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Abstract
Hemodynamic information has proven valuable for analysis of cardiovascular diseases. Aberrant blood-flow pat-
terns, for instance, often relate to disease progression. Magnetic resonance imaging enables blood-flow measure-
ments that provide three-dimensional velocity fields during one heartbeat. However, visual analysis of these data is
challenging, because of the abundance and complexity of information. Explicit feature extraction can facilitate the
pattern characterization, and hence support visualization techniques to effectively convey anomalous flow areas.
In this work, we improve on existing pattern matching methods that characterize blood-flow patterns in volumetric
imaging data. To this end, we propose a set of helical and vortical patterns that can be parameterized by a single
variable. The characterization performance is validated on both synthetic and imaging blood-flow data. More-
over, we present a comprehensive visualization based on the pattern matching results, enabling semi-quantitative
assessment of the patterns in relation to the cardiovascular anatomy.

Categories and Subject Descriptors (according to ACM CCS): F.2.2 [Nonnumerical Algorithms and Problems]:
Pattern matching—vector-valued, I.3.8 [Computer Graphics]: Applications—4D PC-MRI Blood-Flow

1. Introduction

An increasing body of research demonstrates the value of
blood-flow information for diagnosis and treatment assess-
ment of cardiovascular disease (CVD) [MFK∗12], which is
now the leading cause of death worldwide [Wor13]. Changes
in the bloodstream cause remodeling of the cardiovascular
morphology, and vice versa, these morphological changes
affect the blood flow. Therefore, analysis of the blood flow
is essential for the assessment of the cardiovascular system.

Clinical research primarily focuses on quantitative mea-
sures derived from blood-flow data, such as flow-rate and
pressure. Modern phase-contrast magnetic resonance imag-
ing (PC-MRI) enables acquisition of quantitative volumetric
velocity data, typically comprising about 150x150x50 vox-
els, capturing blood-flow behavior in circa 25 timesteps dur-
ing a heartbeat. Visual analysis reveals the evolution of var-
ious blood-flow patterns, such as vortices and helices, often
related to disease progression [BB99].

To date, qualitative assessment is not performed routinely,
because visual exploration remains challenging [vPV13].

Qualitative findings are difficult to communicate and docu-
ment. Attempted descriptions of the complex shape and evo-
lution of the blood-flow patterns often remain sketchy, and
hence unclear and imprecise. To facilitate the characteriza-
tion of the hemodynamics, we present a pattern matching
approach that identifies blood-flow patterns using a given
set of template patterns. In contrast to previous work, we in-
troduce a set of template patterns that are parameterized by
a single variable. This enables a convenient description of
the detected blood-flow patterns. The approach is validated
using synthetic flow fields, substantiating the reliability for
measured data. We employ the characterization for an inte-
gral line visualization. A tailored color coding enables semi-
quantitative assessment of the blood-flow patterns.

2. Related Work

Assessment of CVD is primarily based on morphology,
while blood-flow information is also evidently impor-
tant [MFK∗12]. Understanding of intricate hemodynamics
based on 4D PC-MRI velocity data requires a characteriza-
tion of the flow field. Besides quantitative measures, the spa-
tial relations are important, which requires an unambiguous
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Figure 1: Our set of pattern kernels. The correspondence with the relevant patterns in Heiberg et al. [HEWK03] is shown in the
axis below, in terms of the kernel component along the symmetry axis P̂z′ as described in section 3.1.

description of the blood-flow patterns. It should be noticed
that blood-flow is incompressible. However, the measured
4D PC-MRI can present divergence due to limitations of the
acquisition (e.g., noise).

Research aims for the flow-field topology, capturing the
bare essentials using critical points [FVPF∗12]. Many meth-
ods based on the velocity gradient and derived quantities
have been proposed to detect vortical structures. However,
all of these rely on local derivatives and are sensitive to
noise in the measured data [HEWK03, ELWG14]. More-
over, topology of time-varying data remains an open chal-
lenge [PPFS10]. Instead, we search for pre-defined blood-
flow patterns using a noise-robust pattern matching ap-
proach, by extending the method in [HEWK03] to locate
and identify oriented flow patterns. Alternatively, Ebling et
al. estimate the patterns’ orientation using a Clifford convo-
lution, and allow for a generalized pattern set [ES03].

Recent blood-flow visualizations rely on filtering of inte-
gral lines, selectively showing lines based on, e.g., maximum
velocity, residence time, or vorticity [BPM∗12, KGP∗13].
We use the pattern matching results for our pathline visu-
alization, using a tailored color coding that enables semi-
quantitative assessment of the pattern shape.

3. Pattern Matching

3.1. Vector-valued correlation and pattern kernels

Following [HEWK03], we perform pattern matching by dis-
crete correlation of a vector field with a vector kernel repre-
senting a certain flow pattern. The result is a similarity mea-
sure h(x):

h(x) = ∑
x′
~P(x′) · D̂(x+x′) (1)

Here x, x′ denote points in the vector field and kernel do-
main, and D̂ = ~D/||~D|| is the normalized vector (data) field.
We use our own parametric description of the pattern ker-

nels, a related parameterization can be found in [RP96]:

P̂(x′,γ) = 1√
(x′)2 +(y′)2 + γ2

(−y′,x′,γ) (2)

The parameter γ defines the flow pattern as a vortex (γ =
0), a right-handed helix (γ = 5) or a left-handed helix (γ =
−5). Parallel flow is obtained in the limit |γ| >> x′,y′. We
normalize kernels such that an exact data match gives h(x) =
1. The kernel domain/pattern size is controlled by modulat-
ing Eq. (2) by a function f (x′) = exp{−(||x′||+Rs)/σ

2},
with σ the modulating parameter, and beyond a suppression
radius Rs. We choose values σ = 0.5, Rs = 8 mm related
to the aortic radius, which we estimated at 10 mm. Further-
more, we restrict kernel size by discarding the points with
f (x′c)< 0.01.

We characterize patterns by the vector field component
along the symmetry axis, P̂z′ , evaluated at a certain refer-
ence point. This is invariant under the introduced kernel-
wise normalization and modulation. We primarily aim to
find patterns in the thoracic arteries, and choose the refer-
ence point x′ref = (5,0,0), at a distance to the symmetry
axis of about half the aortic radius. For example, a right-
handed helix is characterized by 1/

√
2, the z′-component

of P̂(x′ref,5) = (0,1/
√

2,1/
√

2). Similarly, P̂z′(x′ref,γ) =
1,1/
√

2,0,−1/
√

2,−1 characterize parallel flow, a right-
handed helix, a vortex, a left-handed helix and anti-parallel
flow, respectively. We can now easily extend this set of pat-
terns, by considering intermediate values of P̂z′ . In this way
our method, unlike Heiberg’s, is sensitive to patterns with
small helicity differences (see Figure 1).

3.2. Orientation estimation

For pattern matching, the kernel orientation relative to that
of the data pattern should be accounted for. We compute for
each kernel the similarity responses hk in six orientations
n̂k pointing to vertices of a hemi-icosahedron [GK95]. A
second-order orientation tensor T is then constructed as

T (x) =
6

∑
k=1

h2
k(x)

(
5
4

n̂T
k n̂k−

1
4

I3

)
(3)
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(a) (b) (c)
Figure 2: (a) Legend ‘Box-whisker’ graph (b) the error angle ε distribution of the orientation estimation. (c) the similarity
estimation λ1 distribution.

where I3 is the unit matrix in 3D. The principal eigenvalue of
T , λ1, provides an estimated similarity measure, and λ1 = 1
represents a perfect match. The corresponding eigenvector,
ê1, approximates the symmetry axis of the data pattern.

3.3. Voxel characterization and labeling

Each voxel is characterized by the pattern with the highest
similarity measure λ1, where we require λ1 ≥ 0.8. We group
6-connected voxels if component P̂z′ differs maximally 0.1.
We then label each voxel cluster by the highest λ1 found, and
the cluster is characterized by the corresponding pattern. In
the MRI data, most voxels are characterized as (anti-)parallel
patterns, as expected. We regard these voxels as background,
as these regions are clinically less relevant [KGP∗13].

4. Validation

In this section, we validate two apects of the presented pat-
tern matching method: the sensitivity of λ1 to orientation
changes, and its noise robustness.

4.1. Parametric vector field

We examine the relation between pattern orientation and
similarity estimation, λ1. The kernel patterns are used as
synthetic data for these experiments. The data is identical to
the kernels used for the pattern matching process, therefore,
the result of an optimal estimation should provide λ1 = 1.
The data patterns are oriented in a total amount of 762 ori-
entations, ŝ, distributed over the unit sphere. ε is the angle
between the estimated orientation ê1 and the actual data pat-
tern orientation ŝ. ε = 0 indicates when ê1 and ŝ coincide.

The results of these experiments can be seen in Figure 2b
and 2c. In the horizontal axes there are the different patterns
presented in this paper (see Figure 1). The box-whisker chart
illustrated in Figure 2a is used to present the results. The fig-
ures indicate that the orientation estimation is less accurate
for patterns close to the vortex pattern, P̂z′ = 0. λ1 is also less
reliable for these patterns. However, the orientation estima-
tion accuracy increases rapidly moving towards the parallel
flow, P̂z′ =−1 or P̂z′ = 1.

4.2. Noise robustness

In this section, we investigate if the voxels are correctly char-
acterized under different signal to noise ratios (SNR). Given
our voxel characterization method, it is important that un-
der noisy conditions the λ1 obtained by matching the correct
pattern remains higher compared to the λ1 obtained by non-
corresponding patterns. We can also examine the validity of
the threshold set at 0.8. The synthetic data used for this ex-
periment are kernel patterns where we add Normal (Gaus-
sian) distributed noise to the separate velocity components.

Figure 3 shows the results for having a left-handed heli-
cal pattern (P̂z′ = -0.7), and for different SNR. The measured
data typically yield an SNR of about 30 [BFS∗10]. The λ1
value corresponds with a left-handed helical pattern remains
the highest for all SNR levels. This trend continues in the re-
sults for all other patterns. These results provide confidence
in the chosen approach regarding voxel characterization.

5. Results and Visualization

We apply our approach to 4D PC-MRI data, and account
for the customary voxel size anisotropy, e.g., 2.0×2.0×2.5
mm, by adopting the measured data grid as our kernel grid.
We also apply a binary voxel mask, obtained by threshold-

Figure 3: Similarity estimation λ1 for the pattern P̂z′ =−0.7
with different SNR. Each line represents the matching ker-
nel, see color coding in Figure 1. The dashed line is λ1 for
the matching kernel P̂z′ =−0.7.
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Figure 4: Pathline visualizations based on blood-flow pattern clusters in the complete cardiac cycle. (a) Volunteer data: clusters
with an estimated similarity measure λ1 ≤ 0.8 and |P̂z′ | ≤ 0.8 (b) Dissection patient data: clusters with an estimated similarity
measure λ1 ≤ 0.8 and |P̂z′ | ≤ 0.8 in a right-posterior view.

ing a temporal maximum intensity projection (tMIP) of the
blood-flow speed over the cardiac cycle.

Based on the voxel-wise blood-flow pattern characteriza-
tion, we introduce an integral-line visualization that conveys
the patterns’ shape and evolution. Seed points are placed in
regions of the characterized patterns, and pathlines are gen-
erated forward and backward in time for a fixed duration,
e.g., two timesteps. Each pathline is rendered as an imposter
tuboid. A tailored color scheme enables fast interpretation
of the patterns. Figure 1 shows the diverging color map. To-
wards vortical flow, the intensity increases to a bright yellow
for a pure vortex. Towards parallel flow, the saturation de-
creases towards gray. Strong patterns, such as a helix or a
vortex, are therefore easily identified by saturated colors.

Given the primary clinical interest in anomalous blood-
flow behavior, parallel flow patterns are eliminated from
the visualization. All other detected patterns throughout the
heartbeat can be presented in a static representation, shown
in Fig. 4. The patterns can also be depicted per time step. As
a result, the visualization is an effective overview of the pat-
terns’ characteristic and shape, and enables a stability judg-
ment of the patterns over time, as explained in Fig. 4a.

Our approach was implemented as a proof of concept with
Mathematica. On a modern quad core system with 6GB of
memory, a 4D blood-flow dataset is processed in about three
hours and thirthy minutes. The interactive visualization was
implemented in C++ using the OpenGL library.

6. Conclusions and Future Work

The presented pattern matching approach enables charac-
terization of blood-flow patterns in 4D PC-MRI data. The
method relies on velocity vector normalization, and is in-
variant to blood-flow speed. This enables detection of pat-
terns with speed variations, e.g., during systole and diastole.

In the visualization, the pathlines’ length provides a visual
indicator of the blood-flow speed within each pattern.

The introduced pattern set enables reliable detection of
helical and vortical patterns in measured data. However, the
set is not all-embracing. Constraints for orientation estima-
tion, e.g., axis symmetry, limits the number of patterns. Di-
verging and converging patterns cannot be detected reliably.
However, the presented set comprises the main patterns ad-
dressed in CVD clinical research, and is described by a sim-
ple parameter. P̂z′ provides an intuitive and rather accurate
description of blood-flow patterns.

We have proposed a localization and characterization of
blood-flow patterns, facilitating visual analysis and docu-
mentation of 4D MRI blood-flow data. A pattern set (Fig. 1),
provides a set of helical and vortical patterns. The patterns
are conveniently described by a single parameter, facilitat-
ing communication and documentation. Orientation of the
flow pattern is computed, and although not exploided in this
paper, it is potentially useful for clinical research.

The accuracy of our matching approach was assessed us-
ing parametric flow fields. The validation showed that our
method is reliable under typical PC-MRI noise. Another ad-
vantage is the intuitive correspondance between our single-
parameter description of patterns and their visualization. In
future work it would definitely be interesting to compare
both approaches, and analyse the robustness of the results
to parameter settings.

A custom integral-line visualization conveys the resulting
characterization using a tailored color coding of the path-
lines. Visual clutter is reduced by eliminating parallel flow
and, therefore, patterns of interest throughout the heartbeat
can be conveyed in a static representation (Fig. 4). In the fu-
ture, computation time can be improved by a optimized and
parallel implementation. Also, it is worthwhile investigating
a spatiotemporal pattern matching approach, capturing the
inherent unsteady nature of blood-flow dynamics.
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