)
gives the theoretical dislocation. It can be seen that experimentally
obtained results (dots) match the theory (curves). The dislocation of
the proposed method is negligible compared to the other methods.

6.2 Sampled Image of Small Circular Object

Even for small disks, e.g., with the radius R ¼ 2px (pixels), the
method is able to locate edges with a relative dislocation jr0 � Rj=R
less than 10�8, as shown in Fig. 5. This figure has been obtained
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Fig. 4. Experimental (dots) and theoretical (curves) relative dislocation of Lww,
PLUS, �L, and the proposed method (iCurv). The dislocation of the proposed
method is very small compared to the other methods.



with �psf ¼ 2px and �op ¼ 2px. It allows a comparison with the

results of Verbeek and van Vliet [18]. A relative dislocation of 1

means that the radius is estimated twice as large as the actual

radius. The dislocation of the proposed method is not exactly zero

due to the limited working precision. The figure shows that the

relative dislocation of the proposed method is much more accurate

than �L, Lww, and the PLUS operator. The relative dislocation is

also much smaller than the generalized Radon transform [22].

6.3 Suppression of Noise

In order to test the robustness of the edge detector in the presence of

noise, whiteGaussian noisewas added to the image of a disk (Fig. 6).
The second-order Gaussian-derivative kernels are analyzed to

understand the relation between noise and dislocation before the

results of the experiment are discussed.

The signal-to-noise ratio (SNR) in decibel is defined as:

SNR½dB� ¼ 20 log10
	s

�n

� �
: ð18Þ

where 	s is the mean signal amplitude and �n is the standard

deviation of the noise. The relation between the standard deviation

of the noise before (�ni) and after (�no) Gaussian filtering, for the

D-order Gaussian derivative with N dimensions, is [23]:

�no
�ni

� �2

¼
Z 1

�1

dDG
dxD

� �2

d~xx; ð19Þ

This integral can be solved:

�no
�ni

� �2

¼ ðð2DÞ!Þ=ðD! 2DÞ
2NþD �N=2 �Nþ2D

op

: ð20Þ

For a second-order Gaussian derivative kernel convolved with a

step-edge, the slope at the zero-crossing is d2G=dx2
��
x¼0

. The first-

order approximation for the relation between �no and the standard

deviation of the dislocation �ðr0�RÞ is given by this slope, as shown

in Fig. 7.

�no
�ðr0�RÞ

¼ d2G
dx2

����
x¼0

¼ 1ffiffiffiffiffiffi
2�

p
�3op

) ð21Þ

�ðr0�RÞ ¼
ffiffiffiffiffiffi
2�

p
�3op �no: ð22Þ

To find the relation between noise at the input and the dislocation,
�no must be eliminated with (20).

The relative dislocation ðr0 �RÞ=R as a function of the relative
filter size �� for various SNRis is shown in Fig. 8. The results are
based on five experiments. The relative dislocation as a function of
the SNRi for various �op is shown in Fig. 9. Both figures show a
close correspondence between theoretical and experimental results.
The other methods (Lww, �L, and PLUS) let the systematic error
raise for increasing scale. The proposed method is independent of
scale in two-dimensional images. In three-dimensional images, the
stochastic error is even lower, as shown by (20) and (22). The
figures show that the systematic error is completely removed by
the proposed method.

6.4 Slowly Varying Curvature

In this experiment, the curvature was not constant under the
footprint of the Gaussian, but slowly varying. The edge-detection
methods have been applied to an imagewith a filled ellipse (Fig. 10),
which was blurred with � ¼ 5px at a 10-times higher resolution
(�psf ¼ 0:5px) to avoid sampling errors. The method of Mendonça
et al. [17] was not tested in other experiments because the results are
expected to be similar our results. This experiment shows a
difference (Fig. 10) that can be explained by the location where the
(nonconstant) curvature is estimated. His method is estimating the
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Fig. 5. Relative location error for disks in 2D with radius R from 2 to 10 pixels for

� ¼ 2:8. Results of the experiment (dots) and theory (curves) are shown. The

dislocation of the proposed method (iCurv) is much smaller than other methods.

Fig. 6. Example of a noisy 2D image of a disk with radius R ¼ 6 pixels and

SNRi ¼ 15:6 dB. Input, output of the proposed method and thresholded output are

shown from left to right. The bottom row reflects a cross section through the center

of the image of the top row. The output suppresses noise and the zero crossing is

located with a small error.

Fig. 7. A first-order approximation for the relation between the standard deviation

of the noise �no and of the dislocation �ðr0�RÞ is slope at the zero-crossing.

Fig. 8. Relative dislocation for a 2D image of a disk with R ¼ 25:5 px as a function of �� for various SNRi ¼ f4; 20; 40; 100g dB. Theory (gray), mean relative dislocation

(black), and the sum of mean and standard deviation of the relative dislocation (black, dashed) are indicated for �L, PLUS, and iCurv.



curvature far away from the true edge—at the zero-crossings of
Lww—while our filteringmethod does it everywhere—including the
real edge location. In general, we can draw two conclusions from the
experiments that we performed on ellipses. First, the total blurring �

has to remain smaller than 1=� to avoid large dislocations. Second,
the results give an indication that, for small changes in curvature our
method performs best and, for larger changes in curvature, the
PLUS operator performs best.

6.5 Toroidal Object

An experiment was performed to verify the quality of the
approximation for three-dimensional objects that are not spherical
or cylindrical. The result is shown in Fig. 11. The dislocation of our
method is not zero because (16) is—in contrast to other equations in
this paper—only an approximation. The figure shows that,
especially in the range that is important for vessel quantification
(�0:5 < �2=�1 < 0:5), the maximum dislocation of our method is
small in comparison with others.

6.6 CT Data of Phantom

In order to show that our method can be applied to CT data and to

perform quantitative measurements, a phantom was scanned of

which the size is accurately known [24]. The labels and radii of the

arteries represented in the three-dimensional cerebrovascular

phantom are: vertebral (VA, 1.19mm), internal carotid (ICA,

1.75mm), and anterior, middle, and posterior-cerebral (ACA,

1.00mm; MCA, 1.39mm; PCA, 1.00mm) arteries (Fig. 12a). In the

reconstructed volume, the voxel size is 0.30 and 0.3125 mm in the z

and xy-directions, respectively, with a slice thickness of 1.5 mm.

The spherical aneurysm in the center of the phantom and the

integral of (12) were used to estimate the standard deviation of the

PSF: �psf ¼ 0:66 and 0:47mm in the z and xy-direction, respectively.

The scales of the Gaussian derivatives were adjusted to make the

total blurring isotropic with � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
psf

þ�2op

p
¼0:884mm.

The edge detectors were all applied in 3D. For quantitative

validation of the radius estimation, two-dimensional cross sections

of the vessels weremade. The eigenvectors of theHessianwere used

to determine the orientation of the vessel. Cross sections were made

at several locations and orientations. The estimated radii were

averaged and the dislocations are summarized in Fig. 12b. The

results show that our method performs better than �L and PLUS.

For the vessels in this phantom, it does not performmuch better than

Lww at this scale. The results also show that the proposed method

reduces the bias and that the experimental points match the theory

(curve in figure) within a 10 percent error range.

6.7 CT Data of Pulmonary Vessels

In this experiment, we verify the applicability of the method for the

radiusestimationofpulmonaryvessels incontrast-enhancedCTdata

of a real patient. Fig. 13a shows a surface rendering of the data.

1506 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 9, SEPTEMBER 2005

Fig. 9. Relative dislocation for a 2D image of a disk with R ¼ 25:5 px as a function of SNRi in decibel for various �op ¼ f2; 10; 20g px. Theory (gray), mean relative

dislocation (black), and the sum of mean and standard deviation of the relative dislocation (black, dashed) are indicated for�L, PLUS, and the proposed method (iCurv).

Fig. 10. A filled ellipse and the dislocation on its edge as a function of the total blurring. On the edge of the ellipse, the radius of curvature is slowly varying from 7 to 9 pixels

and from 7 to 50 pixels. Themethod of Mendonça (Mend) was also included in this experiment. The dislocation wasmeasured where the curvature is highest (1=7 px�1). For

low change of curvature, our method (iCurv) performs best. For higher change of curvature, PLUS (dotted) performs best.

Fig. 11. Dislocation (in pixels) as a function of the ratio between �2 and �1 for a
toroidal object ð� ¼ 8px; ��� ¼ 1þ�2=�1

1:7 Þ.
Fig. 12. CT data of vascular phantom. (a) Surface rendering. (b) Theoretical
(curve) and experimental dislocation of the various edge-detection methods.



In the reconstructed volume, the voxel size is 0.60 and 0.584 mm
in the z and xy-directions, respectively, with a slice thickness of
1.3mm. The PSF can be approximated by a Gaussian: �psf ¼ 0:83
and 0:76mm in the z and xy-direction, respectively. The total
blurring is � ¼ 1:393mm.

In the patient data, we do not have a ground truth for the
quantization of the vessel radius. Therefore, we assume that the
dislocation of our method is zero. Fig. 13b shows the dislocation of
the other methods relatively to our method.

The experimental points seem to match the theoretical curve

well if we assume a 10 percent error range. Therefore, we can

conclude that our method can be applied to CT data in order to

estimate the radius of tubular objects without a bias.

7 CONCLUSION

The proposedmethod uses the locally measured isophote curvature

to correct for the dislocation of a curved surface in 2D and 3D. It is a

separable, noniterative filter operation that requires only one scale to

locate edges of objects of different sizes, without surface extraction.
The Laplacian (�L), the second-order derivative in gradient

direction (Lww), and the PLUS operator show a systematic error for
edges with locally constant curvature. Due to a mathematical
derivation, we were able to design and implement an edge detector
that removes the systematic error. The theory helps us to obtain a
better understanding of the small-vessel radius-estimation results of
others.

Because the systematic error is removed, the method is able to

locate edges with locally constant curvature very accurately. The

method is more accurate than conventional methods for circular,

cylindrical, andspherical objects that are smaller than the footprint of

the Gaussian PSF or with small sampled objects (e.g., radius of two

pixels) and in the presence of noise or when the curvature is slowly

varying, as was shown by the results.

To validate the assumptions (Section 3.2) for CT data, experi-

ments were performed on the CT data of a phantom and a patient.

The patient data showed that the radius of pulmonary vessels could

be estimated within a 10 precent error range and the phantom data

showed that our method detects edges without a bias.
All experimental results are in full agreement with the theory

presented in this paper.
Future work may include an improvement of the solution for

surfaces in 3D that are not cylindrical or spherical.
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Fig. 13. CT data of pulmonary vessels. (a) Surface rendering. (b) Theoretical

(curve) and experimental dislocation of the various edge-detection methods.


